Precision Nutrient Management in Zero-Till Direct-Seeded Rice Influences the Productivity, Profitability, Nutrient, and Water Use Efficiency as Well as the Environmental Footprint in the Indo Gangetic Plain of India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site of Research Trial
2.2. Experimental Details
2.3. NE Software
2.4. Crop & Field Management
2.5. Information Collected
2.6. Efficiency of Nutrient Use (NUE)
2.7. Water Productivity
2.8. Estimation of Greenhouse Gas (N2O)
2.9. Economic Analysis
2.10. Statistical Analysis
3. Results
3.1. Grain and Biomass Yield of DSR Rice as Influenced by Year-Specific Different PNM
3.2. Partial Factor Productivity (PFP) of N, P & K in DSR Is Influenced by Year-Specific Different Nutrients Management
3.3. Agronomic Efficiency (AE) of DSR Is Influenced by Year-Specific PNM
3.4. Water-Use Efficiency and Water Productivity
3.5. Different PNM influenced the Nitrous Oxide (N2O) Emission in DSR
3.6. Year-Specific Different PNMs Influenced the Profitability of DSR
4. Discussion
4.1. Crop Productivity
4.2. Efficiency of Nutrient Use
4.3. Water Use Efficiency
4.4. Nitrous Oxide (N2O) Emission in DSR Is Influenced by Different PNMs
4.5. Profitability of DSR Is Influenced by Different PNMs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agricultural Statistics at a Glance; Directorate of Economics & Statistics, Department of Agriculture, Co-operation and Farmers Welfare, Ministry of Agriculture & Farmers Welfare, Govt. of India: New Delhi, India, 2022; pp. 409–419.
- FAOSTAT. United Nations Food and Agricultural Organisation [WWW Document]. Available online: http://www.fao.org/faostat/en/#data (accessed on 14 February 2023).
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 14 February 2023).
- Valera, H.; Balié, J. The Outlook of the Rice Economy; International Rice Research Institute (IRRI): Los Banos, Philippines, 2020. [Google Scholar]
- FAI. Fertilizer Statistics, 6th ed.; The Fertilizer Association of India: New Delhi, India, 2018. [Google Scholar]
- Sharma, S.K. Characterization and Mapping of Rice–Wheat System: Its Changes and Constraints to System Sustainability; Final Report for National Agricultural Technology Project, Irrigated Agro-Ecosystem Production Systems Research (PSR 4.1); Project Directorate for Cropping Systems Res.: Meerut, India, 2003. [Google Scholar]
- Wang, W.; Lu, J.; Ren, T.; Li, X.; Su, W.; Lu, M. Evaluating regional mean optimal nitrogen rates in combination with indigenous nitrogen supply for rice production. Field Crops Res. 2012, 137, 37–48. [Google Scholar] [CrossRef]
- Qin, J.Q.; Impa, S.M.; Tang, Q.Y.; Yang, S.H.; Yang, J.; Tao, Y.S.; Jagadish, K.S.V. Integrated nutrient, water and other agronomic options to enhance rice grain yield and N use efficiency in double-season rice crop. Field Crops Res. 2012, 148, 15–23. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.H.; Yu, R.; Li, F.C.; Li, K.Y.; Cao, H.B.; Yang, N.; Li, M.H.; Dai, J.; Zan, Y.L.; et al. Optimal nitrogen input for higher efficiency and lower environmental impacts of winter wheat production in China. Agric. Ecosyst. Environ. 2016, 224, 1–11. [Google Scholar] [CrossRef]
- Majumdar, K.; Satyanarayana, T.; Pampolino, M.; Dutta, S.; Jat, M.L.; Sulewski, G.; Johnston, A.M. Nutrient Expert for Hybrid Maize (Version 1.1). A Decision Support Tool for Providing Field Specific Fertilizer Recommendations for Tropical Hybrid Maize; International Plant Nutrition Institute: Gurgaon, India, 2013. [Google Scholar]
- Singh, V.K.; Dwivedi, B.S.; Sukla, A.K.; Chauhan, Y.S.; Yadav, R.L. Diversification of rice with pigeon pea in a rice-wheat cropping system on a Typic Ustochrept: Effect on soil fertility, yield and nutrient use efficiency. Field Crops Res. 2005, 92, 85–105. [Google Scholar] [CrossRef] [Green Version]
- Sapkota, T.B.; Majumdar, K.; Jat, M.L.; Kumar, A.; Bishnoi, D.K.; McDonald, A.J.; Pampolino, M. Precision nutrient management in conservation agriculture based wheat production of Northwest India: Profitability, nutrient use efficiency and environmental footprint. Field Crops Res. 2014, 155, 233–244. [Google Scholar] [CrossRef]
- Saharawat, Y.S.; Singh, B.; Malik, R.K.; Ladha, J.K.; Gathala, M.; Jat, M.L.; Kumar, V. Evaluation of alternative tillage and crop establishment methods in a rice-wheat rotation in North Western IGP. Field Crops Res. 2010, 116, 260–267. [Google Scholar] [CrossRef]
- Kakumanu, K.R.; Kotapati, G.R.; Nagothu, U.S.; Kuppanan, P.; Kallam, S.R. Adaptation to climate change and variability: A case of direct-seeded rice in Andra Pradesh, India. J. Water Clim. Chang. 2019, 10, 419–430. [Google Scholar] [CrossRef] [Green Version]
- Kaur, J.; Singh, A. Direct seeded rice: Prospects, problems/constraints and researchable issues in India. Curr. Agric. Res. J. 2017, 5, 13–17. [Google Scholar] [CrossRef]
- Das, D.K.; Maiti, D.; Pathak, H. Site-specific nutrient management in rice in Eastern India using a modeling approach. Nutr. Cycl. Agroecosyst. 2017, 83, 85–94. [Google Scholar] [CrossRef]
- Xu, X.P.; He, P.; Zhao, S.C.; Qiu, S.J.; Johnston, A.M.; Zhou, W. Quantification of yield gap and nutrient use efficiency of irrigated rice in China. Field Crops Res. 2016, 186, 58–65. [Google Scholar] [CrossRef]
- Chen, Y.T.; Peng, J.; Wang, J.; Fu, P.H.; Hou, Y.; Zhang, C.D.; Fahad, S.; Peng, S.B.; Cui, K.H.; Nie, L.X.; et al. Crop management based on multi-split top dressing enhances grain yield and nitrogen use efficiency in irrigated rice in China. Field Crops Res. 2015, 184, 50–57. [Google Scholar] [CrossRef]
- Pooniya, V.; Jat, S.L.; Choudhary, A.K.; Singh, A.K.; Parihar, C.M.; Bana, R.S.; Rana, K.S. Nutrient Expert assisted site-specific-nutrient-management: An alternative precision fertilization technology for maize-wheat cropping system in South-Asian Indo-Gangetic Plains. Indian J. Agric. Sci. 2015, 85, 996–1002. [Google Scholar]
- Pampolino, M.F.; Witt, C.; Pasuquin, J.M.; Johnston, A.; Fisher, M.J. Development approach and evaluation of the Nutrient Expert software for nutrient management in cereal crops. Comput. Electron. Agric. 2012, 88, 103–110. [Google Scholar] [CrossRef]
- Dobermann, A. Nutrient use efficiency measurement and management. In Fertilizer Best Management Practices. General Principles, Strategy for their Adoption and Voluntary Initiatives vs. Regulations; Drauss, A., Ed.; IFA: Paris, France, 2007. [Google Scholar]
- Dastane, N.G. Effective Rainfall in Irrigated Agriculture; FAO Irrigation and Drainage Paper No. 25; FAO: Rome, Italy, 1974. [Google Scholar]
- Allen, R.; Pereira, L.A.; Raes, D.; Smith, M. Crop Evapotranspiration; FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Debnath, G.; Jain, M.C.; Kumar, S.; Sarkar, K.; Sinha, S.K. Methane emissions from rice fields amended with biogas slurry and farm yard manure. Clim. Chang. 1996, 33, 97–109. [Google Scholar] [CrossRef]
- Khurana, H.S.; Bijay-Singh, A.D.; Phillips, S.B.; Sidhu, A.S. Site-specific nutrient management performance in a rice-wheat cropping system. Better Crops 2008, 92, 26–28. [Google Scholar]
- Chhokar, R.S.; Sharma, R.K.; Jat, G.R.; Pundir, A.K.; Gathala, M.K. Effect of tillage and herbicides on weeds and productivity of wheat under rice-wheat growing system. Crop Prot. 2007, 26, 1689–1696. [Google Scholar] [CrossRef]
- Panneerselvam, P.; Kumar, V.; Banik, N.C.; Kumar, V.; Parida, N.; Wasim, I.; Das, A.; Pattnaik, S.; Roul, P.K.; Sarangi, D.R.; et al. Transforming labor requirement, crop yield, and profitability with precision dry-direct seeding of rice and integrated weed management in Eastern India. Field Crops Res. 2020, 259, 107961. [Google Scholar] [CrossRef]
- Sapkota, T.B. Conservation Tillage Impact on Soil Aggregation, Organic Matter Turnover and Biodiversity. In Organic Fertilisation, Soil Quality and Human Health. Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer: Dordrecht, The Netherlands, 2012; Volume 9. [Google Scholar] [CrossRef]
- Van Duivenbooden, N.; Witt, C.T.; Van Keulen, H. Nitrogen, phosphorus and potassium relations in five major cereals reviewed in respect to fertilizer recommendations using simulation modeling. Fert. Res. 1996, 44, 37–49. [Google Scholar] [CrossRef]
- Timsina, J.; Dutta, S.; Devkota, K.P.; Chakraborty, S.; Neupane, R.K.; Bishta, S.; Amgain, L.P.; Singh, V.K.; Islam, S.; Majumdar, K. Improved nutrient management in cereals using Nutrient Expert and machine learning tools: Productivity, profitability and nutrient use efficiency. Agric. Syst. 2021, 192, 103181. [Google Scholar] [CrossRef]
- Dass, A.; Chandra, S. Irrigation, spacing and cultivar effects on net photosynthetic rate, dry matter partitioning and productivity of rice under system of rice intensification in Mollisols of Northern India. Exp. Agric. 2021, 49, 504–523. [Google Scholar] [CrossRef]
- Saha, S.; Singh, Y.V.; Gaind, S.; Kumar, D. Water productivity and nutrient status of rice soil in response to cultivation techniques and nitrogen fertilization. Paddy Water Environ. 2015, 13, 443–453. [Google Scholar] [CrossRef]
- Singh, P.; Singh, G.; Sodhi, G.P.S. Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India. Energy 2019, 174, 269–279. [Google Scholar] [CrossRef]
- Ghosh, S.; Das, T.K.; Rana, K.S.; Biswas, D.R.; Das, D.K.; Singh, G.; Bhattacharyya, R.; Datta, D.; Rathi, N.; Bhatia, A. Energy budgeting and carbon footprint of contrasting tillage and residue management scenarios in rice-wheat cropping system. Soil Tillage Res. 2022, 223, 105445. [Google Scholar] [CrossRef]
- Pathak, H.; Bhatia, A.; Prasad, S.; Singh, S.; Kumar, S.; Jain, M.C.; Kumar, U. Emission of Nitrous Oxide from Rice-Wheat systems of Indo-Gangetic plains of India. Environ. Monit. Assess. 2001, 77, 163–178. [Google Scholar] [CrossRef]
- Qureshi, A.; Singh, D.K.; Pandey, P.C.; Singh, V.P.; Raverkar, K.P. Site specific nutrient management approaches for enhancing productivity and profitability in rice and wheat under rice -wheat cropping system. Int. J. Agric. Sci. 2016, 8, 2838–2842. [Google Scholar]
Year | Kharif | Rabi |
---|---|---|
2014–2015 | Rice | Wheat |
2015–2016 | Rice | Wheat |
2016–2017 | DSR | ZT-Wheat |
2017–2018 | DSR | ZT-Wheat |
2018–2019 | DSR | ZT-Wheat |
2019–2020 | DSR | ZT-Wheat |
Soil Properties | Values |
---|---|
Soil texture | Sandy clay loam |
Sand (%) | 53.3 |
Silt (%) | 21.2 |
Clay (%) | 25.5 |
pH (1:2.5 soil:water) | 7.3 |
Organic carbon (%) | 0.55 |
Available N (kg ha–1) | 160 |
Available P (kg ha–1) | 20 |
Available K (kg ha–1) | 265 |
Treatment | 2018 | 2019 | ||||
---|---|---|---|---|---|---|
N | P2O5 | K2O | N | P2O5 | K2O | |
STB NPK | 171–175 | 67–70 | 60–65 | 167–172 | 60–65 | 55–60 |
RDF (120-60-40 kg ha–1) | 120 | 60 | 40 | 120 | 60 | 40 |
NE (target yield = 5 tha–1) NPK(LCC for N) | 112.5–120 | 35 | 50 | 120–125 | 35–40 | 50 |
STB N0PK | - | 67–70 | 60–65 | - | 60–65 | 55–60 |
STB NP0K | 171–175 | - | 60–65 | 167–172 | - | 55–60 |
STB NPK0 | 171–175 | 67–70 | - | 167–172 | 60–65 | - |
SR N0PK | - | 50 | 40 | - | 50 | 40 |
SR NP0K | 110 | - | 40 | 110 | - | 40 |
SR NPK0 | 110 | 50 | - | 110 | 50 | - |
NE N0PK | - | 35 | 50 | - | 35 | 50 |
NE NP0K | 112.5–120 | - | 50 | 112.5–120 | - | 50 |
NE NPK0 | 112.5–120 | 35 | - | 112.5–120 | 35 | - |
Source of Variation | Degree of Freedom | Grain Yield | Total Biomass Yield | Net Return ($) | BC Ratio | PFP | AE | IWP | TWP | CWUE |
---|---|---|---|---|---|---|---|---|---|---|
Replications | 2 | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Treatments | 23 | S | S | S | S | S | S | S | S | S |
Year | 1 | S | NS | NS | S | S | S | S | NS | NS |
Treatment | 11 | S | S | S | S | S | S | S | S | S |
Year × Treatment | 11 | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Error | 71 |
Factors | Grain Yield (t ha−1) | Total Biomass Yield (t ha−1) |
---|---|---|
Year | ||
2018 | 3.54 a | 10.14 |
2019 | 3.34 a | 10.28 |
LSD (p ≥ 0.05) | 0.23 | NS |
Treatment | ||
STB NPK | 4.37 a | 13.65 a |
SR N0PK | 3.12 c | 9.43 de |
SR NP0K | 3.20 c | 9.58 cde |
SR NPK0 | 3.17 c | 9.53 cde |
RDF (120-60-40) | 3.89 ab | 11.07 bc |
NE (LCCN) NPK | 4.13 a | 12.45 ab |
NE N0PK | 3.12 c | 9.40 de |
NE NP0K | 3.32 bc | 9.25 de |
NE NPK0 | 3.37 bc | 9.97 cde |
STB NPK0 | 3.30 c | 10.23 cd |
STB NP0K | 3.18 c | 9.33 de |
STB N0PK | 3.14 c | 8.62 e |
LSD (p ≥ 0.05) | 0.58 | 1.59 |
Year × Treatment | ||
LSD (p ≥ 0.05) | NS | NS |
Factors | PFPN | PFPP | PFPK |
---|---|---|---|
Year | |||
2018 | 21.13 a | 55.87 a | 54.82 a |
2019 | 19.52 b | 53.14 a | 52.78 a |
LSD (p ≥ 0.05) | 1.72 | 4.45 | 3.37 |
Treatment | |||
STB NPK | 25.53 c | 64.68 c | 73.06 cd |
SR N0PK | - | 62.33 c | 77.92 bc |
SR NP0K | 29.10 b | - | 80.03 bc |
SR NPK0 | 28.81 bc | 63.38 c | - |
RDF (120-60-40) | 32.45 ab | 64.89 c | 97.33 a |
NE (LCCN) NPK | 36.73 a | 118.07 a | 82.65 b |
NE N0PK | - | 89.24 b | 62.47 e |
NE NP0K | 26.58 c | - | 66.45 de |
NE NPK0 | 26.95 c | 96.24 b | - |
STB NPK0 | 19.21 d | 48.72 d | - |
STB NP0K | 18.55 d | - | 53.16 f |
STB N0PK | - | 46.47 d | 52.49 f |
LSD (p ≥ 0.05) | 4.29 | 11.15 | 8.42 |
Year × Treatment | |||
LSD (p ≥ 0.05) | NS | NS | NS |
Factors | AEN | AEP | AEK |
---|---|---|---|
Year | |||
2018 | 3.66 a | 7.08 a | 5.28 a |
2019 | 2.53 a | 6.95 a | 8.06 a |
LSD (p ≥ 0.05) | 1.34 | 4.019 | 3.77 |
Treatment | |||
STB NPK | 8.35 a | 17.37 ab | 16.67 a |
SR N0PK | - | 4.08 cd | 6.30 bcd |
SR NP0K | 2.62 b | - | 12.15 abc |
SR NPK0 | 2.77 b | 9.08 bcd | - |
RDF (120-60-40) | 6.47 a | 11.94 bc | 16.39 a |
NE (LCCN) NPK | 8.97 a | 23.50 a | 13.39 ab |
NE N0PK | - | 2.03 cd | 2.22 d |
NE NP0K | 2.16 b | - | 5.75 bcd |
NE NPK0 | 2.85 b | 9.53 bcd | - |
STB NPK0 | 2.05 b | 5.05 cd | - |
STB NP0K | 0.87 b | - | 3.84 cd |
STB N0PK | - | 1.60 d | 3.34 cd |
LSD (p ≥ 0.05) | 3.22 | 10.07 | 9.36 |
Year × Treatment | |||
LSD (p ≥ 0.05) | NS | NS | NS |
Factors | IWP (kg m−3) | TWP (kg m−3) | CWUE (kg m−3) |
---|---|---|---|
Year | |||
2018 | 0.79 a | 0.41 | 0.91 |
2019 | 0.66 b | 0.41 | 0.90 |
LSD (p ≥ 0.05) | 0.05 | NS | NS |
Treatment | |||
STB NPK | 0.92 a | 0.52 a | 1.15 a |
SR N0PK | 0.65 c | 0.37 c | 0.82 c |
SR NP0K | 0.67 c | 0.38 c | 0.84 c |
SR NPK0 | 0.67 c | 0.38 c | 0.83 c |
RDF (120-60-40) | 0.82 a | 0.46 ab | 1.03 ab |
NE (LCCN) NPK | 0.87 a | 0.49 a | 1.09 a |
NE N0PK | 0.67 c | 0.37 c | 0.82 c |
NE NP0K | 0.69 bc | 0.39 bc | 0.87 bc |
NE NPK0 | 0.71 bc | 0.40 bc | 0.89 bc |
STB NPK0 | 0.69 bc | 0.39 c | 0.87 c |
STB NP0K | 0.67 c | 0.38 c | 0.84 c |
STB N0PK | 0.66 c | 0.37 c | 0.83 c |
LSD (p ≥ 0.05) | 0.122 | 0.0692 | 0.122 |
Year × Treatment | |||
LSD (p ≥ 0.05) | NS | NS | NS |
Factors | Total Cost ($ ha–1) | Net Return ($ ha–1) | Benefit-Cost Ratio |
---|---|---|---|
Year | |||
2018 | 530.79 | 989.99 | 1.86 a |
2019 | 497.82 | 972.56 | 1.95 a |
LSD (p ≥ 0.05) | - | NS | 0.17 |
Treatment | |||
STB NPK | 541.19 | 1401.30 a | 2.59 a |
SR N0PK | 503.57 | 853.30 d | 1.70 c |
SR NP0K | 500.41 | 892.40 d | 1.78 bc |
SR NPK0 | 512.52 | 868.20 d | 1.69 c |
RDF (120-60-40) | 526.18 | 1144.50 bc | 2.18 ab |
NE (LCCN) NPK | 516.95 | 1295.80 ab | 2.51 a |
NE N0PK | 499.54 | 853.50 d | 1.72 c |
NE NP0K | 504.75 | 913.30 d | 1.81 bc |
NE NPK0 | 508.79 | 952.20 cd | 1.87 bc |
STB NPK0 | 529.14 | 918.70 d | 1.74 c |
STB NP0K | 513.93 | 862.90 d | 1.68 c |
STB N0PK | 514.68 | 819.10 d | 1.60 c |
LSD (p ≥ 0.05) | - | 9.36 | 0.42 |
Year × Treatment | |||
LSD (p ≥ 0.05) | NS | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadhukhan, R.; Kumar, D.; Sen, S.; Sepat, S.; Ghosh, A.; Shivay, Y.S.; Meena, M.C.; Anand, A.; Kumar, R.; Sharma, L.D.; et al. Precision Nutrient Management in Zero-Till Direct-Seeded Rice Influences the Productivity, Profitability, Nutrient, and Water Use Efficiency as Well as the Environmental Footprint in the Indo Gangetic Plain of India. Agriculture 2023, 13, 784. https://doi.org/10.3390/agriculture13040784
Sadhukhan R, Kumar D, Sen S, Sepat S, Ghosh A, Shivay YS, Meena MC, Anand A, Kumar R, Sharma LD, et al. Precision Nutrient Management in Zero-Till Direct-Seeded Rice Influences the Productivity, Profitability, Nutrient, and Water Use Efficiency as Well as the Environmental Footprint in the Indo Gangetic Plain of India. Agriculture. 2023; 13(4):784. https://doi.org/10.3390/agriculture13040784
Chicago/Turabian StyleSadhukhan, Rahul, Dinesh Kumar, Suman Sen, Seema Sepat, Avijit Ghosh, Yashbir Singh Shivay, Mahesh Chand Meena, Anjali Anand, Rajesh Kumar, Laimayum Devarishi Sharma, and et al. 2023. "Precision Nutrient Management in Zero-Till Direct-Seeded Rice Influences the Productivity, Profitability, Nutrient, and Water Use Efficiency as Well as the Environmental Footprint in the Indo Gangetic Plain of India" Agriculture 13, no. 4: 784. https://doi.org/10.3390/agriculture13040784