A New Protocol to Mitigate Damage to Germination Caused by Black Layers in Maize (Zea mays L.) Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Sterilization Procedure
2.3. Sterilization Efficiency of Black Layer Removal, Inverting RPM Change, and Number of Seeds
2.4. Statistical Analysis
3. Results and Discussion
3.1. Selecting a Surface Sterilization Procedure
3.2. Seed Sterilization Effect by Removing the Black Layer
3.3. Seed Sterilization Effect of Inverting RPM and the Number of Seeds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Torres-Cortés, G.; Bonneau, S.; Bouchez, O.; Genthon, C.; Briand, M.; Jacques, M.A.; Barret, M. Functional microbial features driving community assembly during seed germination and emergence. Front. Plant Sci. 2018, 9, 902. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, S.N.; Al-Ani, N.K. Effect of different sterilization methods on contamination and viability of nodal segments of Cestrum nocturnum L. Int. J. Res. Stud. Biosci. (IJRSB) 2016, 4, 4–9. [Google Scholar]
- Sen, M.K.; Jamal, M.; Nasrin, S. Sterilization factors affect seed germination and proliferation of Achyranthes aspera cultured in vitro. Environ. Exp. Biol. 2013, 11, 119–123. [Google Scholar]
- Sauer, D.; Burroughs, R. Disinfection of seed surfaces with sodium hypochlorite. Phytopathology 1986, 76, 745–749. [Google Scholar] [CrossRef]
- Alam, F.; Uddin, E.; Amin, R.; Razzak, A.; Manik, M.; Khatu, M. Studies on the effect of various sterilization procedure for in vitro seed germination and successful micropropagation of Cucumis sativus. Int. J. Pure App. Biosci. 2016, 4, 75–81. [Google Scholar] [CrossRef]
- Mihaljević, I.; Dugalić, K.; Tomaš, V.; Viljevac, M.; Pranjić, A.; Čmelik, Z.; Puškar, B. and Jurković, Z. In vitro sterilization procedures for micropropagation of ‘Oblačinska’sour cherry. J. Agric. Sci. 2013, 58, 117–126. [Google Scholar] [CrossRef]
- Martinez, J.C.; Wang, K. Sterilization Protocol for Maize Seed Used for In Vitro Culture. 2009. Available online: http://agron-www.agron.iastate.edu/ptf/publications/Martinez_MGCNL_(2009).pdf (accessed on 2 February 2021).
- Lindsey, B.E., III; Rivero, L.; Calhoun, C.S.; Grotewold, E.; Brkljacic, J. Standardized method for high-throughput sterilization of Arabidopsis seeds. JoVE (J. Vis. Exp.) 2017, 128, e56587. [Google Scholar]
- Barampuram, S.; Allen, G.; Krasnyanski, S. Effect of various sterilization procedures on the in vitro germination of cotton seeds. Plant Cell Tissue Organ Cult. 2014, 118, 179–185. [Google Scholar] [CrossRef]
- Lu, L.M.; An, Y. Effects of different disinfectant on sterilization effect and germination of tobacco seeds. Seed 2012, 31, 93–95. [Google Scholar]
- Ma, M.; Zhao, L.; Tang, S.; Chen, X.; Qin, R. The effects of different disinfection methods on seed germination and study on the environmental bacteria in safflower (Carthamus tinctorius L.). Crops 2018, 34, 162–167. [Google Scholar]
- Yuan, Y. Selection and disinfection of tissue culture explants of Toona sinensis Roem. Anhui Agric. 2020, 26, 19–20. [Google Scholar]
- Miché, L.; Balandreau, J. Effects of rice seed surface sterilization with hypochlorite on inoculated Burkholderia vietnamiensis. Appl. Environ. Microbiol. 2001, 67, 3046–3052. [Google Scholar] [CrossRef] [PubMed]
- Oyebanji, O.B.; Nweke, O.; Odebunmi, O.; Galadima, N.B.; Idris, M.S.; Nnodi, U.N.; Afolabi, A.S.; Ogbadu, G.H. Simple, effective and economical explant-surface sterilization protocol for cowpea, rice and sorghum seeds. Afr. J. Biotechnol. 2009, 8, 5395–5399. [Google Scholar]
- Wojtyla, Ł.; Lechowska, K.; Kubala, S.; Garnczarska, M. Different modes of hydrogen peroxide action during seed germination. Front. Plant Sci. 2016, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Amarasinghe, R.; Wang, J.; Xie, W.; Peng, L.; Li, S.; Li, H. Seed-sterilization of Rhododendron wardii for micropropagation. Sri Lanka J. Food Agric. 2018, 4, 9–14. [Google Scholar] [CrossRef]
- Al Ghasheem, N.; Stănicăf, F.; Peticilă, A.G.; Venat, O. In vitro effect of various sterilization techniques on peach (Prunus persica (L.) Batsch) explants. Sci. Pap. Ser. B Hortic. 2018, 62, 227–234. [Google Scholar]
- Lee, H.; Zhang, Z.J. Maize (Zea mays) Hi-II transformation via Agrobacterium-mediated T-DNA transfer. Curr. Protoc. Plant Biol. 2016, 1, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Davoudpour, Y.; Schmidt, M.; Calabrese, F.; Richnow, H.H.; Musat, N. High resolution microscopy to evaluate the efficiency of surface sterilization of Zea mays seeds. PLoS ONE 2020, 15, e0242247. [Google Scholar] [CrossRef]
- Khatoon, T.; Hussain, K.; Majeed, A.; Nawaz, K.; Nisar, M.F. Morphological variations in maize (Zea mays L.) under different levels of NaCl at germinating stage. World Appl. Sci. J. 2010, 8, 1294–1297. [Google Scholar]
- Noumavo, P.A.N.; Kochoni, E.; Didagbé, Y.O.; Adjanohoun, A.; Allagbé, M.; Sikirou, R.; Gachomo, E.W.; Kotchoni, S.O.; Baba-Moussa, L. Effect of different plant growth promoting rhizobacteria on maize seed germination and seedling development. Am. J. Plant Sci. 2013, 4, 1013. [Google Scholar] [CrossRef]
- Kilic, S.; Duran, R.E.; Coskun, Y. Morphological and physiological responses of maize (Zea mays L.) seeds grown under increasing concentrations of chlorantraniliprole insecticide. Pol. J. Environ. Stud. 2015, 24, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Kifle, M.H.; Laing, M.D. Effects of selected diazotrophs on maize growth. Front. Plant Sci. 2016, 7, 1429. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Brown, L.K.; Raffan, A.C.; George, T.S.; Bengough, A.G.; Roose, T.; Sinclair, I.; Koebernick, N.; Cooper, L.; Hackett, C.A.; et al. Plant exudates may stabilize or weaken soil depending on species, origin and time. Eur. J. Soil Sci. 2017, 68, 806–816. [Google Scholar] [CrossRef] [PubMed]
- Hao, T.; Chen, S. Colonization of wheat, maize and cucumber by Paenibacillus polymyxa WLY78. PLoS ONE 2017, 12, e0169980. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Guan, B.; Zhou, D.; Yu, J.; Li, G.; Lou, Y. Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in maize (Zea mays L.). Sci. World J. 2014, 2014, 834630. [Google Scholar] [CrossRef] [PubMed]
- Gaume, A.; Ma¨chler, F.; De Leo’n, C.; Narro, L.; Frossard, E. Low-P tolerance by maize (Zea mays L.) genotypes: Significance of root growth, and organic acids and acid phosphatase root exudation. Plant Soil 2001, 228, 253–264. [Google Scholar] [CrossRef]
- Shafique, S.; Shafique, S.; Javaid, A. Fungitoxicity of aqueous extracts of allelopathic plants against seed-borne mycoflora of maize. Mycopathologia 2005, 3, 23–26. [Google Scholar]
- Girton, R.E. Sterilization of corn grains with sodium hypochlorite. Plant Physiol. 1936, 11, 635. [Google Scholar] [CrossRef]
- Yamaguchi, J. Measurement of root diameter in field-grown crops under a microscope without washing. Soil Sci. Plant Nutr. 2002, 48, 625–629. [Google Scholar] [CrossRef]
- Si, Y.; Haxim, Y.; Wang, L. Optimum sterilization method for in vitro cultivation of dimorphic seeds of the succulent halophyte Suaeda aralocaspica. Horticulturae 2022, 8, 289. [Google Scholar] [CrossRef]
- Hong, J.K.; Lee, Y.-H.; Kim, B.-G.; Lee, G.S.; Jang, H.J.; Song, G.; Suh, E.J.; Park, S.R. Overexpressing OsPYL/RCAR7 improves drought tolerance of maize seedlings by reducing Stomatal conductance. Agriculture 2022, 12, 2140. [Google Scholar] [CrossRef]
- Hong, J.K.; Park, K.J.; Lee, G.-S.; Kim, D.Y.; Kim, J.-K.; Lee, S.B.; Suh, E.J.; Lee, Y.-H. Callus induction and plant regeneration from immature zygotic embryos of various maize genotypes (Zea mays L.). J. Plant Biotechnol. 2017, 44, 49–55. [Google Scholar] [CrossRef]
- Awata, L.A.; Tongoona, P.; Danquah, E.; Ifie, B.E.; Mahabaleswara, S.L.; Jumbo, M.B.; Marchelo-D’ragga, P.W.; Sitonik, C. Understanding tropical maize (Zea mays L.): The major monocot in modernization and sustainability of agriculture in sub-Saharan Africa. Int. J. Adv. Agric. Res. 2019, 7, 32–77. [Google Scholar]
- Acquaah, G. Principles of Plant Genetics and Breeding, 2nd ed.; John Willey and Sons, Ltd.: West Sussex, UK, 2012. [Google Scholar]
- Nafziger, E. Corn. In Illinois Agronomy Handbook; University of Illinois: Urbana, IL, USA, 2008; pp. 13–26. [Google Scholar]
Treatments | |||||
---|---|---|---|---|---|
Varieties | Pots | Treatment 1 | Treatment 2 | Treatment 3 | Treatment 4 |
Germination (%) | Germination (%) | Germination (%) | Germination (%) | Germination (%) | |
Hi IIA | 31.40 ± 0.66 | 97.30 ± 0.67 *** | 97.33 ± 0.67 *** | 98.33 ± 0.33 *** | 99.22 ± 0.69 *** |
Hi IIA × Hi IIB | 42.37 ± 5.35 | 98.78 ± 0.69 *** | 98.78 ± 0.69 *** | 98.67 ± 0.67 *** | 99.11 ± 0.69 *** |
A188 | 63.87 ± 2.05 | 98.44 ± 0.84 *** | 98.44 ± 0.84 *** | 99.44 ± 0.51 *** | 98.56 ± 0.69 *** |
H99 | 62.40 ± 1.00 | 98.56 ± 0.51 *** | 98.56 ± 0.51 *** | 99.11 ± 0.51 *** | 99.44 ± 0.69 *** |
B104 | 87.93 ± 1.46 | 98.89 ± 0.51 *** | 98.89 ± 0.51 *** | 98.89 ± 1.07 *** | 98.44 ±1.84 *** |
B73 | 93.93 ± 1.61 | 99.67 ± 0.33 *** | 99.67 ± 0.33 *** | 99.56 ± 0.51 *** | 99.22 ± 0.84 *** |
B98 | 96.27 ± 0.85 | 99.67 ± 0.33 *** | 99.67 ± 0.33 *** | 99.11 ± 1.02 *** | 99.56 ± 0.51 *** |
HW3 | 70.90 ± 1.11 | 98.33 ± 0.33 *** | 98.33 ± 0.33 *** | 99.00 ± 0.67 *** | 99.44 ± 0.38 *** |
KS140 | 93.37 ± 1.40 | 98.67 ± 1.45 *** | 98.67 ± 1.45 *** | 98.89 ± 1.64 *** | 99.22 ± 1.07 *** |
KS141 | 97.90 ± 1.35 | 99.78 ± 0.19 *** | 98.33 ± 0.33 *** | 99.56 ± 0.51 *** | 99.22 ± 1.07 *** |
Hi IIA(♂) × B73(♀) | 40.89 ± 1.35 | 98.22 ± 1.92 *** | 99.11 ± 1.02 *** | 98.00 ± 1.33 *** | 97.78 ± 1.68 *** |
B73(♂) × Hi IIA(♀) | 33.00 ± 1.76 | 97.78 ± 1.68 *** | 99.11 ± 0.77 *** | 98.22 ± 1.39 *** | 97.33 ± 2.31 *** |
Treatments | ||||
---|---|---|---|---|
Varieties | Treatment 1 | Treatment 2 | Treatment 3 | Treatment 4 |
Contamination (%) | Contamination (%) | Contamination (%) | Contamination (%) | |
Hi IIA | 100 | 41.89 ± 1.07 *** | 19.44 ± 1.02 *** | 11.00 ± 1.67 *** |
Hi IIA × Hi IIB | 100 | 33.78 ± 1.50 *** | 19.44 ± 1.26 *** | 11.44 ± 1.50 *** |
A188 | 100 | 29.11 ± 4.19 *** | 17.56 ± 1.02 *** | 11.67 ± 0.88 *** |
H99 | 100 | 26.78 ± 0.84 *** | 18.89 ± 0.19 *** | 11.33 ± 1.20 *** |
B104 | 100 | 25.00 ± 1.20 *** | 18.56 ± 3.10 *** | 11.44 ± 2.14 *** |
B73 | 100 | 25.67 ± 0.33 *** | 19.33 ± 2.33 *** | 10.67 ± 0.88 *** |
B98 | 100 | 27.00 ± 0.33 *** | 20.56 ± 2.67 *** | 12.00 ± 2.03 *** |
HW3 | 100 | 24.56 ± 1.17 *** | 19.00 ± 2.08 *** | 11.11 ± 2.22 *** |
KS140 | 100 | 29.33 ± 1.33 *** | 19.11 ± 0.84 *** | 11.67 ± 1.53 *** |
KS141 | 100 | 31.44 ± 3.02 *** | 21.11 ± 0.84 *** | 10.78 ± 1.68 *** |
Hi IIA(♂) × B73(♀) | 100 | 35.78 ± 1.39 *** | 19.78 ± 2.34 *** | 13.78 ± 3.29 *** |
B73(♂) × Hi IIA(♀) | 100 | 36.11 ± 0.84 *** | 19.33 ± 1.33 *** | 13.33 ± 0.67 *** |
Treatments | ||||
---|---|---|---|---|
Variety | Treatment 1 | Treatment 2 | Treatment 3 | Treatment 4 |
Contamination (%) | Contamination (%) | Contamination (%) | Contamination (%) | |
Hi IIA | 100 | 34.00 ± 1.20 *** | 9.44 ± 1.71 *** | 0.44 ± 0.51 *** |
Parameters | Treatment 1 | Treatment 4 + Black Layer Removed | |
---|---|---|---|
Conditions | Contamination (%) | Contamination (%) | |
Inverting RPM | 25 | 100 | 16.56 ± 0.69 *** |
45 | 100 | 0.22 ± 0.38 *** | |
65 | 100 | 12.67 ± 0.88 *** | |
Number of seeds (grains) | 10 | 100 | 0.22 ± 0.38 *** |
20 | 100 | 0.22 ± 0.19 *** | |
30 | 100 | 10.22 ± 0.51 *** |
Treatments | ||
---|---|---|
Varieties | Treatment 1 | Treatment 4 + Black Layer Removed |
Contamination (%) | Contamination (%) | |
Hi IIA × Hi IIB | 100 | 0.44 ± 0.19 *** |
A188 | 100 | 0.44 ± 0.38 *** |
H99 | 100 | 0.44 ± 0.19 *** |
B104 | 100 | 0 *** |
B73 | 100 | 0 *** |
B98 | 100 | 0 *** |
HW3 | 100 | 0 *** |
KS140 | 100 | 0.44 ± 0.19 *** |
KS141 | 100 | 0.33 ± 0.33 *** |
Hi IIA(♂) × B73(♀) | 100 | 0.44 ± 0.38 *** |
B73(♂) × Hi IIA(♀) | 100 | 0.44 ± 0.38 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, J.K.; Baek, J.; Park, S.R.; Lee, G.S.; Suh, E.J. A New Protocol to Mitigate Damage to Germination Caused by Black Layers in Maize (Zea mays L.) Seeds. Agriculture 2023, 13, 2147. https://doi.org/10.3390/agriculture13112147
Hong JK, Baek J, Park SR, Lee GS, Suh EJ. A New Protocol to Mitigate Damage to Germination Caused by Black Layers in Maize (Zea mays L.) Seeds. Agriculture. 2023; 13(11):2147. https://doi.org/10.3390/agriculture13112147
Chicago/Turabian StyleHong, Joon Ki, Jeongho Baek, Sang Ryeol Park, Gang Seob Lee, and Eun Jung Suh. 2023. "A New Protocol to Mitigate Damage to Germination Caused by Black Layers in Maize (Zea mays L.) Seeds" Agriculture 13, no. 11: 2147. https://doi.org/10.3390/agriculture13112147
APA StyleHong, J. K., Baek, J., Park, S. R., Lee, G. S., & Suh, E. J. (2023). A New Protocol to Mitigate Damage to Germination Caused by Black Layers in Maize (Zea mays L.) Seeds. Agriculture, 13(11), 2147. https://doi.org/10.3390/agriculture13112147