Evaluation of the Usefulness of Fermented Liquid Organic Formulations and Manures for Improving the Soil Fertility and Productivity of Brinjal (Solanum melongena L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geomorphology and Climate
2.2. Experimental Design and Physicochemical Analysis
2.3. Yield, Nutrient Content, and Uptake
2.4. Physicochemical Properties
2.5. Microbiological Properties
2.6. Statistical Analysis
3. Results
3.1. Yield and Uptake of Nutrients
3.2. Soil Physiochemical Properties and Nutrient Contents in the Soil
3.3. Available Macronutrients
3.4. DTPA-Extractable Micronutrients
3.5. Soil Microbiological Properties
3.5.1. Soil Enzymes
3.5.2. Viable Microbial Count
3.5.3. Soil Microbial Biomass-C
3.5.4. Pearson Correlation Analysis of the Yields, Nutrient Content of the Plants, and Soil Properties
3.5.5. Pearson Correlation Analysis of Microbial Properties and Nutrient Contents of Soil
4. Discussion
4.1. Plant Development and Nutrient Uptake
4.2. Soil Physicochemical Properties
4.3. Correlation Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, D.P.; Das, A.; Kumar, M.; Munda, G.C.; Ngachan, S.V.; Ramkrushna, I.; Jayanta, L.; Pongla, N.; Buragohain, J.; Somireddy, U. Continuous application of organic amendments enhances soil health, produce quality and system productivity of vegetable- based cropping systems in subtropical eastern Himalayas. Exp. Agric. 2015, 51, 85–106. [Google Scholar] [CrossRef]
- Willer, H.; Trávníček, J.; Meier, C.; Schlatter, B. (Eds.) The World of Organic Agriculture. Statistics and Emerging Trends 2022; Research Institute of Organic Agriculture FiBL: Frick, Switzerland; IFOAM—Organics International: Bonn, Germany, 2022; Available online: www.organic-world.net/yearbook/yearbook-2022.html (accessed on 7 February 2023).
- Chatterjee, R.; Bandyopadhyay, S. Effects of organic, inorganic and biofertilizers on plant nutrient status and availability of major nutrients in tomato. Int. J. Bio-Resour. Stress Manag. 2014, 5, 93–97. [Google Scholar] [CrossRef]
- Sharma, S.K.; Jain, D.; Choudharya, R.; Jata, G.; Jain, P.; Bhojiya, A.A.; Jain, R.; Yadav, S.K. Microbiological and enzymatic properties of diverse jaivikkrishi inputs used in organic farming. Indian J. Tradit. Knowl. 2021, 20, 237–243. [Google Scholar]
- Joshi, H.N.; Varma, L.R.; More, S.G. Effects of organic nutrients in combination with biofertilizers on uptake N, P, K and yield of garden pea (Pisum sativum L.) CV. Pharma Innov. J. 2020, 9, 385–389. [Google Scholar]
- Palekar, S. Shoonyabandovaladanaisargikakrushi; Swamy Anand Agri Prakashana: Bangalore, India, 2006. [Google Scholar]
- Sreenivasa, M.N.; Nagaraj, M.; Naik, N.; Bhat, S.N. Beneficial traits of microbial isolates of organic liquid manures. In Proceedings of the First Asian PGPR Congress for Sustainable Agriculture, Hyderabad, India, 21–24 June 2009; ANGRAU: Hyderabad, India. [Google Scholar]
- Pane, C.; Spaccini, R.; Piccolo, A.; Scala, F.; Bonanomi, G. Compost amendments enhance peat suppressiveness to Pythium ultimum, Rhizoctoniasolani and Sclerotinia minor. Biol. Control 2011, 56, 115–124. [Google Scholar] [CrossRef]
- Bonilla, N.; Gutiérrez-Barranquero, J.A.; de Vicente, A.; Cazorla, F.M. Enhancing soil quality and plant health through suppressive organic amendments. Diversity 2012, 4, 475–491. [Google Scholar] [CrossRef]
- Zhao, J.; Ni, T.; Li, Y.; Xiong, W.; Ran, W.; Shen, B.; Zhang, R. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times. PLoS ONE 2014, 9, e85301. [Google Scholar] [CrossRef]
- Upadhyay, N.; Vishwakarma, K.; Singh, J.; Verma, R.K.; Prakash, V.; Jain, S.; Kumar, V.; Rani, R.; Tripathi, D.K.; Sharma, S. Plant-Microbe-Soil Interactions for Reclamation of Degraded Soils: Potential and Challenges In Phyto and Rhizo Remediation; Springer: Singapore, 2019; pp. 147–173. [Google Scholar]
- Murphy, D.V.; Stockdale, E.A.; Brookes, P.C.; Goulding, K.W. Impact of microorganisms on chemical transformations in soil. In Soil Biological Fertility; Springer: Berlin/Heidelberg, Germany, 2007; pp. 37–59. [Google Scholar]
- Khandare, R.N.; Chandra, R.; Pareek, N.; Raverkar, K.P. Carrier-based and liquid bioinoculants of Azotobacter and PSB saved chemical fertilizers in wheat (Triticumaestivum L.) and enhanced soil biological properties in Mollisols. J. Plant Nutr. 2020, 43, 36–50. [Google Scholar] [CrossRef]
- Sherpa, M.K.; Thombare, M.V.; Masih, H.; Lal, A.A.; Adhikari, A.; Thalai, R. Response of liquid biofertilizers on growth and yield of brinjal (Solanum melongena L.). J. Pharmacogn. Phytochem. 2019, 8, 1540–1544. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1973. [Google Scholar]
- Walkey, A.; Black, T.A. An experimentation of vegetative method for determining soil organic matter and proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 38–39. [Google Scholar]
- Subbiah, B.V.; Asija, G.L. Rapid procedure for the estimation of the available nitrogen in soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Olsen, S.R.; Cole, C.U.; Wattannable, F.; Sandean, D.A. Estimation of Available Phosphorous in Soil by Extraction with Sodium Bicarbonate; USDA Circulation: Washington, DC, USA, 1954; p. 939. [Google Scholar]
- Merwin, H.D.; Peech, M. Exchange ability of soil potassium in the sand, silt and clay fractions as influenced by the nature and complementary exchangeable cations. Soil Sci. Soc. Am. Proc. 1951, 15, 125–128. [Google Scholar] [CrossRef]
- Lindsay, W.H.; Norvell, W.A. Development of DTPA soil test for Zn, Fe, Mn and Cu. J. Soil Sci. Soc. Am. 1978, 42, 420–428. [Google Scholar] [CrossRef]
- Subba Rao, N.S. Soil Microorganisms and Plant Growth; Oxford and IBH publishing Company: New Delhi, India, 1999; pp. 1–333. [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Casida, L.E.; Klein, D.A.; Santoro, T. Soil dehydrogenase activity. Soil Sci. 1964, 98, 371–376. [Google Scholar] [CrossRef]
- Tatabai, B. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–317. [Google Scholar] [CrossRef]
- Hoffman, E. Methods of Enzymatic Analysis; Bergmeyer, H., Ed.; Academic Press: New York, NY, USA, 1965; pp. 219–221. [Google Scholar]
- Mohan, K.K.; Somasundharam, E.; Marimuthu, S. Influence of various organic inputs on growth and yield of snake gourd (Trichosanthes anguina L.). Int. J. Agric. Sci. 2016, 8, 3158–3161. [Google Scholar]
- Arahunashi, C.S. Influence of Organics on Growth, Yield and Quality of Tomato (Lycopersicum esculentum L. Mill.). Master’s Thesis, University of Agriculture Sciences, Dharwad, India, 2011. [Google Scholar]
- Boraiah, B.; Devakumar, N.; Shubha, S.; Palanna, K.B. Effect of panchagavya, jeevamrutha and cow urine on beneficial microorganisms and yield of capsicum (Capsicum annuum L. var. grossum). Int. J. Curr. Microbiol. 2017, 6, 3226–3234. [Google Scholar] [CrossRef]
- Choudhary, G.L.; Sharma, S.K.; Choudhary, S.; Singh, K.P.; Kaushik, M.K.; Bazaya, B.R. Effect of panchagavya on quality, nutrient content and nutrient uptake of organic blackgram [Vigna mungo (L.) Hepper]. J. Pharmacogn. Phytochem. 2017, 6, 1572–1575. [Google Scholar]
- Pawar, V.R.; Tambe, A.D.; Raut, S.A.; Udmale, K.B. Response of sweet corn (Zea mays var. Saccharata) cv. sugar 75 to different organic sources. Adv. Res. J. Crop Improv. 2012, 3, 22–25. [Google Scholar]
- Rao, T.K.; Reddy, S.D.; Naidu, J.G. The quality parameters of maize as affected by organic farming. Green Farming 2010, 1, 373–376. [Google Scholar]
- Muktamar, Z.; Adiprasetyo, T.; Yulia, S.; Sari, L.; Fahrurrozi, F.; Setyowati, N. Residual effect of vermicompost on sweet corn growth and selected chemical properties of soils from different organic farming practices. Int. J. Agric. Technol. 2018, 14, 1471–1482. [Google Scholar]
- Wani, K.A.; Rao, R.J. Effect of vermicompost on growth of brinjal plant (Solanum melongena) under field conditions. J. New Biol. Rep. 2012, 1, 25–28. [Google Scholar]
- Bhattarai, B.P.; Sapkota, B. Effect of organic nutrients management on yield of cucumber (Cucumis sativus) and its residual effect on soil. Int. J. Agric. Environ. Res. 2016, 2, 1768–1776. [Google Scholar]
- Antil, R.S.; Singh, M. Effects of organic manures and fertilizers on organic matter and nutrients status of the soil. Arch. Agron. Soil Sci. 2007, 53, 519–528. [Google Scholar] [CrossRef]
- Ewulo, B.; Ojeniyi, S.O. Effect of poultry manure on selected soil physical and chemical properties, growth, yield and nutrient status of tomato. Afr. J. Agric. Res. 2008, 3, 612–616. [Google Scholar]
- Aher, S.B.; Lakaria, B.L.; Kaleshananda, S.; Singh, A.B. Yield, nutrient uptake and economics of soybean–wheat cropping system under organic nutrient management in central. India. J. Plant Nutr. 2021, 45, 904–919. [Google Scholar] [CrossRef]
- Chen, D.; Yuan, L.; Liu, Y.; Ji, J.; Hou, H. Long-term application of manures plus chemical fertilizers sustained high rice yield and improved soil chemical and bacterial properties. Eur. J. Agron. 2017, 90, 34–42. [Google Scholar] [CrossRef]
- Kumar, S.; Dahiya, R.; Kumar, P.; Jhorar, B.S.; Phogat, V.K. Long-term effect of organic materials and fertilizers on soil properties in pearl millet-wheat cropping system. Indian J. Agric. Sci. 2012, 46, 161–166. [Google Scholar]
- Sharma, R.P.; Datt, N.; Chander, G. Effect of vermicompost, farmyard manure and chemical fertilizers on yield, nutrient uptake and soil fertility in okra (Abelmoschus esculentus)—Onion (Allium cepa) sequence in wet temperate zone of Himachal Pradesh. J. Indian Soc. Soil Sci. 2009, 57, 357–361. [Google Scholar]
- Jain, P.; Sharma, R.C.; Bhattacharya, P.; Banik, P. Effect of new organic supplement (panchagavya) on seed germination and soil quality. Environ. Monit. Assess. 2014, 186, 1999–2011. [Google Scholar] [CrossRef]
- Moharana, P.C.; Sharma, B.M.; Biswas, D.R. Changes in the soil properties and availability of micronutrients after six-year application of organic and chemical fertilizers using STCR-based targeted yield equations under pearl millet-wheat cropping system. J. Plant Nutr. 2017, 40, 165–176. [Google Scholar] [CrossRef]
- Zeid, H.A.; Wafaa, H.M.; Seoud, I.I.A.E.; Alhadad, W.A.A. Effect of organic materials and inorganic fertilizers on the growth, mineral composition and soil fertility of radish plants (Raphine’s sativus) grown in sandy soil. Middle East J. Agric. Res. 2015, 4, 77–87. [Google Scholar]
- Ram, R.A.; Singha, A.; Vaish, S. Microbial characterization of on-farm produced bio-enhancers used in organic farming. Indian J. Agric. Sci. 2018, 88, 35–40. [Google Scholar]
- Vaish, S.; Garg, N.; Ahmad, I.Z. Microbial basis of organic farming systems with special reference to biodynamic preparations. Indian J. Agric. Sci. 2020, 90, 1219–1225. [Google Scholar] [CrossRef]
- Aulakh, C.S.; Singh, H.; Walia, S.S.; Phutela, R.P.; Singh, G. Evaluation of microbial culture (jeevamrit) preparation and its effect on productivity of field crops. Indian J. Agron. 2013, 58, 182–186. [Google Scholar]
- Gałązka, A.; Gawryjołek, K.; Perzyński, A.; Gałązka, R.; Księżak, J. Changes in enzymatic activities and microbial communities in soil under long-term maize monoculture and crop rotation. Pol. J. Environ. Stud. 2017, 26, 39–46. [Google Scholar] [CrossRef]
- Chandrakala, M.; Hebsur, N.S.; Bidari, B.I.; Radder, B.M. Effect of FYM and fermented liquid manures on nutrients uptake by chilli (Capsicum annum L.) and soil nutrient status at harvest. Asian J. Hort. 2007, 4, 19–24. [Google Scholar]
- Logah, V.; Safo, E.Y.; Quansah, C.; Danso, I. Soil microbial biomass carbon, nitrogen and phosphorus dynamics under different amendments and cropping systems in the semi—Deciduous forest zone of Ghana. West Afr. J. Appl. Ecol. 2010, 17, 121–133. [Google Scholar]
- Tomar, A.S. Study the effect of integrated nutrient management on carbon pools (organic & microbial biomass carbon) in pearl millet- wheat cropping system. Int. J. Chem. Stud. 2017, 5, 2019–2022. [Google Scholar]
- Nakhro, N.; Dkhar, M.S. Impact of organic and inorganic fertilizers on microbial populations and biomass carbon in paddy field soil. J. Agron. 2010, 9, 102–110. [Google Scholar] [CrossRef] [Green Version]
Sr. No. | Treatments |
---|---|
T1 | (100% RDN) |
T2 | 90% RDN + 5% Panchagavya |
T3 | 90% RDN + 5% Jeevamrut |
T4 | 90% RDN + 5% Panchagavya + 5% Jeevamrut |
T5 | 80% RDN + 5% Panchagavya |
T6 | 80% RDN + 5% Jeevamrut |
T7 | 80% RDN + 5% Panchagavya + 5% Jeevamrut |
T8 | 70% RDN + 5% Panchagavya |
T9 | 70% RDN + 5% Jeevamrut |
T10 | 70% RDN + 5% Panchagavya + 5% Jeevamrut |
Parameter | Nutrient Status | ||||
---|---|---|---|---|---|
Panchagavya | Jeevamrut | Parameter | Panchagavya | Jeevamrut | |
pH | 6.84 | 8.3 | Total zinc (Mg kg−1) | 1.30 | 2.98 |
EC (dsm−1) | 1.83 | 5.6 dsm−1 | Total copper (Mg kg−1) | 0.81 | 0.53 |
Total nitrogen (%) | 0.2 | 4.0 | Total iron (Mg kg−1) | 28.97 | 15.57 |
Total phosphorus (Mg kg−1) | 186.3 | 165.4 | Total manganese (Mg kg−1) | 1.88 | 3.34 |
Total potassium (Mg kg−1) | 197.2 | 259 | |||
Parameter | Microbial Activity | ||||
Panchagavya | Jeevamrut | Parameter | Panchagavya | Jeevamrut | |
Bacteria (cfu) | 27.4 × 105 | 16.1 × 105 | Phosphatase (µg/mL) | 30.01 | 6.54 |
Fungi (cfu) | 17.0 × 103 | 11.2 × 103 | Dehydrogenase (µg/mL) | 67.51 | 2.71 |
Actinomycetes (cfu) | 4.4 × 103 | 6.7 × 103 |
Treatments | Macronutrients (%) | Micronutrients (mg kg−1) | |||||
---|---|---|---|---|---|---|---|
N | P | K | Cu | Fe | Zn | Mn | |
T1 | 2.06 g ± 0.02 | 0.48 h ± 0.01 | 1.96 f ± 0.01 | 1.52 b ± 0.08 | 203.0 g ± 1.24 | 2.2 f ± 0.02 | 62.9 h ± 1.55 |
T2 | 2.23 c ± 0.05 | 0.62 cd ± 0.01 | 2.09 bc ± 0.01 | 2.23 ab ± 0.24 | 231.2 d ± 0.71 | 2.5 c ± 0.02 | 77.1 c ± 2.53 |
T3 | 2.17 de ± 0.06 | 0.58 ef ± 0.01 | 2.02 de ± 0.01 | 1.74 b ± 0.09 | 212.1 e ± 2.38 | 2.5 c ± 0.01 | 70.1 f ± 0.78 |
T4 | 2.36 a ± 0.05 | 0.69 a ± 0.01 | 2.17 a ± 0.02 | 2.69 a ± 0.03 | 243.3 b ± 1.22 | 2.9 a ± 0.01 | 113.9 a ± 5.24 |
T5 | 2.21 cd ± 0.05 | 0.60 de ± 0.02 | 2.08 c ± 0.03 | 2.08 ab ± 0.10 | 236.8 c ± 4.79 | 2.4 d ± 0.02 | 75.6 cd ± 2.35 |
T6 | 2.13 ef ± 0.04 | 0.56 f ± 0.02 | 2.01 de ± 0.02 | 1.95 ab ± 0.05 | 204.2 g ± 3.76 | 2.5 c ± 0.01 | 71.3 ef ± 2.06 |
T7 | 2.32 ab ± 0.01 | 0.66 b ± 0.03 | 2.14 a ± 0.08 | 2.60 a ± 0.17 | 247.7 a ± 3.17 | 2.7 b ± 0.02 | 97.2 b ± 1.64 |
T8 | 2.20 cd ± 0.03 | 0.59 e ± 0.02 | 2.05 cd ± 0.02 | 2.02 ab ± 0.02 | 210.2 ef ± 4.48 | 2.3 e ± 0.01 | 73.7 de ± 1.18 |
T9 | 2.10 fg ± 0.01 | 0.53 g ± 0.01 | 1.98 ef ± 0.02 | 1.63 b ± 0.09 | 207.2 fg ± 3.14 | 2.4 d ± 0.02 | 65.9 g ± 2.75 |
T10 | 2.28 b ± 0.06 | 0.64 bc ± 0.02 | 2.13 ab ± 0.02 | 2.32 a ± 0.03 | 251.5 a ± 4.11 | 2.5 c ± 0.02 | 77.3 c ± 0.81 |
LSD (p ≤ 0.05) | 0.04 | 0.02 | 0.04 | 1.0 | 4.2 | 0.02 | 2.90 |
Treatments | Macronutrient Uptake (kg ha−1) | Micronutrient Uptake (g ha−1) | |||||
---|---|---|---|---|---|---|---|
N | P | K | Cu | Fe | Zn | Mn | |
T1 | 40.1 h ± 3.6 | 9.4 h ± 0.26 | 38.3 h ± 4.2 | 29.5 h ± 2.4 | 3967.9 f ± 412.2 | 42.5 h ± 4.8 | 1230.7 h ± 137.7 |
T2 | 86.6 cd ± 6.2 | 24.1 cd ± 0.45 | 81.5 cd ± 5.3 | 86.6 cd ± 6.85 | 8992.6 c ± 568.2 | 97.3 cd ± 5.5 | 2998.2 cd ± 282.0 |
T3 | 64.4 fg ± 9.6 | 17.1 fg ± 1.35 | 59.9 fg ± 9.3 | 51.5 fg ± 5.9 | 6301.5 de ± 921.9 | 73.0 eg ± 11.9 | 2080.7 fg ± 317.7 |
T4 | 127.4 a ± 8.3 | 37.1 a ± 1.8 | 117.3 a ± 8.3 | 146.5 a ± 12 | 13,192.0 a ± 980.4 | 153.4 a ± 11 | 6161.3 a ± 333.4 |
T5 | 78.5 de ± 5.4 | 21.5 de ± 0.81 | 73.9 de ± 3.4 | 72.8 de ± 3.2 | 8437.4 c ± 618.7 | 84.3 de ± 4.1 | 2682.4 de ± 129.9 |
T6 | 59.8 fg ± 11.0 | 15.5 f ± 2.12 | 56.2 fg ± 10.3 | 54.3 fg ± 9.5 | 5721.2 de ± 1021.8 | 68.2 fg ± 12.2 | 1994.8 fg ± 335.7 |
T7 | 102.3 b ± 5.2 | 28.7 b ± 1.05 | 94.5 b ± 2.5 | 114.5 b ± 11.3 | 10,950.9 b ± 649.1 | 119.5 b ± 6.5 | 4292.0 b ± 255.9 |
T8 | 70.9 ef ± 6.8 | 18.9 ef ± 0.76 | 66.3 ef ± 6.2 | 64.8 ef ± 6.75 | 6797.2 d ± 254.9 | 75.5 ef ± 7.2 | 2381.0 ef ± 265.4 |
T9 | 52.9 gh ± 5.3 | 13.1 gh ± 1.25 | 49.9 gh ± 5.0 | 40.8 gh ± 5.7 | 5232.8 e ± 1359.7 | 58.9 g ± 5.4 | 1660.9 gh ± 137.4 |
T10 | 92.9 bc ± 13.8 | 26.1 bc ± 1.49 | 87.0 bc ± 11.7 | 94.4 c ± 13 | 102,810 b ± 1203 | 103.5 c ± 13.4 | 3158.0 c ± 429.2 |
LSD (p ≤ 0.05) | 13.7 | 4.15 | 12.6 | 14.4 | 1371.5 | 15 | 454.5 |
Treatments | pH (1:2) | EC (dSm−1) | OC (g kg−1) | Available Macronutrient (kg ha−1) | DTPA-Extractable Micronutrients (mg kg−1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
N | P | K | Cu | Fe | Zn | Mn | ||||
T1 | 6.48 ± 0.21 | 0.14 ± 0.02 | 21.8 cd ± 0.13 | 333.3 e ± 3.28 | 65.9 f ± 1.26 | 410.2 d ± 2.93 | 3.16 f ± 0.02 | 15.6 h ± 0.17 | 2.26 h ± 0.03 | 10.5 h ± 0.04 |
T2 | 6.44 ± 0.15 | 0.13 ± 0.02 | 23.2 b ± 0.21 | 398.0 b ± 5.06 | 76.8 b ± 1.93 | 473.0 a ± 6.92 | 3.96 cd ± 0.01 | 17.8 d ± 0.04 | 2.82 c ± 0.03 | 11.9 c ± 0.11 |
T3 | 6.38 ± 0.09 | 0.15 ± 0.02 | 21.6 cd ± 0.34 | 394.8 b ± 1.57 | 69.5 de ± 2.43 | 430.9 c ± 7.32 | 3.73 e ± 0.03 | 16.1 f ± 0.07 | 2.42 g ± 0.03 | 10.9 f ± 0.02 |
T4 | 6.48 ± 0.11 | 0.16 ± 0.04 | 24.5 a ± 0.83 | 419.1 a ± 1.28 | 86.5 a ± 1.67 | 478.2 a ± 3.24 | 4.50 a ± 0.04 | 19.9 a ± 0.05 | 2.95 a ± 0.04 | 12.8 a ± 0.07 |
T5 | 6.47 ± 0.07 | 0.15 ± 0.03 | 22.2 c ± 0.22 | 371.0 c ± 3.15 | 72.5 cd ± 1.18 | 415.4 d ± 4.31 | 3.88 de ± 0.02 | 17.2 d ± 0.19 | 2.75 d ± 0.01 | 11.6 d ± 0.12 |
T6 | 6.42 ± 0.12 | 0.14 ± 0.02 | 21.4 de ± 0.35 | 364.6 d ± 2.77 | 68.6 ef ± 1.61 | 412.5 d ± 2.86 | 3.74 e ± 0.01 | 16.6 e ± 0.05 | 2.56 f ± 0.04 | 11.3 e ± 0.11 |
T7 | 6.43 ± 0.13 | 0.14 ± 0.03 | 23.8 b ± 0.33 | 362.7 d ± 1.45 | 84.1 a ± 1.64 | 449.6 b ± 6.65 | 4.26 b ± 0.02 | 19.3 b ± 0.03 | 2.94 a ± 0.03 | 12.7 a ± 0.23 |
T8 | 6.47 ± 0.18 | 0.15 ± 0.01 | 21.9 cd ± 1.05 | 322.9 fg ± 4.83 | 71.9 d ± 2.19 | 397.5 f ± 1.88 | 3.83 de ± 0.02 | 16.7 e ± 0.27 | 2.64 e ± 0.03 | 11.6 d ± 0.10 |
T9 | 6.53 ± 0.10 | 0.13 ± 0.02 | 20.8 e ± 0.56 | 317.8 g ± 8.96 | 65.8 f ± 1.53 | 395.5 f ± 4.25 | 3.21 f ± 0.02 | 15.9 g ± 0.04 | 2.38 g ± 0.02 | 10.7 g ± 0.11 |
T10 | 6.37 ± 0.15 | 0.16 ± 0.02 | 23.5 b ± 0.38 | 326.9 f ± 9.12 | 74.5 bc ± 5.14 | 403.3 e ± 2.53 | 4.15 bc ± 0.41 | 18.7 c ± 0.05 | 2.89 b ± 0.01 | 12.2 b ± 0.06 |
LSD (p ≤ 0.05) | NS | NS | 0.65 | 5.8 | 3.0 | 5.6 | 0.21 | 0.14 | 0.04 | 0.10 |
Treatments | Dehydrogenase (mg TPF/g soil/h) | Phosphatase (μg PNP/g soil/h) | Urease (μg NH4+/g soil/ h) | Bacteria (×108 cfu/g soil) | Fungi (×103 cfu/g soil) | Actinomycetes (×102 cfu/g soil) | Microbial Biomass-C (μg/g soil) |
---|---|---|---|---|---|---|---|
T1 | 2.9 i ± 0.16 | 17.6 i ± 0.50 | 0.18 i ± 0.01 | 144.7 h ± 2.03 | 3.15 i ± 0.20 | 2.64 i ± 0.10 | 43.6 i ± 0.93 |
T2 | 3.9 d ± 0.06 | 22.2 d ± 0.41 | 0.24 cd ± 0.01 | 177.5 cd ± 1.94 | 4.02 c ± 0.16 | 3.20 c ± 0.10 | 59.5 c ± 0.94 |
T3 | 3.5 f ± 0.04 | 19.7 f ± 0.77 | 0.21 fg ± 0.01 | 163.5 e ± 1.64 | 3.66 f ± 0.08 | 2.90 f ± 0.02 | 51.5 g ± 0.79 |
T4 | 4.9 a ± 0.01 | 25.5 a ± 0.27 | 0.27 a ± 0.02 | 203.3 a ± 2.08 | 4.34 a ± 0.08 | 3.41 a ± 0.05 | 66.1 a ± 0.93 |
T5 | 3.8 de ± 0.10 | 21.7 d ± 0.31 | 0.23 de ± 0.02 | 174.5 d ± 2.32 | 3.91 d ± 0.06 | 3.07 d ± 0.05 | 56.2 d ± 1.59 |
T6 | 3.3 g ± 0.05 | 18.9 g ± 0.41 | 0.20 gh ± 0.02 | 156.8 f ± 1.52 | 3.54 g ± 0.09 | 2.79 g ± 0.06 | 53.5 f ± 1.32 |
T7 | 4.5 b ± 0.03 | 24.4 b ± 0.62 | 0.26 ab ± 0.02 | 189.7 b ± 2.17 | 4.27 a ± 0.09 | 3.30 b ± 0.16 | 65.2 a ± 1.62 |
T8 | 3.7 e ± 0.16 | 20.5 e ± 0.23 | 0.22 ef ± 0.02 | 168.3 e ± 1.88 | 3.77 e ± 0.06 | 2.99 e ± 0.03 | 54.0 ef ± 0.44 |
T9 | 3.1 h ± 0.02 | 18.3 h ± 0.28 | 0.19 hi ± 0.02 | 150.5 g ± 2.05 | 3.32 h ± 0.08 | 2.72 h ± 0.02 | 48.1 h ± 1.01 |
T10 | 4.3 c ± 0.06 | 23.3 c ± 0.75 | 0.25 bc ± 0.01 | 181.8 c ± 2.64 | 4.16 b ± 0.08 | 3.26 bc ± 0.09 | 62.2 b ± 0.70 |
LSD (p ≤ 0.05) | 0.1 | 0.5 | 0.01 | 5.4 | 0.10 | 0.06 | 1.31 |
Parameters | Yield | Nitrogen Content in Plant | Phosphorus Content in Plant | Potassium Content in Plant |
---|---|---|---|---|
Soil pH | −0.23 | −0.282 | −0.322 | −0.288 |
EC | 0.467 | 0.537 | 0.504 | 0.53 |
OC | 0.954 ** | 0.915 ** | 0.863 ** | 0.929 ** |
Dehydrogenase | 0.989 ** | 0.997 ** | 0.977 ** | 0.989 ** |
Phosphatase | 0.998 ** | 0.992 ** | 0.971 ** | 0.995 ** |
Urease | 0.993 ** | 0.993 ** | 0.982 ** | 0.997 ** |
Bacteria | 0.987 ** | 0.992 ** | 0.981 ** | 0.986 ** |
Fungi | 0.975 ** | 0.986 ** | 0.988 ** | 0.991 ** |
Actinomycetes | 0.988 ** | 0.985 ** | 0.976 ** | 0.993 ** |
MBC | 0.970 ** | 0.975 ** | 0.981 ** | 0.981 ** |
Available nitrogen | 0.496 * | 0.489 * | 0.536 | 0.467 |
Available phosphorus | 0.963 ** | 0.950 ** | 0.921 ** | 0.932 ** |
Available potassium | 0.687 * | 0.638 * | 0.642 * | 0.619 |
DTPA-Cu | 0.943 ** | 0.971 ** | 0.979 ** | 0.966 ** |
DTPA-Fe | 0.983 ** | 0.964 ** | 0.938 ** | 0.972 ** |
DTPA-Zn | 0.949 ** | 0.945 ** | 0.948 ** | 0.973 ** |
DTPA-Mn | 0.971 ** | 0.972 ** | 0.956 ** | 0.976 ** |
Parameters | OC | Dehydrogenase | Phosphatase | Urease | Bacteria | Fungi | Actinomycetes | Microbial Biomass-C |
---|---|---|---|---|---|---|---|---|
Available nitrogen | 0.493 | 0.49 | 0.494 | 0.496 | 0.561 | 0.497 | 0.499 | 0.481 |
Available phosphorus | 0.934 ** | 0.954 ** | 0.957 ** | 0.945 ** | 0.959 ** | 0.918 ** | 0.930 ** | 0.928 ** |
Available potassium | 0.727 * | 0.641 * | 0.663 * | 0.657 * | 0.692 * | 0.628 * | 0.665 * | 0.634 * |
DTPA-Cu | 0.877 ** | 0.966 ** | 0.954 ** | 0.964 ** | 0.968 ** | 0.974 ** | 0.955 ** | 0.970 ** |
DTPA-Fe | 0.952 ** | 0.975 ** | 0.978 ** | 0.966 ** | 0.961 ** | 0.945 ** | 0.954 ** | 0.970 ** |
DTPA-Zn | 0.875 ** | 0.937 ** | 0.955 ** | 0.967 ** | 0.940 ** | 0.973 ** | 0.965 ** | 0.979 ** |
DTPA-Mn | 0.918 ** | 0.971 ** | 0.973 ** | 0.973 ** | 0.963 ** | 0.966 ** | 0.961 ** | 0.984 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rathore, G.; Kaushal, R.; Sharma, V.; Sharma, G.; Chaudhary, S.; Dhaliwal, S.S.; Alsuhaibani, A.M.; Gaber, A.; Hossain, A. Evaluation of the Usefulness of Fermented Liquid Organic Formulations and Manures for Improving the Soil Fertility and Productivity of Brinjal (Solanum melongena L.). Agriculture 2023, 13, 417. https://doi.org/10.3390/agriculture13020417
Rathore G, Kaushal R, Sharma V, Sharma G, Chaudhary S, Dhaliwal SS, Alsuhaibani AM, Gaber A, Hossain A. Evaluation of the Usefulness of Fermented Liquid Organic Formulations and Manures for Improving the Soil Fertility and Productivity of Brinjal (Solanum melongena L.). Agriculture. 2023; 13(2):417. https://doi.org/10.3390/agriculture13020417
Chicago/Turabian StyleRathore, Gitanjli, Rajesh Kaushal, Vivek Sharma, Gargi Sharma, Shikha Chaudhary, Salwinder Singh Dhaliwal, Amnah Mohammed Alsuhaibani, Ahmed Gaber, and Akbar Hossain. 2023. "Evaluation of the Usefulness of Fermented Liquid Organic Formulations and Manures for Improving the Soil Fertility and Productivity of Brinjal (Solanum melongena L.)" Agriculture 13, no. 2: 417. https://doi.org/10.3390/agriculture13020417