Environmental and Economic Responses to Precision Feed Management in Dairy Cattle Diets
Abstract
:1. Introduction
2. Nitrogen and Ammonia
3. Phosphorus
4. Methane
5. On-Farm Research
5.1. Dairy Sustainability Trial
5.2. Washington State Herd
5.3. Western New York Herds
5.4. Whole-Farm Project
5.5. Diet CP and Manure Ammonia
5.6. Herd Best Management Practices
5.7. Delaware County PFM Project
5.8. Upper Susquehanna Watershed Project
5.9. Vermont Dairy Farm Sustainability Project
5.10. Pennsylvania Herds
5.11. University of New Hampshire
6. Whole-Farm Mass Nutrient Balance
7. Carbon Footprint
8. Lower Crude Protein Diets
9. Diet Formulation
10. Diet Formulation Models
11. Grouping of Dairy Cattle
12. Feed Management Systems
13. Role of NIR
14. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results. UN DESA/POP/2022/TR/No.3. 2022. [Google Scholar]
- IFCN Dairy Outlook 2030. Available online: https://ifcndairy.org (accessed on 15 March 2023).
- Luna, P.G.; Mauricio-Iglesias, M.; Flysjo, A.; Hospido, A. Analysing the interaction between the dairy sector and climate change from a life cycle perspective: A review. Trends Food Sci. Technol. 2022, 126, 168–179. [Google Scholar] [CrossRef]
- Pimentel, D.; Pimentel, M. Sustainability of meat-based and plant-based diets and the environment. Am. J. Clin. Nutr. 2003, 78, 660S–663S. [Google Scholar] [CrossRef]
- Ertl, P.; Knaus, W.; Zollitsch, W. An approach to including protein quality when assessing the net contribution of livestock to human food supply. Animal 2016, 10, 1883–1889. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Sonensson, U.; Hessle, A. Upgrading plant amino acids through cattle to improve the nutritional value for humans: Effects of different production systems. Animal 2017, 11, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Vieux, F.; Remond, D.; Peyraud, J.L.; Darmon, N. Approximately half of total protein intake by adults must be animal-based to meet nonprotein, nutrient-based recommendations, with variations due to age and sex. J. Nutr. 2022, 152, 2514–2525. [Google Scholar] [CrossRef] [PubMed]
- Chungchunlam, S.M.S.; Moughan, P.J.; Garrick, D.P.; Drewnowski, A. Animal-Sourced Foods Are Required for minimum-Cost Nutritionally Adequate Food Patterns for the United States. Nat. Food 2020, 1, 376–381. Available online: www.nature.com/natfood (accessed on 15 March 2023). [CrossRef]
- Givens, D.I. MILK Symposium review: The importance of milk and dairy foods in the diets of infants, adolescents, pregnant women, adults, and the elderly. J. Dairy Sci. 2020, 103, 9681–9699. [Google Scholar] [CrossRef]
- Banda, L.J.; Tanganyika, J. Livestock provide more than food in smallholder production systems of developing countries. Anim. Front. 2021, 11, 7–14. [Google Scholar] [CrossRef]
- Beegle, D. Nutrient management and Chesapeake Bay. J. Contemp. Water Res. Educ. 2013, 151, 3–8. [Google Scholar] [CrossRef]
- Maltz, E.; Barbosa, L.F.; Bueno, P.; Scagion, L.; Kanlyamattam, K.; Greco, L.F.; De Vries, A.; Santos, J.E.P. Effect of feeding according to energy balance on performance, nutrient excretion, and feeding behavior of early lactation dairy cows. J. Dairy Sci. 2013, 96, 5249–5266. [Google Scholar] [CrossRef]
- Bach, A. Precision feeding to increase efficiency for milk production. WCDS Adv. Dairy Technol. 2014, 26, 177–189. [Google Scholar]
- Jago, J.; Eastwood, C.; Kerrisk, K.; Yule, I. Precision dairy farming in Australasia: Adoption, risks and opportunities. Anim. Prod. Sci. 2013, 53, 907–916. [Google Scholar] [CrossRef]
- Knowlton, K.F.; Ray, P.P. Water quality concerns associated with dairy farms. In Large Dairy Herd Management, 3rd ed.; Beede, D.K., Ed.; ADSA Foundation: Champaign, IL, USA, 2017. [Google Scholar] [CrossRef]
- Beegle, D. Nutrient Management Planning: An Overview. 2014. Available online: https://extension.psu.edu/nutrient-management-planning-an-overview (accessed on 15 March 2023).
- Harrison, J.; White, R.; Ishler, V.; Erickson, G.; Sutton, A.; Applegate, T.; Richert, B.; Nennich, T.; Koelsch, R.; Burns, R.; et al. Case study: Implementation of feed management as part of whole-farm nutrient management. Prof. Anim. Sci. 2012, 28, 364–369. [Google Scholar] [CrossRef]
- Loosli, J.K.; Williams, H.H.; Thomas, W.E.; Ferris, F.H.; Maynard, L.A. Synthesis of amino acids in the rumen. Science 1949, 110, 144–145. [Google Scholar] [CrossRef] [PubMed]
- Lapierre, H.; Lobley, G.E. Nitrogen recycling in the ruminant: A review. J. Dairy Sci. 2001, 84, E223–E236. [Google Scholar] [CrossRef]
- Reynolds, C.K.; Kristensen, N.B. Nitrogen recycling through the gut and the nitrogen economy of ruminants: An asynchronous symbiosis. J. Anim. Sci. 2008, 86, E293–E305. [Google Scholar] [CrossRef]
- Recktenwald, E.B.; Ross, D.A.; Fessenden, S.W.; Walt, C.J.; Van Amburgh, M.E. Urea-N recycling in lactating dairy cows fed diets with 2 different levels of dietary crude protein and starch with or without monensin. J. Dairy Sci. 2014, 97, 1611–1622. [Google Scholar] [CrossRef]
- Broderick, G.A. Review: Optimizing ruminant conversion of feed protein to human food protein. Animal 2018, 12, 1722–1734. [Google Scholar] [CrossRef] [PubMed]
- Swensson, C.; Lindmark-Mansson, H.; Smedman, A.; Henriksson, M.; Edman, A.K.M. Protein efficiency in intensive dairy production: A Swedish example. J. Sci. Food Agric. 2017, 97, 4890–4897. [Google Scholar] [CrossRef]
- Karlsson, J.; Sporndly, R.; Lindberg, M.; Holtenius, K. Replacing human-edible feed ingredients with by-products increases net food production efficiency in dairy cows. J. Dairy Sci. 2018, 101, 7146–7155. [Google Scholar] [CrossRef]
- Nadeau, E.; Englund, J.E.; Gustafsson, A.H. Nitrogen efficiency of dairy cows as affected by diet and milk yield. Livestock Sci. 2007, 111, 45–56. [Google Scholar] [CrossRef]
- Powell, J.M.; Rotz, C.A. Measures of nitrogen use efficiency and nitrogen loss from dairy production systems. J. Environ. Qual. 2015, 44, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Huhtanen, P.; Hristov, A.N. A meta-analysis of the effects of dietary protein concentration and degradability on milk protein yield and milk N efficiency in dairy cows. J. Dairy Sci. 2009, 92, 3222–3232. [Google Scholar] [CrossRef] [PubMed]
- Chase, L.E. Estimated Nitrogen Excretion in 46 Commercial Dairy Herds in New York. 2004. Available online: http://www.dairyn.cornell.edu/pages/40dairy/410utilization/4216excretion.shtml (accessed on 15 March 2023).
- Vyas, D.; Amaro, F. A survey of N efficiency in dairy farms in the USA. In Proceedings of the Florida Ruminant Nutrition Symposium, Gainsville, FL, USA, 20–22 February 2023. [Google Scholar]
- Fadul-Pacheco, L.; Pellerin, D.; Chouinard, P.Y.; Wattiaux, M.A.; Duplessis, M.; Charbonneau, E. Nitrogen efficiency of eastern Canadian dairy herds: Effect on production performance and farm profitability. J. Dairy Sci. 2017, 100, 6592–6601. [Google Scholar] [CrossRef] [PubMed]
- Olmos Colmenero, J.J.; Broderick, G.A. Effect of dietary crude protein concentration on milk production and nitrogen utilization in lactating dairy cows. J. Dairy Sci. 2006, 89, 1704–1712. [Google Scholar] [CrossRef]
- Burgos, S.A.; Fadel, J.G.; DePeters, E.J. Prediction of ammonia emission from dairy cattle manure based on milk urea nitrogen: Relation of milk urea nitrogen to urine urea nitrogen excretion. J. Dairy Sci. 2007, 90, 5499–5508. [Google Scholar] [CrossRef]
- Gonda, H.L.; Lindberg, J.E. Evaluation of dietary nitrogen utilization in dairy cows based on urea concentrations in blood, urine, and milk, and on urinary concentration of purine derivatives. Acta. Agric. Scand. Sect. A 1994, 44, 236–245. [Google Scholar] [CrossRef]
- Edouard, N.; Hassouna, M.; Robin, P.; Faverdin, P. Low degradable protein supply to increase nitrogen efficiency in lactating dairy cows and reduce environmental impacts at barn level. Animal 2015, 10, 212–220. [Google Scholar] [CrossRef]
- Katongole, C.B.; Yan, T. Effect of varying dietary crude protein level on feed intake, nutrient digestibility, milk production, and nitrogen use efficiency by lactating Holstein-Friesian cows. Animals 2020, 10, 2439. [Google Scholar] [CrossRef]
- Castillo, A.R.; Kebreab, E.; Beever, D.E.; France, J. A review of efficiency of nitrogen utilisation in lactating dairy cows and its relationship with environmental pollution. J. Anim. Feed Sci. 2000, 9, 1–32. [Google Scholar] [CrossRef]
- Bach, A.; Calsamiglia, S.; Stern, M.D. Nitrogen metabolism in the rumen. J. Dairy Sci. 2005, 88, E9–E21. [Google Scholar] [CrossRef] [PubMed]
- Necula, D.C.; Balta, I.; Corcionivoschi, N.; Stef, L. Nutritional and genetical factors influencing nitrogen metabolism and excretion in dairy cows: A review. Anim. Sci. Biotechnol. 2021, 54, 31–38. [Google Scholar]
- Schwab, C.G.; Broderick, G.A. A 100-year review: Protein and amino acid nutrition in dairy cows. J. Dairy Sci. 2017, 100, 10094–10112. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.E.; Lee, H.G. Amino acids supplementation for the milk and milk protein production of dairy cows. Animals 2021, 11, 2118. [Google Scholar] [CrossRef]
- Maynard, L.A. Animal Nutrition, 2nd ed.; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1947. [Google Scholar]
- Clark, J.H. Lactational responses to postruminal administration of protein and amino acids. J. Dairy Sci. 1975, 58, 1178–1197. [Google Scholar] [CrossRef]
- Rogers, J.A.; Pierce-Sandner, S.B.; Papas, A.M.; Polan, C.E.; Sniffen, C.J.; Muscato, T.V.; Staples, C.R.; Clark, J.H. Production responses of dairy cows fed various amounts of rumen-protected methionine and lysine. J. Dairy Sci. 1989, 72, 1800–1817. [Google Scholar] [CrossRef]
- Polan, C.E.; Cummins, K.A.; Sniffen, C.J.; Muscato, T.V.; Vicini, J.L.; Crooker, B.A.; Clark, J.H.; Johnson, D.G.; Otterby, D.E.; Guillaume, B.; et al. Responses of dairy cows to supplemental rumen-protected forms of methionine and lysine. J. Dairy Sci. 1991, 74, 2997–3013. [Google Scholar] [CrossRef] [PubMed]
- Patton, R.A. Effect of rumen-protected methionine on feed intake, milk production, true milk protein concentration, and true milk protein yield, and the factors that influence these effects: A meta-analysis. J. Dairy Sci. 2010, 93, 2105–2118. [Google Scholar] [CrossRef] [PubMed]
- Zanton, G.I.; Bowman, G.R.; Vazquez-Anon, M.; Rode, L.M. Meta-analysis of lactation performance in dairy cows receiving supplemental dietary methionine sources or postruminal infusion of methionine. J. Dairy Sci. 2014, 97, 7085–7101. [Google Scholar] [CrossRef]
- Wei, C.W.; He, T.; Wan, X.; Liu, S.; Dong, Y.; Qu, Y. Meta-analysis of rumen-protected methionine in milk production and composition of dairy cows. Animals 2022, 12, 1505. [Google Scholar] [CrossRef]
- Cardoso, F.C.; Kalscheur, K.F.; Drackley, J.K. Symposium review: Nutrition strategies for improved health, production, and fertility during the transition period. J. Dairy Sci. 2020, 103, 5684–5693. [Google Scholar] [CrossRef]
- Guadagnin, A.; Fehlberg, L.; Thomas, B.; Sugimoto, Y.; Shinzato, I.; Cardoso, F. Effect of feeding rumen-protected lysine through the transition period on postpartum uterine health of dairy cows. J. Dairy Sci. 2022, 105, 7805–7819. [Google Scholar] [CrossRef] [PubMed]
- Pate, R.T.; Luchini, D.; Murphy, M.R.; Cardoso, F.C. Effects of rumen-protected methionine on lactation performance and physiological variables during a heat stress challenge in lactating Holstein cows. J. Dairy Sci. 2020, 103, 2800–2813. [Google Scholar] [CrossRef]
- Toledo, M.Z.; Baez, G.M.; Garcia-Guerra, A.; Lobos, N.E.; Guenther, J.N.; Trevisol, E.; Luchini, D.; Shaver, R.D.; Wiltbank, M.C. Effect of feeding rumen-protected methionine on production and reproductive performance of dairy cows. PLoS ONE 2017, 12, e0189117. [Google Scholar] [CrossRef] [PubMed]
- Wattiaux, M.A.; Ranathunga, S.D. Milk Urea Nitrogen as a Tool to Assess Efficiency of Nitrogen Utilization in Dairy Cows. In Proceedings of the Four-State Dairy Nutrition and Management Conference, Dubuque, Iowa, 15–16 June 2016; Available online: https://store.extension.iastate.edu/product/14613 (accessed on 4 May 2023).
- Nousiainen, J.; Shingfield, K.J.; Huhtanen, P. Evaluation of milk urea nitrogen as a diagnostic of protein feeding. J. Dairy Sci. 2004, 87, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Guilinski, P.; Salamonczyk, E.; Mlynek, K. Improving nitrogen use efficiency of dairy cows relative to urea in milk—A review. Anim. Sci. Pap. Rep. 2016, 34, 5–24. [Google Scholar]
- Burgos, S.A.; Embertson, N.M.; Zhao, Y.; Mitloehner, F.M.; DePeters, E.J.; Fadel, J.G. Prediction of ammonia emission from dairy cattle manure based on milk urea nitrogen: Relation of milk urea nitrogen to ammonia emissions. J. Dairy Sci. 2010, 93, 2377–2386. [Google Scholar] [CrossRef]
- Spek, J.W.; Dijkstra, J.; Van Duinkerkem, G.; Bannink, A. A review of factors influencing milk urea concentration and its relationship with urinary urea excretion in lactating dairy cattle. J. Agric. Sci. 2013, 151, 407–423. [Google Scholar] [CrossRef]
- Powell, J.M.; Wattiaux, M.A.; Broderick, G.A. Short communication: Evaluation of milk urea nitrogen as a management tool to reduce ammonia emissions from dairy farms. J. Dairy Sci. 2011, 94, 4690–4694. [Google Scholar] [CrossRef]
- Hristov, A.N. Technical note: Contribution of ammonia emitted from livestock to atmospheric fine particulate matter (PM2.5) in the United States. J. Dairy Sci. 2011, 94, 3130–3136. [Google Scholar] [CrossRef]
- Frank, B.; Swensson, C. Relationship between content of crude protein in rations for dairy cows and milk yield, concentration of urea in milk and ammonia emissions. J. Dairy Sci. 2002, 85, 1829–1838. [Google Scholar] [CrossRef]
- Frank, B.; Persson, M.; Gustafsson, G. Feeding dairy cows to decrease ammonia emission. Livestock Prod. Sci. 2002, 76, 171–177. [Google Scholar] [CrossRef]
- Swensson, C. Relationship between content of crude protein in rations for dairy cows, N in urine snd ammonia release. Livestock Prod. Sci. 2003, 84, 125–133. [Google Scholar] [CrossRef]
- Kebreab, E.; France, J.; Mills, J.A.N.; Allison, R.; Dijkstra, J. A dynamic model of N metabolism in the lactating dairy cow and an assessment of impact of N excretion on the environment. J. Anim. Sci. 2002, 80, 248–259. [Google Scholar] [CrossRef]
- Bougouin, A.; Leytem, A.; Dijkstra, J.; Dungan, R.S.; Kebreab, E. Nutritional and environmental effects on ammonia emissions from dairy cattle housing: A meta-analysis. J. Environ. Qual. 2016, 45, 1123–1132. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Hristov, A.N.; Dell, C.J.; Feyereisen, G.W.; Kaye, J.; Beegle, D. Effect of dietary protein concentration on ammonia and greenhouse gas emitting potential of dairy manure. J. Dairy Sci. 2012, 95, 1930–1941. [Google Scholar] [CrossRef] [PubMed]
- van der Stelt, B.; van Vliet, C.J.; Reijs, J.W.; Temminghoff, J.M.; van Riemsdijk, W.H. Effects of dietary protein and energy levels on cow manure excretion and ammonia volatilization. J. Dairy Sci. 2008, 91, 4811–4821. [Google Scholar] [CrossRef]
- Hristov, A.N.; Ropp, J.K.; Grandson, K.L.; Abedi, S.; Etter, R.P.; Melgar, A.; Foley, A.E. Effect of carbohydrate source on ammonia utilization in lactating dairy cows. J. Anim. Sci. 2005, 83, 408–421. [Google Scholar] [CrossRef]
- Smits, M.C.J.; Monteny, G.J.; van Duinkerken, G. Effect of nutrition and management factors on ammonia emission from dairy cow herds: Models and field observations. Livestock Prod. Sci. 2003, 84, 113–123. [Google Scholar] [CrossRef]
- Aguerre, M.J.; Wattiaux, M.A.; Hunt, T.; Larget, B.R. Effect of dietary crude protein on ammonia-N emission measured by herd nitrogen mass balance in a freestall dairy barn managed under farm-like conditions. Animal 2010, 4, 1390–1400. [Google Scholar] [CrossRef]
- Edouard, N.; Charpiot, A.Z.; Robin, P.; Lorinquer, E.; Dolle, J.B.; Faverdin, P. Influence of diet and manure management on ammonia and greenhouse gas emissions from dairy barns. Animal 2019, 13, 2903–2912. [Google Scholar] [CrossRef] [PubMed]
- Hristov, A.N.; Hanigan, M.; Cole, A.; Todd, R.; McAllister, T.A.; Ndegwa, P.M.; Rotz, A. Review: Ammonia emissions from dairy farms and beef feedlots. Can. J. Anim. Sci. 2011, 91, 1–35. [Google Scholar] [CrossRef]
- Chapula-Lardy, L.; Fiorini, J.; Toth, J.; Dou, Z. Phosphorus concentration and solubility in dairy feces: Variability and affecting factors. J. Dairy Sci. 2004, 87, 4334–4341. [Google Scholar] [CrossRef]
- Satter, L.D.; Klopfenstein, T.J.; Erickson, G.E.; Powell, J.M. Phosphorus and Dairy/Beef Nutrition; Faculty Papers and Publications. 549; University of Nebraska: Lincoln, NE, USA, 2005; Available online: https://digitalcommons.unl.edu/animalscifaculty/549 (accessed on 15 March 2023).
- Valk, H.; Sebek, L.B.J. Influence of long-term feeding of limited amounts of phosphorus on dry matter intake, milk production, and body weight of dairy cows. J. Dairy Sci. 1999, 82, 2157–2163. [Google Scholar] [CrossRef]
- Valk, H.; Sebek, L.B.J.; Beynen, A.C. Influence of phosphorus intake on excretion and blood plasma and saliva concentrations of phosphorus in dairy cows. J. Dairy Sci. 2002, 85, 2642–2649. [Google Scholar] [CrossRef]
- Wu, Z.; Satter, L.D.; Sojo, R. Milk production, reproductive performance, and fecal excretion of phosphorus by dairy cows fed three amounts of phosphorus. J. Dairy Sci. 2000, 83, 1028–1041. [Google Scholar] [CrossRef]
- Wu, Z.; Satter, L.D. Milk production and reproductive performance of dairy cows fed two concentrations of phosphorus for two years. J. Dairy Sci. 2000, 83, 1052–1063. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Satter, L.D.; Blohowiak, A.J.; Stauffacher, R.H.; Wilson, J.H. Milk production estimated phosphorus excretion, and bone characteristics of dairy cows fed different amounts of phosphorus for two or three years. J. Dairy Sci. 2001, 84, 1738–1748. [Google Scholar] [CrossRef]
- Odongo, N.E.; McKnight, D.; Koekkoek, A.; Fisher, J.W.; Sharpe, P.; Kebreab, E.; France, J.; McBride, B.W. Long-term effects of feeding diets without mineral phosphorus supplementation on the performance and phosphorus excretion in high-yielding dairy cows. Can. J. Anim. Sci. 2007, 87, 639–646. [Google Scholar] [CrossRef]
- Ferris, C.P.; Patterson, D.C.; McCoy, M.A.; Kilpatrick, D.J. Effect of offering dairy cows diets differing in phosphorus concentration over four successive lactations: 1. Food intake, milk production, tissue changes and blood metabolites. Animal 2009, 4, 545–559. [Google Scholar] [CrossRef]
- Ferris, C.P.; McCoy, M.A.; Patterson, D.C.; Kilpatrick, D.J. Effect of offering dairy cows diets differing in phosphorus concentration over four successive lactations: 2. Health, fertility, bone phosphorus, reserves, and nutrient utilization. Animal 2009, 4, 560–571. [Google Scholar] [CrossRef] [PubMed]
- Lopez, H.; Kanitz, F.D.; Moreira, V.R.; Wiltbank, M.C.; Satter, L.D. Effect of dietary phosphorus on performance of lactating dairy cows: Milk production and cow health. J. Dairy Sci. 2004, 87, 139–145. [Google Scholar] [CrossRef]
- Lopez, H.; Kanitz, F.D.; Moreira, V.R.; Satter, L.D.; Wiltbank, M.C. Reproductive performance of dairy cows fed two concentrations of phosphorus. J. Dairy Sci. 2004, 87, 146–157. [Google Scholar] [CrossRef]
- Lopez, H.; Wu, Z.; Satter, L.D.; Wiltbank, M.C. Effect of dietary phosphorus concentration on estrous behavior of lactating dairy cows. Theriogenology 2004, 61, 437–445. [Google Scholar] [CrossRef]
- Tallam, S.K.; Ealy, A.D.; Bryan, K.A.; Wu, Z. Ovarian activity and reproductive performance of dairy cows fed different amounts of phosphorus. J. Dairy Sci. 2005, 88, 3609–3618. [Google Scholar] [CrossRef] [PubMed]
- Kebreab, E.; Odongo, N.E.; McBride, B.W.; Hanigan, M.D.; France, J. Phosphorus utilization and environmental and economic implications of reducing phosphorus pollution from Ontario dairy cows. J. Dairy Sci. 2008, 91, 241–246. [Google Scholar] [CrossRef]
- Chase, L.E.; Reed, K.F. Science and Industry Work to Improve Phosphorus Management on New York Dairy Farms; Animal Science Publication Series No. 253; Dept. of Animal Science, Cornell University: Ithaca, NY, USA, 2021; Available online: https://hdl.handle/net/1813/103767 (accessed on 15 March 2023).
- Darby, H.; Chase, L.E. Changes in Nitrogen and Phosphorus Excretion in Vermont dairy herds (1999–2019); University of Vermont Extension: Burlington, VT, USA, 2022. [Google Scholar]
- EPA. Inventory of U.D. Greenhouse Gas Emissions and Sinks. 1990–2020. U.S. Environmental Protection Agency. EPA 430-R=22-003. 2022. Available online: https://www.epa.gov/ghgemissions/draft-inventory-us-greenhouse-gas-emissions-and-sinks-1990-2020 (accessed on 4 May 2023).
- Broucek, J. Production of methane emissions from ruminant husbandry: A review. J. Environ. Prot. 2014, 5, 1482–1493. [Google Scholar] [CrossRef]
- Kriss, M. Quantitative relationship of the dry matter of the food consumed the heat production, the gaseous outgo, and the insensible loss of body weight of cattle. J. Agric. Sci. 1930, 40, 283–295. [Google Scholar]
- Bratzler, J.W.; Forbes, E.B. The estimation of methane production by cattle. J. Nutr. 1940, 19, 611–613. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Ungerfeld, E.M.; Adballa, A.L.; Alvarez, C.; Arndt, C.; Becquet, P.; Benchaar, C.; Berndt, A.; Mauricio, M.; McAllister, T.A.; et al. Invited review: Current enteric methane mitigation options. J. Dairy Sci. 2022, 105, 9297–9326. [Google Scholar] [CrossRef]
- Hristov, A.N.; Melgar, A.; Wasson, D.; Arndt, C. Symposium review: Effective nutritional strategies to mitigate enteric methane in dairy cattle. J. Dairy Sci. 2022, 105, 8543–8557. [Google Scholar] [CrossRef] [PubMed]
- Arndt, C.; Hristov, A.N.; Price, W.J.; McClelland, S.C.; Pelaez, A.M.; Cueva, S.F.; Oh, J.; Dijkstra, J.; Bannink, A.; Bayar, A.R.; et al. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help to meet the 1.5 °C target by 2030 but not 2050. Proc. Natl. Acad. Sci. USA 2022, 119, e2111294119. [Google Scholar] [CrossRef] [PubMed]
- Honan, M.; Feng, X.; Tricarico, J.M.; Kebreab, E. Feed additives as a strategic approach to reduce enteric methane production in cattle: Modes of action, effectiveness, and safety. Anim. Prod. Sci. 2022, 62, 1303–1317. [Google Scholar] [CrossRef]
- Seyedin, S.M.V.; Zeidi, A.; Chamanehpour, E.; Nasri, M.H.F.; Vargas-Bello=Perez, E. Methane emission: Strategies to reduce global warming in relation to animal husbandry units with emphasis on ruminants. Sustainability 2022, 14, 16987. [Google Scholar] [CrossRef]
- Kebreab, E.; Bannink, A.; Pressman, E.M.; Walker, N.; Karagiannis, A.; van Gastelen, S.; Dijkstra, J. A meta-analysis of the effects of 3-nitrooxyptropanol on methane production, yield, and intensity in dairy cattle. J. Dairy Sci. 2023, 106, 927–936. [Google Scholar] [CrossRef]
- Klausner, S.D.; Fox, D.G.; Rasmussen, C.N.; Pitt, R.E.; Tylutki, T.P.; Wright, P.E.; Chase, L.E.; Stone, W.C. Improving dairy farm sustainability, I: An approach to animal and crop nutrient management planning. J. Prod. Sci. 1998, 11, 225–233. [Google Scholar] [CrossRef]
- Hutson, J.L.; Pitt, R.E.; Koelsch, R.K.; Wagenet, R.J. Improving dairy farm sustainability II: Environmental losses and nutrient flows. J. Prod. Sci. 1998, 11, 233–239. [Google Scholar] [CrossRef]
- Fox, D.G.; Barry, M.C.; Pitt, R.E.; Roseler, D.K.; Stone, W.C. Application of the Cornell net carbohydrate and protein model for cattle consuming forages. J. Anim. Sci. 1995, 73, 267–277. [Google Scholar] [CrossRef]
- Chen, Y.; Harrison, J.H.; Ndegwa, P.; Wilks, D.; VanWieringen, L.; Chalupa, W.; Sun, F. Case study: Effect of strategic ration balancing on the efficiency of milk protein production and environmental impact of dairy cows in a commercial herd. Prof. Anim. Sci. 2016, 32, 115–133. [Google Scholar] [CrossRef]
- Agricultural Modeling and Training Systems. 2015. Available online: https://wwwagmodelsystems.com (accessed on 15 March 2023).
- Higgs, R.J.; Chase, L.E.; Van Amburgh, M.E. Case study: Application of the Cornell Net Carbohydrate and Protein System as a tool to improve nitrogen utilization in commercial dairy herds. Prof. Anim. Sci. 2012, 28, 370–378. [Google Scholar] [CrossRef]
- Tylutki, T.P.; Fox, D.G.; Durbal, V.M.; Tedeschi, L.O.; Russell, J.B.; Van Amburgh, M.E.; Overton, T.R.; Chase, L.E.; and Pell, A.N. Cornell Net Carbohydrate and Protein System: A model for precision feeding of dairy cattle. Anim. Feed Sci. Tech. 2008, 143, 174–202. [Google Scholar] [CrossRef]
- Tylutki, T.P.; Fox, D.G.; McMahon, M. Implementation of nutrient management planning on a dairy farm. Prof. Anim. Sci. 2004, 20, 58–65. [Google Scholar] [CrossRef]
- Fox, D.G.; Tedeschi, L.O.; Tylutki, T.P.; Russell, J.B.; Van Amburgh, M.E.; Chase, L.E.; Pell, A.N.; Overton, T.R. The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion. Anim. Feed Sci. Tech. 2004, 112, 29–78. [Google Scholar] [CrossRef]
- Hristov, A.N.; Heyler, K.; Schurman, E.; Griswold, K.; Topper, P.; Hile, M.; Ishler, V.; Wheeler, E.F.; Dinh, S. Case study: Reducing dietary protein decreased the ammonia emitting potential of manure from commercial dairy farms. Prof. Anim. Sci. 2015, 31, 68–79. [Google Scholar] [CrossRef]
- Weeks, H.L.; Frederick, T.W.; Hagan, L.M.; Heyler, K.; Oh, J.; Hristov, A.N. Case study: Farm-level evaluation of implementing nitrogen and phosphorus feeding best management practices on Pennsylvania dairy farms. Prof. Anim. Sci. 2015, 31, 473–483. [Google Scholar] [CrossRef]
- Cerosaletti, P.; Dewing, D. 2017 WAP Precision Feed Management Program Nutrient and Economic Impact Report; Delaware County Cooperative Extension: Hamden, NY, USA, 2018. [Google Scholar]
- Lucas, A.W.; Romack, J.; Dewing, D.; Cerosaletti, P. 2020 NYC WAP Precision Feed Management Program Nutrient and Economic Impact Report; Delaware County Cooperative Extension: Hamden, NY, USA, 2021. [Google Scholar]
- Van Amburgh, M.E.; Russomanno, K.L.; Higgs, R.A.; Chase, L.E. Invited review: Modifications to the Cornell Net Carbohydrate and Protein System related to environmental issues- Capability to evaluate nitrogen and phosphorus excretion and enteric carbon dioxide and methane emissions at the animal level. Appl. Anim. Sci. 2019, 35, 101–113. [Google Scholar] [CrossRef]
- Van Amburgh, M.E.; Collan-Saenz, E.A.; Higgs, R.J.; Ross, D.A.; Recktenwald, E.B.; Raffrenato, E.; Chase, L.E.; Overton, T.R.; Mills, J.K.; Foskolos, A. The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5. J. Dairy Sci. 2015, 98, 6361–6380. [Google Scholar] [CrossRef] [PubMed]
- Weber, G.; Jokela, B. Vermont Dairy Sustainability Project Final Report Foe LNE01-151; University of Vermont: Burlington, VT, USA, 2007; Available online: https://projects.sare.org/sare_project/lne01-151 (accessed on 2 May 2023).
- Schwab, C.G.; Ordway, R.S. Balancing diets for amino acids: Implications on production efficiency and feed cost. In Proceedings of the Penn State Dairy Cattle Nutrition Workshop, Grantville, PA, USA, 2004; pp. 1–6. [Google Scholar]
- Cela, S.; Ketterings, Q.M.; Soberon, M.; Rasmussen, C.; Czymmek, K.J. Upper Susquehanna watershed and New York State improvements in nitrogen and phosphorus mass balances of dairy farms. J. Soil Water Conserv. 2017, 72, 1–11. [Google Scholar] [CrossRef]
- Soberon, M.A.; Cela, S.; Ketterings, Q.M.; Rasmussen, C.N.; Czymmek, K.J. Changes in nutrient mass balances over time and related drivers for 54 New York State dairy farms. J. Dairy Sci. 2015, 98, 5313–5326. [Google Scholar] [CrossRef]
- Thoma, G.; Popp, J.; Nutter, D.; Shonnard, D.; Ulrich, R.; Matlock, M.; Kim, D.S.; Neiderman, Z.; Kemper, N.; East, C.; et al. Greenhouse gas emissions from milk production and consumption in the United States: A cradle-to-grave life cycle assessment circa 2008. Int. Dairy J. 2013, 31, S3–S14. [Google Scholar] [CrossRef]
- Capper, J.L.; Cady, R.A.; Bauman, D.E. The environmental impact of dairy production: 1944 compared with 2007. J. Anim. Sci. 2009, 87, 2160–2167. [Google Scholar] [CrossRef] [PubMed]
- Capper, J.L.; Cady, R.A. The effects of improved performance in the U.S. dairy cattle industry on environmental impacts between 2007 and 2017. J. Anim. Sci. 2020, 98, 1–14. [Google Scholar] [CrossRef]
- Hospers, J.; Kuling, L.; Modernel, P.; Lesschen, J.P.; Blonk, H.; Batlle-Bayer van Straalen, W.; Dekker, S. The evolution of the carbon footprint of Dutch raw milk production between 1990 and 2019. J. Cleaner Prod. 2022, 380, 134863. [Google Scholar] [CrossRef]
- Jayasundara, S.; Wagner-Riddle, C. Greenhouse gas emissions intensity of Ontario milk production in 2011 compared with 1991. Can. J. Anim. Sci. 2014, 94, 155–173. [Google Scholar] [CrossRef]
- Kristensen, T.; Aaes, O.; Weisbjerg, M.R. Production and environmental impact of dairy cattle production in Denmark 1900–2010. Livestock Sci. 2015, 178, 306–312. [Google Scholar] [CrossRef]
- Mazzetto, A.M.; Falconer, S.; Ledgard, S. Mapping the carbon footprint of milk production from cattle: A systematic review. J. Dairy Sci. 2022, 105, 9713–9725. [Google Scholar] [CrossRef] [PubMed]
- Henriksson, M.; Flysjo, A.; Cederberg, C.; Swensson, C. Variation in carbon footprint of milk due to management differences between Swedish dairy farms. Animal 2011, 5, 1474–1484. [Google Scholar] [CrossRef]
- Veltman, K.; Rotz, C.A.; Chase, L.; Cooper, J.; Ingraham, P.; Izaurralde, R.C.; Jones, C.D.; Gaillard, R.; Larson, R.A.; Ruark, M.; et al. A quantitative assessment of Beneficial Management Practices to reduce carbon footprint and reactive nitrogen footprints and phosphorus losses on dairy farms in the US Great Lakes region. Agric. Systems. 2018, 166, 10–25. [Google Scholar] [CrossRef]
- Chase, L.E.; Reed, K. Science and Industry Work to Improve Nitrogen Management on New York Dairy Farms; Animal Science Pub-lication Series No. 255; Dept. of Animal Science, Cornell University: Ithaca, NY, USA, 2021; Available online: http://hdl.handle.net/1813/103766 (accessed on 4 May 2023).
- Van Laar, H.; (Wageningen Livestock Research, Wageningen, The Netherlands). Personal communication, 2022.
- Van Bruggen, C.; Gosseling, M. Dierlijke Mest en Mineralen 1990–2018. 2019. CBS. Available online: https://www.cbs.nl/-/media/_pdf/2019/49/dierlijkemestenmineralen2018.pdf (accessed on 2 May 2023).
- Sullivan, C.; (Univ. of Queensland, St. Lucia, Australia). Reducing Nitrogen Excretion from Dairy Herds through Dietary Manipulation. Personal communication, 2022. [Google Scholar]
- Chowdhury, M.R.; Wilkinson, R.G.; Sinclair, L.A. Feeding lower-protein diets based on red clover and grass or alfalfa and corn silage does not affect milk production but improves nitrogen use efficiency in dairy cows. J. Dairy Sci. 2023, 106, 1773–1789. [Google Scholar] [CrossRef]
- Hanigan, M.D.; Arriola Apelo, S.I.; Aguilar, M. Feeding low crude protein diets to improve efficiency of nitrogen use. In Proceedings of the Western Dairy Management Conference, Reno, NV, USA, 6–8 March 2013; pp. 224–237. [Google Scholar]
- Hristov, A.N.; Giallongo, F. Feeding protein to dairy cows—What should be our target? In Proceedings of the 23rd Tri-State Dairy Nutrition Conference, Fort Wayne, IN, USA, 14–16 April 2014; pp. 75–84. [Google Scholar]
- Chase, L.E. Feeding low crude protein rations to dairy cows—Opportunities and challenges. In Proceedings of the Cornell Nutrition Conference for Feed Manufacturers, East Syracuse, NY, USA, 18–20 October 2011; Cornell University: Ithaca, NY, USA, 2011. [Google Scholar]
- Sinclair, K.D.; Garnsworthy, P.C.; Mann, G.E.; Sinclair, L.A. Reducing dietary protein in dairy cow diets: Implications for nitrogen utilization, milk production, welfare, and fertility. Animal 2013, 8, 262–274. [Google Scholar] [CrossRef]
- Stojanovic, B.; Grubic, G.; Dordevic, N.; Bozickovic, A.; Davidovic, V. Nitrogen Efficiency in Dairy Cattle. In Proceedings of the International Scientific Agricultural Symposium, Jahorinsa, Bosnia, 3–6 October 2019; pp. 1523–1528. [Google Scholar]
- Chase, L.E. What Do High Producing Herds Really Feed? Proc. Cornell. Nutr. Conf. 2019. Available online: https://hdl.handle.net/21813/69483 (accessed on 15 March 2023).
- Prestegaard-Wilson, J.M.; Daley, V.L.; Drape, T.A.; Hanigan, M.D. A survey of United States dairy cattle nutritionists’ practices and perceptions of reducing crude protein in lactating dairy cow diets. Appl. Anim. Sci. 2021, 37, 697–709. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- NASEM (National Academies of Sciences, Engineering, and Medicine). Nutrient Requirements of Dairy Cattle, 8th ed.; National Academies Press: Washington, DC, USA, 2021; Available online: https://dpi.org/10.17226/25806 (accessed on 2 May 2023).
- Lapierre, H.; Martineau, R.; Hanigan, M.D.; van Lingen, H.J.; Kebreab, E.; Spek, J.W.; Ouellet, D.R. Review: Impact of protein and energy supply on the fate of amino acids from absorption to milk protein in dairy cows. Animal 2020, 14, s87–s102. [Google Scholar] [CrossRef]
- Schwab, C. The principles of balancing diets for amino acids and their impact on N utilization efficiency. In Proceedings of the 23rd Ruminant Nutrition Symposium, Durham, NH, USA, 31 January–1 February 2012. [Google Scholar]
- LaPierre, P.A.; Luchini, D.; Ross, D.A.; Van Amburgh, M.E. Effects of Precision Essential Amino Acid Formulation on a Metabolizable Energy Basis for Lactating Dairy Cows. Proc. Cornell Nutr. Conf. 2019. Available online: https://hdl.handle.net/1813/67048 (accessed on 2 May 2023).
- LaPierre, P.A.; Fredin, S.; Ross, D.A.; Van Amburgh, M. Impact of Starch and Energy on Amino Acid Requirements of Lactating Cows. Proc. Cornell Nutr. Conf. 2020. Available online: https://hdl.handle.net/1813/72897 (accessed on 4 May 2023).
- Higgs, R.J.; Chase, L.E.; Schwab, C.G.; Sloan, B.; Luchini, D.; LaPierre, P.A.; Van Amburgh, M.E. Balancing dairy cattle diets for rumen nitrogen and methionine or all essential amino acids relative to metabolizable energy. J. Dairy Sci. 2023, 109, 1826–1836. [Google Scholar] [CrossRef]
- Higgs, R.J.; Van Amburgh, M.E. Evolution of the CNCPS—Development of V7. Proc. Cornell Nutr. Conf. 2016. Available online: https://hdl.handle.net/1813/44752 (accessed on 4 May 2023).
- Binggeli, S.; Lapierre, H.; Charbonneau, E.; Ouellet, D.R.; Pellerin, D. Economic and environmental effects of revised metabolizable protein and amino acid recommendations on Canadian dairy farms. J. Dairy Sci. 2021, 104, 9981–9998. [Google Scholar] [CrossRef]
- White, R.R.; Capper, J.L. Precision diet formulation to improve performance and profitability across various climates: Modelling the implications of increasing the formulation frequency of dairy cattle diets. J. Dairy Sci. 2014, 97, 1563–1577. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, L.O.; Cavalcanti, L.F.L.; Fonesca, M.A.; Herrero, M.; Thornton, P.K. The evolution and evaluation of dairy cattle models for predicting milk production: An agricultural model comparison and improvement project (AgMIP) for livestock. Anim. Prod. Sci. 2014, 54, 2052–2067. [Google Scholar] [CrossRef]
- Ellis, J.L. The role of mechanistic models in precision dairy nutrition and on-farm decision support. In Proceedings of the Animal Nutrition Conference of Canada (ANCC), Virtual, 10–14 May 2021. [Google Scholar]
- Pacheco, D.; Patton, R.A.; Parys, C.; Lapierre, H. Ability of commercially available dairy ration programs to predict duodenal flows of protein and essential amino acids in dairy cows. J. Dairy Sci. 2012, 95, 937–963. [Google Scholar] [CrossRef]
- da Silva, H.M.; de Oliveira, A.S. A new protein system for dairy cows. J. Dairy Sci. 2023, 106, 1757–1772. [Google Scholar] [CrossRef]
- Lapierre, H.; Larsen, M.; Sauvant, D.; Van Amburgh, M.E.; Van Duinkerken, G. Review: Converting nutritional knowledge into feeding practices: A case study comparing different protein feeding systems for dairy cows. Animal 2018, 12, s457–s466. [Google Scholar] [CrossRef]
- INRA. The INRA Feeding System for Ruminants; Waganingen Academic Publishers: Waganingern, The Netherlands, 2018. [Google Scholar]
- Thomas, C. Feed into Milk: A New Applied Feeding System for Dairy Cows; Nottingham University Press: Nottingham, UK, 2004. [Google Scholar]
- Volden, H. NorFor. The Nordic Feed Evaluation System; Wageningen Academic Publishers: Wageningen, The Netherlands, 2011. [Google Scholar]
- Van Duinkerken, G.; Blok, M.C.; Bannink, A.; Cone, J.W.; Dijkstra, J.; Van Vuuren, A.M.; Tamminga, S. Update of the Dutch protein evaluation system for ruminants: The DVE/OEB2019 system. J. Agric. Sci. 2011, 149, 351–367. [Google Scholar] [CrossRef]
- Bellingeri, A.; Gallo, A.; Liang, D.; Masoero, F.; Cabrera, V. Development of a linear programming model for the optimal allocation of nutritional resources in a dairy herd. J. Dairy Sci. 2020, 103, 10898–10916. [Google Scholar] [CrossRef]
- McGilliard, M.L.; Swisher, J.M.; James, R.E. Grouping lactating cows by nutritional requirements for feeding. J. Dairy Sci. 1983, 66, 1084–1093. [Google Scholar] [CrossRef]
- Cabrera, V.E.; Kalantari, A.S. Economics of production efficiency: Nutritional grouping of the lactating cow. J. Dairy Sci. 2015, 99, 825–841. [Google Scholar] [CrossRef]
- Wu, Y.; Liang, D.; Shaver, R.D.; Cabrera, V.E. An income over feed cost nutritional grouping strategy. J. Dairy Sci. 2019, 102, 4682–4693. [Google Scholar] [CrossRef]
- Barriento-Blanco, J.A.; White, H.; Shaver, R.D.; Cabrera, V.E. Graduate Student Literature Review: Considerations for nutritional grouping in dairy farms. J. Dairy Sci. 2022, 105, 2708–2717. [Google Scholar] [CrossRef]
- Weiss, B. Incorporating diet and pen variation into ration formulation. In Proceedings of the Penn State Dairy Cattle Workshop, Harrisburg, PA, USA, 31 October–1 November 2018. [Google Scholar]
- Barrientos-Blanco, J.A.; White, H.; Shaver, R.D.; Cabrera, V.E. Improving nutritional accuracy and economics through a multiple ration-grouping strategy. J. Dairy Sci. 2020, 103, 3774–3785. [Google Scholar] [CrossRef]
- Letelier, P.; Zanton, G.I.; Wattiaux, M.A. Production performance of Holstein cows at 4 stages of lactation fed 4 dietary crude protein concentrations. J. Dairy Sci. 2022, 105, 9581–9598. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Cabrera, V.E. Optimizing productivity, herd structure, environmental performance, and profitability in dairy cattle herds. J. Dairy Sci. 2015, 98, 2812–2823. [Google Scholar] [CrossRef]
- Sather, K.M. Managing the profit centers within a precision feeding system. In Proceedings of the North American Precision Feeding Conference, Rochester, NY, USA, 24–25 June 2015. [Google Scholar]
- Cox, B.G. Experience with feed management software. In Proceedings of the Virginia Tech Feed and Nutritional Management, Cow College, Blacksburg, VA, USA, 16 February 2007. [Google Scholar]
- NAHMS. 2016. Dairy Cattle Management Practices in the United States. 2014. Available online: http://www.aphis.usda.gov/nahms (accessed on 15 March 2023).
- Cherney, J.H.; Digman, M.F.; Cherney, D.J. Handheld NIRS for forage evaluation. Comput. Electron. Agric. 2021, 190, 106469. [Google Scholar] [CrossRef]
- Donnelly, D.M.; Dorea, J.R.R.; Yang, H.; Combs, D.K. Technical note: Comparison of dry matter measurements from a handheld near-infrared units with oven drying at 60 °C for 48 hours and other on-farm methods. J. Dairy Sci. 2018, 101, 9871–9977. [Google Scholar] [CrossRef] [PubMed]
- Evangelista, C.; Basirico, L.; Bernabucci, U. An overview on the use of near infrared spectroscopy (NIRS) on farms for management of dairy cows. Agriculture 2021, 11, 296. [Google Scholar] [CrossRef]
- Litherland, N.; Lobao, D.; Allen, D.; Ghiraldi, A.; Barbi, A. Controlling Variation with Precision Feeding Applications. Available online: https://www.dinamicagenerale.com/public/file/dgMinnesotacasestudydraft-5161.pdf (accessed on 2 May 2023).
- Piccioli-Cappelli, F.; Calegari, F.; Calamari, L.; Bani, P.; Minuti, A. Application of a NIR device for precision feeding in dairy farms: Effect on metabolic conditions and milk production. Ital. J. Anim. Sci. 2019, 18, 754–765. [Google Scholar] [CrossRef]
- Naranjo, A.; Johnson, A.; Rossow, H.; Kebreab, E. Greenhouse gas, water, and land footprint per unit of production of the California dairy industry over 50 years. J. Dairy Sci. 2020, 1–3, 3760–3773. [Google Scholar] [CrossRef]
- De Vries, A.; Bliznyuk, N.; Pinedo, P. Invited review: Examples and opportunities for artificial intelligence (AI) in dairy farms. Appl. Anim. Sci. 2023, 39, 14–22. [Google Scholar] [CrossRef]
- Saxena, P.; Parasher, Y. Application of artificial neural network (ANN) for animal diet formulation modeling. Procedia Comput. Sci. 2019, 152, 261–266. [Google Scholar] [CrossRef]
- Tedeschi, L.O. ASN-ASAS Symposium: Fiture of Data Analytics in Nutrition: Mathematical modeling in ruminant nutrition: Approaches and paradigms, extant models, and thoughts for optimizing predictive analytics. J. Anim. Sci. 2019, 97, 1921–1944. [Google Scholar] [CrossRef]
- Wolfe, D.W.; Ziska, L.; Petzoldt Seamsan, A.; Chase, L.; Hayhoe, K. Projected change in climate thresholds in the Northeastern U.S.: Implications for crops, pests, livestock, and farmers. Mitig. Adapt. Strat. Glob. Chang. 2008, 13, 555–575. [Google Scholar] [CrossRef]
- Veltman, K.; Rotz, C.A.; Chase, L.; Cooper, J.; Forest, C.E.; Ingraham, P.A.; Izaurralde, R.C.; Jones, C.D.; Nicholas, R.E.; Ruark, M.D.; et al. Assessing and reducing the environmental impact of dairy production systems in the northern US in a changing climate. Agric. Systems. 2021, 192, 103170. [Google Scholar] [CrossRef]
- Van Amburgh, M.; Ortega, A.; LaPierre. Modeling and integrating metabolizable energy and protein supply and requirements in lactating dairy cattle to optimize nitrogen utilization. In Proceedings of the Florida Ruminant Nutrition Symposium, Gainsville, FL, USA, 20–22 February 2023. [Google Scholar]
- Gislon, G.; Bava, L.; Colombini, S.; Zucali, M.; Crovetto, G.M.; Sandrucci, A. Looking for high-production and sustainable diets for lactating cows: A survey in Italy. J. Dairy Sci. 2020, 103, 4863–4873. [Google Scholar] [CrossRef]
- Gargiulo, J.I.; Eastwood, C.R.; Garcia, S.C.; Lyons, N.A. Dairy farmers with larger herd sizes adopt more precision dairy technologies. J. Dairy Sci. 2018, 101, 5466–5473. [Google Scholar] [CrossRef]
- Tedeschi, L.O. ASAS-NANP Symposium: Mathematical Modeling in Animal Nutrition: The progression of data analytics and artificial intelligence in support of sustainable development in animal science. J. Anim. Sci. 2022, 100, 1–11. [Google Scholar] [CrossRef] [PubMed]
- von Keyserlingk, M.A.G.; Martin, N.P.; Kebreab, E.; Knowlton, K.F.; Grant, R.J.; Stephenson, M.; Stiffen, C.J.; Harner, J.P.; Wright, A.D.; Smith, S.I. Invited review: Sustainability of the US dairy industry. J. Dairy Sci. 2013, 96, 5405–5425. [Google Scholar] [CrossRef] [PubMed]
- Martin, N.P.; Russelle, M.P.; Powell, J.M.; Sniffen, C.J.; Smith, S.I.; Tricarico, J.M.; Grant, R.J. Invited review: Sustainable forage and grain crop production for the US dairy industry. J. Dairy Sci. 2017, 100, 9479–9494. [Google Scholar] [CrossRef]
- Peterson, C.B.; Mitloehner, F.M. Sustainability of the dairy industry: Emissions and mitigation opportunities. Front. Anim. Sci. 2021, 2, 760310. [Google Scholar] [CrossRef]
- Knapp, J.R. Dairy Sustainability—Using the real facts. In Proceedings of the 24th Tri-State Dairy Nutrition Conference, Fort Wayne, IN, USA, 20–22 April 2015. [Google Scholar]
- Chase, L.E. Dairy Industry Sustainability—Has Progress Been Made? Proc. Cornell Nutr. Conf. 2021. Available online: https://hdl.handle.net/1813/110225 (accessed on 2 May 2023).
- Feil, A.A.; Schreiber, D.; Haetinger, C.; Haberkamp, A.M.; Kist, J.I.; Rempel, C.; Maehler, A.E.; Gomes, M.C.; da Silva, G.R. Sustainability in the dairy industry: A systematic literature review. Environ. Sci. Pollut. Res. 2020, 27, 33527–33542. [Google Scholar] [CrossRef] [PubMed]
- Thoma, G. Feed formulation for sustainable agriculture. In Proceedings of the Animal Nutrition Conference of Canada, Montreal, QC, Canada, 10–12 May 2022. [Google Scholar]
- Kim, D.; Stoddart, N.; Rotz, C.A.; Veltman, K.; Chase, L.; Cooper, J.; Igraham, P.; Izaurralde, R.C.; Jones, C.D.; Gaillad, R.; et al. Analysis of beneficial management practices to mitigate environmental impacts of dairy production systems around the Great Lakes. Agric. Syst. 2019, 176, 102660. [Google Scholar] [CrossRef]
Item | Trial 1 | Trial 2 | Trial 3 | |||
---|---|---|---|---|---|---|
Control | AA Balanced | Control | AA Balanced | Control | AA Balanced | |
Diet CP, % | 17.9 | 17.2 | 17.8 | 15.5 | 16.7 | 15.5 |
MP Intake, g/cow/d | 2641 | 2822 | 2740 | 2796 | 2130 | 1998 |
Methionine, % of MP | 1.95 | 2.34 | 1.91 | 2.19 | 1.83 | 2.20 |
Lysine, % of MP | 6.41 | 7.23 | 6.32 | 6.67 | 6.64 | 6.88 |
Milk Yield, kg/cow/d | 43 | 44.9 | 44.3 | 43.7 | 31.3 | 31.3 |
NUE, % | 34 | 35.9 | 33.3 | 35.6 | 32.2 | 34.9 |
Manure N, g/cow/d | 459 | 437 | 476 | 408 | 362 | 322 |
IOFC (2014), $/cow/d | 15.16 | 15.24 | 14.99 | 13.98 | 11.09 | 11.27 |
Item | Herd A | Herd B | ||
---|---|---|---|---|
Initial Diet | Final Diet | Initial Diet | Final Diet | |
Diet CP, % | 17.6 | 16.6 | 17.7 | 16.9 |
MP Intake, g/cow/d | 2950 | 2769 | 2546 | 3090 |
Forage, % of Diet DM | 54 | 57 | 60 | 48 |
Milk Yield, kg/cow/d | 35.9 | 36.3 | 37.5 | 36.4 |
Feed Cost, $/cow/d | 4.07 | 3.35 | 4.37 | 4.12 |
Income Over Feed Cost, $/cow/d | 5.32 | 6.31 | 4.79 | 4.98 |
Income Over Purchased Feed Cost, $/cow/d | 6.11 | 7.38 | 5.68 | 5.95 |
Manure N, g/cow/d | 500 | 441 | 469 | 441 |
Milk Urea Nitrogen, mg/dL | 15.3 | 12.3 | 13.5 | 12 |
NUE, % | 28 | 31 | 28 | 30 |
Item | Base Year | Year 5 | Change |
---|---|---|---|
Crop, ha | 435 | 435 | |
Total Animals | 852 | 1077 | +26.4 |
Milk Cows | 408 | 54 | +33.3 |
Milk, kg/cow/d | 30.9 | 33.5 | +8.74 |
Herd Total Milk, kg/day | 12,596 | 18,278 | +45 |
Forage, % of Diet DM | 43 | 59 | +37 |
Total Feed Cost, $/herd/d | 2200 | 2467 | +12.1 |
Purchased Feed Cost, $/herd/d | 1813 | 1375 | −24.3 |
Manure N, kg/herd/year | 140,306 | 116,382 | −17 |
Manure P, kg/herd/year | 19,720 | 14,161 | −28 |
Manure N, kg/ha | 322 | 268 | −17 |
Manure P, kg/ha | 43 | 31 | −28 |
Herd | Milk, kg/cow/d | Diet CP, % | Manure N, g/cow/d | |||
---|---|---|---|---|---|---|
Initial | Final | Initial | Final | Initial | Final | |
A | 24.0 | 22.7 | 16.0 | 14.9 | 358 | 282 |
B | 29.5 | 29.5 | 16.3 | 14.9 | 319 | 282 |
C | 24.0 | 29.5 | 20.5 | 16.0 | 510 | 362 |
D | 34.0 | 34.0 | 17.1 | 16.0 | 385 | 344 |
E | 30.9 | 33.6 | 19.0 | 16.2 | 465 | 370 |
F | 39. | 39.0 | 17.4 | 16.5 | 456 | 423 |
G | 29.5 | 34 | 16.9 | 16.2 | 422 | 400 |
Item | 2011 | 2019a | 2019b [136] |
---|---|---|---|
Herds | 14 | 26 | 79 |
Milk Yield, kg/cow/d | 39.6 (32.7–52.6) | 46.6 (39–57) | 50.2 (44.4–58) |
Milk Fat, % | 3.66 (3.2–4) | 3.73 (3.2–3.95) | 3.71 (3.2–4.2) |
Milk True Protein, % | 3.08 (2.9–3.2) | 3.06 (2.8–3.2) | 3.06 (2.9–3.2) |
CP, % | 15.6 (14.3–16.3) | 15.7 (13.4–16.7) | 16.7 (13.9–18.2) |
MP, g/cow/d | 2665 (2306–3306) | 3080 (2587–3592) | 3191 (2885–3647) |
Lysine, % of MP | 6.35 (5.8–6.7) | 6.66 (6.2–7) | 6.62 (5.8–7.1) |
Methionine, % of MP | 2.04 (1.8–2.7) | 2.35 (2.1−2.8) | 2.36 (1.9–2.8) |
MUN, mg/dL | 9.4 (0–14) | ||
MNE, % | 34 (28–38) | 32.8 (28–38) | 32.6 (28.9–41.7) |
Fecal Excretion kg/cow/d | 43.5 |
Urine Excretion, kg/cow/d | 20.9 |
Fecal N, g/cow/d | 242 |
Urine N, g/cow/d | 183 |
Total Manure N, g/cow/d | 420 |
Productive N/Total N, % | 35 |
Productive N/Urinary N | 1.26:1 |
Manure N/Total N, % | 65 |
Fecal P, g/cow/d | 53 |
Urine P, g/cow/d | 1 |
Total Manure P, g/cow/d | 54 |
Productive P/Total P, % | 41 |
Manure P/Total P, % | 59 |
CH4, g/kg Milk Yield | 10.1 |
CO2, g/kg Milk Yield | 323 |
NH3 Potential c, g | 116 |
Feed | Target Amount, kg. | Amount Added, kg. | Deviation, % |
---|---|---|---|
Corn Silage | 3130 | 3144 | 0.45 |
Alfalfa Silage | 1283 | 1297 | 1.1 |
Corn Grain | 402 | 398 | −1.0 |
Distiller’s Grain | 187 | 189 | 1.06 |
Protein Mix | 470 | 471 | 0.2 |
Total | 5472 | 5499 | 0.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chase, L.E.; Fortina, R. Environmental and Economic Responses to Precision Feed Management in Dairy Cattle Diets. Agriculture 2023, 13, 1032. https://doi.org/10.3390/agriculture13051032
Chase LE, Fortina R. Environmental and Economic Responses to Precision Feed Management in Dairy Cattle Diets. Agriculture. 2023; 13(5):1032. https://doi.org/10.3390/agriculture13051032
Chicago/Turabian StyleChase, Larry E., and Riccardo Fortina. 2023. "Environmental and Economic Responses to Precision Feed Management in Dairy Cattle Diets" Agriculture 13, no. 5: 1032. https://doi.org/10.3390/agriculture13051032
APA StyleChase, L. E., & Fortina, R. (2023). Environmental and Economic Responses to Precision Feed Management in Dairy Cattle Diets. Agriculture, 13(5), 1032. https://doi.org/10.3390/agriculture13051032