Wine and Health: From the Perspective of Alvise Cornaro to the Latest Scientific Opinions
Abstract
:1. Alvise Cornaro and the Treatise on La Vita Sobria
2. The Wine Mission
3. Wine and Health
3.1. Red or White Wines?
Compounds | Red Wine (mg/L) | Reference | White Wine (mg/L) | Reference |
---|---|---|---|---|
Flavonoids | ||||
Anthocyanins | 21.3–736 | [50] | - | [50] |
73.27–337.21 | [51] | |||
Flavonols | 100 | [42] | - | [52] |
86.81–178.50 | [51] | |||
Flavanols | 800 | [42] | 15–25 | [50,53] |
81.70–169.33 | [51] | |||
(+)-Catechin | 13.8–390 | [50] | 38.0 ± 31.9 | [40] |
Catechin | 3.02–72.89 | [41] | 4.25–9.92 | [41] |
Flavanones (Naringenin) | 25 | [50] | 7.7 | [50] |
Hydrolyzable tannins (from oak) | 0–250 | [52] | 0–100 | [52] |
Proanthocyanidins and condensed tannins | 750–1000 | [52] | 20–25 | [52] |
Total (Flavonoids) | 1365–1500 | [52] | 40–45 | [52] |
Non-flavonoids | ||||
Benzoic acids | 60 | [52] | 10.0–15 | [52] |
Hydroxycinnamates | 60–165 | [52] | 130–154 | [52] |
Hydroxycinnamic acids | 100 | [50] | 30 | [50] |
Gallic acid | up to 70 | [42] | 13.1 ± 7.0 | [40] |
Stilbenes | 0.40–35.5 | [54] | 0.04–0.56 | [54] |
Resveratrol | 0–9.84 | [54] | 0.018–0.073 | [54] |
Tyrosol | 20–60 | [55] | 45 | [55] |
Hydroxytyrosol | 3.89 | [42] | 2.69 | [56] |
Total (Non-flavonoids) | 232–377 | [52] | 164.5–245.5 | [52] |
Total phenols | 1732–1742 | [52] | 209.5–285.5 | [52] |
2567 | [57] | 626 ± 160 | [40] |
3.2. Wine with Reduced Alcohol Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gullino, G.; Corner, A. Dizionario Biografico Degli Italiani; Treccani: Roma, Italy, 1983; Volume 29, pp. 142–146. [Google Scholar]
- Paccagnella, I. Tre Sonetti fra Morato e Magagnò; Cleup: Padova, Italy, 2011. [Google Scholar]
- Cornaro, A. Scritti sulla vita sobria. In Elogio e lettere; Corbo, e F., Ed.; Prima edizione critica a cura di Marisa Milani: Venezia, Italy, 1983. [Google Scholar]
- Benzoni, G. Verso la santa agricoltura. In Alvise Cornaro, Ruzante, il Polesine; Edizione Associazione Minelliana: Rovigo, Italy, 2004. [Google Scholar]
- Cornaro, L.; Cooke, G.; Herbert, G. How to Live for a Hundred Years and Avoid Disease…; Herbert, G., Translator; Alden Press: Oxford, UK, 1935. [Google Scholar]
- Jackson, R.S. Wine Science: Principles and Applications; Elsevier Academic Press: Amsterdam, The Netherlands, 2008; ISBN 978-0-12-373646-8. [Google Scholar]
- Norrie, P.A. The History of Wine as a Medicine. In Wine; CRC Press: Boca Raton, FL, USA, 2002; pp. 37–71. [Google Scholar]
- Montanari, L. Quando il vino era tutto. In Giornale di Agricoltura e Gastronomia (GAG); Centro di Cultura e Civiltà Contadina Biblioteca Internazionale “La Vigna”: Vicenza, Italy, 2022; Volume 3, pp. 6–13. ISSN 2464-8779. [Google Scholar]
- Harding, G. A Wine Miscellany: A Jaunt Through the Whimsical World of Wine; Clarkson Potter: New York, NY, USA, 2005. [Google Scholar]
- St Leger, A.S.; Cochrane, A.L.; Moore, F. Factors associated with cardiac mortality in developed countries with particular reference to the consumption of wine. Lancet 1979, 313, 1017–1020. [Google Scholar] [CrossRef] [PubMed]
- Artero, A.; Artero, A.; Tarín, J.J.; Cano, A. The impact of moderate wine consumption on health. Maturitas 2015, 80, 3–13. [Google Scholar] [CrossRef]
- McEvoy, L.K.; Bergstrom, J.; Tu, X.; Garduno, A.C.; Cummins, K.M.; Franz, C.E.; Laughlin, G.A. Moderate alcohol use is associated with reduced cardiovascular risk in middle-aged men independent of health, behavior, psychosocial, and earlier life factors. Nutrients 2022, 14, 2183. [Google Scholar] [CrossRef] [PubMed]
- Artaud-Wild, S.M.; Connor, S.L.; Sexton, G.; Connor, W.E. Differences in coronary mortality can be explained by differences in cholesterol and saturated fat intakes in 40 countries but not in France and Finland. A paradox. Circulation 1993, 88, 2771–2779. [Google Scholar] [CrossRef] [PubMed]
- Galinski, C.N.; Zwicker, J.I.; Kennedy, D.R. Revisiting the mechanistic basis of the French Paradox: Red wine inhibits the activity of protein disulfide isomerase in vitro. Thromb. Res. 2016, 137, 169–173. [Google Scholar] [CrossRef]
- Fragopoulou, E.; Choleva, M.; Antonopoulou, S.; Demopoulos, C.A. Wine and its metabolic effects. A comprehensive review of clinical trials. Metabolism 2018, 83, 102–119. [Google Scholar] [CrossRef]
- De Oliveira e Silva, E.R.; Foster, D.; Harper, M.M.; Seidman, C.E.; Smith, J.D.; Breslow, J.L.; Brinton, E.A. Alcohol consumption raises HDL cholesterol levels by increasing the transport rate of apolipoproteins A-I and A-II. Circulation 2000, 102, 2347–2352. [Google Scholar] [CrossRef]
- Gaziano, J.M.; Buring, J.E.; Breslow, J.L.; Goldhaber, S.Z.; Rosner, B.; VanDenburgh, M.; Willett, W.; Hennekens, C.H. Moderate alcohol intake, increased levels of high-density lipoprotein and its subfractions, and decreased risk of myocardial infarction. N. Eng. J. Med. 1993, 329, 1829–1834. [Google Scholar] [CrossRef]
- Teissedre, P.L.; Stockley, C.; Boban, M.; Gambert, P.; Alba, M.O.; Flesh, M.; Ruf, J.C. The effects of wine consumption on cardiovascular disease and associated risk factors: A narrative review. OENO One 2018, 52, 67–79. [Google Scholar] [CrossRef]
- Kleinhenz, D.J.; Sutliff, R.L.; Polikandriotis, J.A.; Walp, E.R.; Dikalov, S.I.; Guidot, D.M.; Hart, C.M. Chronic ethanol ingestion increases aortic endothelial nitric oxide synthase expression and nitric oxide production in the rat. Alcohol. Clin. Exp. Res. 2008, 32, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Krenz, M.; Korthuis, R.J. Moderate ethanol ingestion and cardiovascular protection: From epidemiologic associations to cellular mechanisms. J. Mol. Cell Cardiol. 2012, 52, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Vejarano, R.; Luján-Corro, M. Red Wine and Health: Approaches to Improve the Phenolic Content During Winemaking. Front. Nutr. 2022, 9, 1126. [Google Scholar] [CrossRef]
- Bryazka, D.; Reitsma, M.B.; Griswold, M.G.; Abate, K.H.; Abbafati, C.; Abbasi-Kangevari, M.; Diress, M. Population-level risks of alcohol consumption by amount, geography, age, sex, and year: A systematic analysis for the Global Burden of Disease Study 2020. Lancet 2022, 400, 185–235. [Google Scholar]
- Zimatkin, S.M.; Pronko, S.P.; Vasiliou, V.; Gonzalez, F.J.; Deitrich, R.A. Enzymatic Mechanisms of Ethanol Oxidation in the Brain. Alcohol. Clin. Exp. Res. 2006, 30, 1500–1505. [Google Scholar] [CrossRef] [PubMed]
- Peter Guengerich, F.; Avadhani, N.G. Roles of cytochrome P450 in metabolism of ethanol and carcinogens. Adv. Exp. Med. Biol. 2018, 1032, 15. [Google Scholar] [PubMed]
- Doody, E.E.; Groebner, J.L.; Walker, J.R.; Frizol, B.M.; Tuma, D.J.; Fernandez, D.J.; Tuma, P.L. Ethanol metabolism by alcohol dehydrogenase or cytochrome P450 2E1 differentially impairs hepatic protein trafficking and growth hormone signaling. Am. J. Physiol.-Gastr. L 2017, 313, G558–G569. [Google Scholar]
- Rumgay, H.; Murphy, N.; Ferrari, P.; Soerjomataram, I. Alcohol and cancer: Epidemiology and biological mechanisms. Nutrients 2021, 13, 3173. [Google Scholar] [CrossRef]
- Shield, K.D.; Parry, C.; Rehm, J. Chronic diseases and conditions related to alcohol use. Alcohol. Res.-Curr. Rev. 2014, 35, 155. [Google Scholar]
- Furtwængler, N.A.F.F.; De Visser, R.O. Lack of international consensus in low-risk drinking guidelines. Drug Alcohol. Rev. 2013, 32, 11–18. [Google Scholar] [CrossRef]
- Kalinowski, A.; Humphreys, K. Governmental standard drink definitions and low-risk alcohol consumption guidelines in 37 countries. Addiction 2016, 111, 1293–1298. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.; December 2020. Available online: https://www.dietaryguidelines.gov/ (accessed on 25 January 2023).
- Huang, S.; Li, J.; Shearer, G.C.; Lichtenstein, A.H.; Zheng, X.; Wu, Y.; Jin, C.; Wu, S.; Gao, X. Longitudinal study of alcohol consumption and HDL concentrations: A community-based study. Am. J. Clin. Nutr. 2017, 105, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Kloner, R.A.; Rezkalla, S.H. To Drink or not to drink? That is the question. Circulation 2007, 116, 1306–1317. [Google Scholar] [CrossRef] [PubMed]
- Gambini, J.; Gimeno-Mallench, L.; Olaso-Gonzalez, G.; Mastaloudis, A.; Traber, M.G.; Monleón, D.; Borrás, C.; Viña, J. Moderate red wine consumption increases the expression of longevity-associated genes in controlled human populations and extends lifespan in Drosophila melanogaster. Antioxidants 2021, 10, 301. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.M.; Kaptoge, S.; Butterworth, A.; Nietert, P.J.; Warnakula, S.; Bolton, T.; Paige, E.; Paul, D.S.; Sweeting, M.; Burgess, S.; et al. Risk thresholds for alcohol consumption: Combined analysis of individual-participant data for 599,912 current drinkers in 83 prospective studies. Lancet 2018, 391, 1513–1523. [Google Scholar] [CrossRef] [PubMed]
- Davies, E.L.; Foxcroft, D.R.; Puljevic, C.; Ferris, J.A.; Winstock, A.R. Global comparisons of responses to alcohol health information labels: A cross sectional study of people who drink alcohol from 29 countries. Addict Behav. 2022, 131, 107330. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pan, A.; Wang, D.D.; Liu, X.; Dhana, K.; Franco, O.H.; Kaptoge, S.; Di Angelantonio, E.; Stampfer, M.; Willett, W.C.; et al. Impact of healthy lifestyle factors on life expectancies in the US population. Circulation 2018, 138, 345–355. [Google Scholar] [CrossRef]
- Loef, M.; Walach, H. The combined effects of healthy lifestyle behaviors on all cause mortality: A systematic review and meta-analysis. Prev. Med. 2012, 55, 163–170. [Google Scholar] [CrossRef]
- Nemzer, B.; Kalita, D.; Yashin, A.Y.; Yashin, Y.I. Chemical Composition and polyphenolic compounds of red wines: Their antioxidant activities and effects on human health—A review. Beverages 2022, 8, 1. [Google Scholar] [CrossRef]
- Jakubíková, M.; Sádecká, J.; Hroboňová, K. Determination of total phenolic content and selected phenolic compounds in sweet wines by fluorescence spectroscopy and multivariate calibration. Microchem. J. 2022, 181, 107834. [Google Scholar] [CrossRef]
- Jackson, R.S. Specific and distinctive wine styles. In Wine Science, 3rd ed.; Elsevier academic press: Amsterdam, The Netherlands, 2008; pp. 520–576. ISBN 9780080568744. [Google Scholar]
- Yang, P.; Li, H.; Wang, H.; Han, F.; Jing, S.; Yuan, C.; Guo, A.; Zhang, Y.; Xu, Z. dispersive liquid-liquid microextraction method for HPLC determination of phenolic compounds in wine. Food Anal. Met. 2017, 10, 2383–2397. [Google Scholar] [CrossRef]
- Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine polyphenol content and its influence on wine quality and properties: A review. Molecules 2021, 26, 718. [Google Scholar] [CrossRef]
- Giacosa, S.; Parpinello, G.P.; Segade, S.R.; Ricci, A.; Paissoni, M.A.; Curioni, A.; Versari, A. Diversity of Italian red wines: A study by enological parameters, color, and phenolic indices. Food Res. Int. 2021, 143, 110277. [Google Scholar] [CrossRef] [PubMed]
- Castaldo, L.; Narváez, A.; Izzo, L.; Graziani, G.; Gaspari, A.; Di Minno, G.; Ritieni, A. Red wine consumption and cardiovascular health. Molecules 2019, 24, 3626. [Google Scholar] [CrossRef] [Green Version]
- Cavallini, G.; Straniero, S.; Donati, A.; Bergamini, E. Resveratrol requires red wine polyphenols for optimum antioxidant activity. J. Nutr. Health Aging 2016, 20, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Ghanim, H.; Sia, C.L.; Abuaysheh, S.; Korzeniewski, K.; Patnaik, P.; Marumganti, A.; Chaudhuri, A.; Dandona, P. An antiinflammatory and reactive oxygen species suppressive effects of an extract of polygonum cuspidatum containing resveratrol. J. Clin. Endocrinol. Metab. 2010, 95, E1–E8. [Google Scholar] [CrossRef] [PubMed]
- Snopek, L.; Mlcek, J.; Sochorova, L.; Baron, M.; Hlavacova, I.; Jurikova, T.; Kizek, R.; Sedlackova, E.; Sochor, J. Contribution of red wine consumption to human health protection. Molecules 2018, 23, 1684. [Google Scholar] [CrossRef]
- Liu, Y.S.; Yuan, M.H.; Zhang, C.Y.; Liu, H.M.; Liu, J.R.; Wei, A.L.; Ye, Q.; Zeng, B.; Li, M.F.; Guo, Y.P.; et al. Puerariae Lobatae radix flavonoids and puerarin alleviate alcoholic liver injury in zebrafish by regulating alcohol and lipid metabolism. Biomed. Pharmacother. 2021, 134, 111121. [Google Scholar] [CrossRef]
- Radeka, S.; Rossi, S.; Bestulić, E.; Budić-Leto, I.; Kovačević Ganić, K.; Horvat, I.; Dvornik, Š. Bioactive compounds and antioxidant activity of red and white wines produced from autochthonous croatian varieties: Effect of moderate consumption on human health. Foods 2022, 11, 1804. [Google Scholar] [CrossRef]
- Visioli, F.; Panaite, S.A.; Tomé-Carneiro, J. Wine’s phenolic compounds and health: A pythagorean view. Molecules 2020, 25, 4105. [Google Scholar] [CrossRef]
- Lingua, M.S.; Fabani, M.P.; Wunderlin, D.A.; Baroni, M.V. In vivo antioxidant activity of grape, pomace and wine from three red varieties grown in Argentina: Its relationship to phenolic profile. J. Funct. Foods 2016, 20, 332–345. [Google Scholar] [CrossRef]
- Waterhouse, A.L. Wine Phenolics. Ann. N. Y. Acad. Sci. 2002, 957, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Piñeiro, Z.; Palma, M.; Barroso, C.G. Determination of catechins by means of extraction with pressurized liquids. J. Chromatogr. A 2004, 1026, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, R.F.; Valls-Fonayet, J.; Richard, T.; Cantos-Villar, E. A rapid quantification of stilbene content in wine by ultra-high pressure liquid chromatography—Mass spectrometry. Food Control 2020, 108, 106821. [Google Scholar] [CrossRef]
- Garrido, J.; Borges, F. Wine and grape polyphenols—A chemical perspective. Food Res. Int. 2013, 54, 1844–1858. [Google Scholar] [CrossRef]
- Fernández-Mar, M.I.; Mateos, R.; García-Parrilla, M.C.; Puertas, B.; Cantos-Villar, E. Bioactive compounds in wine: Resveratrol, hydroxytyrosol and melatonin: A review. Food Chem. 2012, 130, 797–813. [Google Scholar] [CrossRef]
- Frankel, E.N.; Waterhouse, A.L.; Teissedre, P.L. Principal phenolic phytochemicals in selected California wines and their antioxidant activity in inhibiting oxidation of human low-density lipoproteins. J. Agric. Food Chem. 1995, 43, 890–894. [Google Scholar] [CrossRef]
- Rodriguez-Lopez, P.; Rueda-Robles, A.; Borrás-Linares, I.; Quirantes-Piné, R.M.; Emanuelli, T.; Segura-Carretero, A.; Lozano-Sánchez, J. Grape and Grape-Based Product Polyphenols: A Systematic Review of Health Properties, Bioavailability, and Gut Microbiota Interactions. Horticulturae 2022, 8, 583. [Google Scholar] [CrossRef]
- Pickering, G.J. Low-and reduced-alcohol wine: A review. J. Wine Res. 2000, 11, 129–144. [Google Scholar] [CrossRef]
- Novello, V.; de Palma, L. Viticultural strategy to reduce alcohol levels in wine. In Alcohol Level Reduction in Wine-Oenoviti International Network; Vigne et Vin Publications Internationales: Villenave d’Ornon, France, 2013; Volume 7, pp. 3–8. [Google Scholar]
- Sun, X.; Dang, G.; Ding, X.; Shen, C.; Liu, G.; Zuo, C.; Chen, X.; Xing, W.; Jin, W. Production of alcohol-free wine and grape spirit by pervaporation membrane technology. Food Bioprod. Process. 2020, 123, 262–273. [Google Scholar] [CrossRef]
- Schelezki, O.J.; Smith, P.A.; Hranilovic, A.; Bindon, K.A.; Jeffery, D.W. Comparison of consecutive harvests versus blending treatments to produce lower alcohol wines from Cabernet Sauvignon grapes: Impact on polysaccharide and tannin content and composition. Food Chem. 2018, 244, 50–59. [Google Scholar] [CrossRef]
- Bovo, B.; Nadai, C.; Vendramini, C.; Fernandes Lemos Junior, W.J.; Carlot, M.; Skelin, A.; Giacomini, A.; Corich, V. Aptitude of Saccharomyces yeasts to ferment unripe grapes harvested during cluster thinning for reducing alcohol content of wine. Int. J. Food Microbiol. 2016, 236, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Hranilovic, A.; Gambetta, J.M.; Jeffery, D.W.; Grbin, P.R.; Jiranek, V. Lower-alcohol wines produced by Metschnikowia pulcherrima and Saccharomyces cerevisiae co-fermentations: The effect of sequential inoculation timing. Int. J. Food Microbiol. 2020, 329, 108651. [Google Scholar] [CrossRef] [PubMed]
- Contreras, A.; Hidalgo, C.; Schmidt, S.; Henschke, P.A.; Curtin, C.; Varela, C. The application of non-Saccharomyces yeast in fermentations with limited aeration as a strategy for the production of wine with reduced alcohol content. Int. J. Food Microbiol. 2015, 205, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Canonico, L.; Solomon, M.; Comitini, F.; Ciani, M.; Varela, C. Volatile profile of reduced alcohol wines fermented with selected non-Saccharomyces yeasts under different aeration conditions. Food Microbiol. 2019, 84, 103247. [Google Scholar] [CrossRef] [PubMed]
- Varela, C.; Sengler, F.; Solomon, M.; Curtin, C. Volatile flavour profile of reduced alcohol wines fermented with the non-conventional yeast species Metschnikowia pulcherrima and Saccharomyces uvarum. Food Chem. 2016, 209, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Varela, C.; Barker, A.; Tran, T.; Borneman, A.; Curtin, C. Sensory profile and volatile aroma composition of reduced alcohol Merlot wines fermented with Metschnikowia pulcherrima and Saccharomyces uvarum. Int. J. Food Microbiol. 2017, 252, 1–9. [Google Scholar] [CrossRef]
- Tilloy, V.; Cadière, A.; Ehsani, M.; Dequin, S. Reducing alcohol levels in wines through rational and evolutionary engineering of Saccharomyces cerevisiae. Int. J. Food Microbiol. 2015, 213, 49–58. [Google Scholar] [CrossRef]
- Minzer, S.; Estruch, R.; Casas, R. Wine intake in the framework of a Mediterranean diet and chronic non-communicable diseases: A short literature review of the last 5 years. Molecules 2020, 25, 5045. [Google Scholar] [CrossRef]
- Fiore, M.; Alaimo, L.S.; Chkhartishvil, N. The amazing bond among wine consumption, health and hedonistic well-being. Brit. Food J. 2020, 122, 2707–2723. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lante, A.; Marangon, M.; Vincenzi, S.; Lomolino, G.; Crapisi, A.; Pasini, G.; Malavasi, S.; Curioni, A. Wine and Health: From the Perspective of Alvise Cornaro to the Latest Scientific Opinions. Agriculture 2023, 13, 415. https://doi.org/10.3390/agriculture13020415
Lante A, Marangon M, Vincenzi S, Lomolino G, Crapisi A, Pasini G, Malavasi S, Curioni A. Wine and Health: From the Perspective of Alvise Cornaro to the Latest Scientific Opinions. Agriculture. 2023; 13(2):415. https://doi.org/10.3390/agriculture13020415
Chicago/Turabian StyleLante, Anna, Matteo Marangon, Simone Vincenzi, Giovanna Lomolino, Antonella Crapisi, Gabriella Pasini, Stefania Malavasi, and Andrea Curioni. 2023. "Wine and Health: From the Perspective of Alvise Cornaro to the Latest Scientific Opinions" Agriculture 13, no. 2: 415. https://doi.org/10.3390/agriculture13020415
APA StyleLante, A., Marangon, M., Vincenzi, S., Lomolino, G., Crapisi, A., Pasini, G., Malavasi, S., & Curioni, A. (2023). Wine and Health: From the Perspective of Alvise Cornaro to the Latest Scientific Opinions. Agriculture, 13(2), 415. https://doi.org/10.3390/agriculture13020415