Ensiling, In Vitro Rumen Digestion and Soaking in Slurry Altered the Germination Capacity of Rumex obtusifolius Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Sampling and Preparation
- Experiment I: Seed ensiling (8 weeks) followed by in vitro rumen digestion (0, 24, 36 and 48 h).
- Experiment II: Soaking of non-ensiled and silage seeds in cattle or pig slurry (0, 2, 4 and 24 weeks).
- Experiment III: In vitro rumen digestion (0, 24, 36 and 48 h) of non-ensiled and ensiled seeds followed by soaking in cattle or pig slurry (24 weeks).
2.2. Grass Silage Preparation
2.3. Rumen Juice Sampling, Determination and Preparation
2.4. Cattle and Pig Slurry Treatments
2.5. Seed Germination Test
2.6. Statistical Methods
3. Results
3.1. Experiment I: Seed Viability after Ensiling and In Vitro Digestion in Rumen Juice
3.2. Experiment II: Seed Viability after Ensiling and Soaking in Pig or Cattle Slurry
3.3. Experiment III: In Vitro Rumen Digestion Followed by Soaking in Cattle or Pig Slurry
4. Discussion
4.1. Experiment I: Seed Viability after Ensiling and In Vitro Digestion in Rumen Juice
4.2. Experiment II: Seed Viability after Ensiling and Soaking in Pig or Cattle Slurry
4.3. Experiment III: In Vitro Rumen Digestion Followed by Soaking in Cattle or Pig Slurry
5. Conclusions
- -
- Experiment I: Ensiled seeds did not germinate at all. Seeds that are not ensiled have a high germination capacity.
- -
- Experiment II: In vitro rumen digestion affects the germination energy of non-ensiled seeds but not the overall percentage of germination.
- -
- Experiment III: Soaking in pig and cattle slurry does not promote germination and reduces the percentage and energy.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hultén, E. Atlas of the Distribution of the Vascular Plants of Nortwest Europe; Generalstabens Litografiska Anstalts Förlag: Stockholm, Sweden, 1950; pp. 1–512. [Google Scholar]
- Zaller, J.G. Ecology and non-chemical control of Rumex crispus and Rumex obtusifolius (Polygonaceae): A review. Weed Res. 2004, 44, 414–432. [Google Scholar] [CrossRef]
- Alshallash, K.S. Emergence and root fragments regeneration of Rumex species. Ann. Agric. Sci.-Cairo 2018, 63, 129–134. [Google Scholar] [CrossRef]
- DEFRA. Department of Environment, Food and Rural Affairs. Available online: https://www.legislation.gov.uk/ukpga/Eliz2/7-8/54/enacted (accessed on 16 March 2023).
- USDA-NRCS. Plants Database [Electronic Resource]/USDA, Natural Resources Conservation Service. Available online: https://plants.usda.gov/home (accessed on 16 March 2023).
- Foster, L. The Biology and Non-Chemical Control of Dock SpeciesRumex obtusifoliusandR. crispus. Biol. Agric. Hortic. 1989, 6, 11–25. [Google Scholar] [CrossRef]
- van Evert, F.K.; Samsom, J.; Polder, G.; Vijn, M.; Dooren, H.-J.V.; Lamaker, A.; van der Heijden, G.W.A.M.; Kempenaar, C.; van der Zalm, T.; Lotz, L.A.P. A robot to detect and control broad-leaved dock (Rumex obtusifolius L.) in grassland. J. Field Robot. 2011, 28, 264–277. [Google Scholar] [CrossRef]
- Grossrieder, M.; Keary, I.P. The potential for the biological control of Rumex obtusifolius and Rumex crispus using insects in organic farming, with particular reference to Switzerland. Biocontrol News Inf. 2004, 25, 65–79. [Google Scholar]
- Courtney, A.D. The role and importance of docks in grassland. Agric. North. Irel. 1985, 59, 388–392. [Google Scholar]
- Hejduk, S.; Dolezal, P. Nutritive value of broad-leaved dock (Rumex obtusifolius L.) and its effect on the quality of grass silages. Czech J. Anim. Sci. 2004, 49, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Waghorn, G.C.; Jones, W.T. Bloat in Cattle.46. Potential of Dock (Rumex obtusifolius) as an Antibloat Agent for Cattle. N. Z. J. Agric. Res. 1989, 32, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Molan, A.L.; Attwood, G.T.; McNabb, W.C. The impact of condensed tannins from dock (Rumex obtusifolius) on the growth of rumen proteolytic bacteria in vitro. J. Anim. Feed Sci. 2007, 16, 118–123. [Google Scholar] [CrossRef]
- Marshall, E.J.P. Field margins in northern Europe: Integrating agricultural, environmental and biodiversity functions. Top. Can. Weed Sci. 2005, 1, 39–67. [Google Scholar]
- Hald, A.B.; Nielsen, A.L. Field margin management for nature within rotational grass fields at organic dairy farms. Asp. Appl. Biol. 2007, 81, 267–276. [Google Scholar]
- Pötsch, E.M.; Krautzer, B. The influence of ruminal digestion and farm manure on the germination development of seeds of broad-leaved dock (Rumex obtusifolius L.). In Proceedings of the Grassland Science in Europe, EGF-Symposium 2002, La Rochelle, France, 25–30 May 2002; pp. 386–387. [Google Scholar]
- De Notaris, C.; Sørensen, P.; Møller, H.B.; Wahid, R.; Eriksen, J. Nitrogen fertilizer replacement value of digestates from three green manures. Nutr. Cycl. Agroecosyst. 2018, 112, 355–368. [Google Scholar] [CrossRef] [Green Version]
- Zaller, J.G. Seed germination of the weed Rumex obtusifolius after on-farm conventional, biodynamic and vermicomposting of cattle manure. Ann. Appl. Biol. 2007, 151, 245–249. [Google Scholar] [CrossRef]
- Toleikiene, M.; Arlauskiene, A.; Sarunaite, L.; Sidlauskaite, G.; Kadziuliene, Z. The effect of plant-based organic fertilisers on the yield and nitrogen utilization of spring cereals in the organic cropping system. Zemdirbyste 2020, 107, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Gardener, C.J.; McIvor, J.G.; Jansen, A. Passage of Legume and Grass Seeds Through the Digestive Tract of Cattle and Their Survival in Faeces. J. Appl. Ecol. 1993, 30, 63–74. [Google Scholar] [CrossRef]
- Masuda, Y.; Nishimura, T.; Kobayashi, T.; Yamano, D.; Nakano, Y.; Goto, I. Germination ability of Rumex obtusifolius L. in silages. Sci. Bull. Fac. Agric. Kyushu Univ. 1984, 38, 181–185. [Google Scholar]
- Iwasaki, M.; Lateef, S.A.; Andriamanohiarisoamanana, F.J.; Yamashiro, T.; Umetsu, K. Effects of Methane Fermentation on Seed Survival of Broad-Leaved Dock (Rumex obtusifolius L.) with Dairy Manure. J. Agric. Sci. Technol. 2013, 3, 561–567. [Google Scholar]
- Humphreys, J.; Culleton, N.; Jansen, T.; ORiordan, E.G.; Storey, T. Aspects of the role of cattle slurry in dispersal and seedling establishment of Rumex obtusifolius seed in grassland. Ir. J. Agric. Food Res. 1997, 36, 39–49. [Google Scholar]
- Kimura, Y.; Umetsu, K.; Takahata, H. Effects of methane fermentation on seed survival of Broadleaf dock. J. Jpn. Soc. Grassl. Sci. 1994, 40, 165–170. [Google Scholar]
- ISTA. International Rules for Seed Testing 2023. In Chapter 2: Sampling; The International Seed Testing Association (ISTA): Wallisellen, Switzerland, 2023; Volume 2023, pp. 52 i–2-44. [Google Scholar]
- LfL. Gruber Tabelle zur Fütterung in der Rindermast. In 25. Unveränderte Auflage/Stand September 2020; Bayerische Landesanstalt für Landwirtschaft (LfL), Ed.; Bayerische Landesanstalt für Landwirtschaft (LfL): Weihenstephan, Germany, 2020. [Google Scholar]
- Fortina, R.; Glorio Patrucco, S.; Barbera, S.; Tassone, S. Rumen Fluid from Slaughtered Animals: A Standardized Procedure for Sampling, Storage and Use in Digestibility Trials. Methods Protoc. 2022, 5, 59. [Google Scholar] [CrossRef]
- Kader, M.A. A Comparison of Seed Germination Calculation Formulae and the Associated Interpretation of Resulting Data. J. Proc. R. Soc. N. S. W. 2005, 138, 65–75. [Google Scholar] [CrossRef]
- Ranal, M.A.; De Santana, D.G. How and why to measure the germination process? Rev. Bras. Bot. 2006, 29, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Li, X.P.; Li, X.G.; Dong, Q.M.; Liu, Z.H. Effects of animal’s rumen juice on seed germination of Vicia angustifolia with different seed size. Afr. J. Biotechnol. 2011, 10, 9297–9302. [Google Scholar] [CrossRef]
- Chen, A.; Huang, H.Z.; Zhang, Z.N.; Wu, G.L.; Liu, Z.H. Livestock grazing ingestion suppressed the dominant species population (Stipa aliena) germination: A laboratory experiment. Nord. J. Bot. 2012, 30, 635–639. [Google Scholar] [CrossRef]
- Li, X.P.; Li, X.G.; Wu, G.L.; Wei, X.H.; Sun, L. Yak and Tibet sheep grazing ingestion restrain seed germination of two Saussurea species in Tibetan meadow. Afr. J. Biotechnol. 2010, 9, 6670–6674. [Google Scholar]
- Blackshaw, R.E.; Rode, L.M. Effect of Ensiling and Rumen Digestion by Cattle on Weed Seed Viability. Weed Sci. 1991, 39, 104–108. [Google Scholar] [CrossRef]
- Hahn, J.; de Mol, F.; Müller, J. Ensiling Reduces Seed Viability: Implications for Weed Management. Front. Agron. 2021, 3, 708851. [Google Scholar] [CrossRef]
- Žnidaršič, T.; Verbič, J.; Babnik, D. Prediction of Chemical Composition And Energy Value of Grass Silage By Near-Infrared Reflectance Spectroscopy. J. Cent. Eur. Agric. 2006, 7, 127–134. [Google Scholar]
- Oswald, E.L. The Effect of Animal Digestion and Fermentation of Manure on the Vitality of Seeds; Maryland Agricultural Experiment Station: Beltsville, MD, USA, 1908; p. 26. [Google Scholar]
- Cudney, D.W.; Wright, S.D.; Shultz, T.A.; Reints, J.S. Weed seed in dairy manure depends on collection site. Calif. Agric. 1992, 46, 31–32. [Google Scholar] [CrossRef]
- Radchuk, V.; Borisjuk, L. Physical, metabolic and developmental functions of the seed coat. Front. Plant. Sci. 2014, 5, 510. [Google Scholar] [CrossRef] [Green Version]
- Brock, F.M.; Forsberg, C.W.; Buchanan-Smith, J.G. Proteolytic Activity of Rumen Microorganisms and Effects of Proteinase Inhibitors. Appl. Environ. Microbiol. 1982, 44, 561–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo-Gonzáleza, A.R.; Burrola-Barrazab, M.E.; Domínguez-Viverosb, J.; Chávez-Martínezb, A. Rumen microorganisms and fermentation. Arch. Med. Vet. 2014, 46, 349–361. [Google Scholar] [CrossRef] [Green Version]
- Hua, D.; Hendriks, W.H.; Xiong, B.; Pellikaan, W.F. Starch and Cellulose Degradation in the Rumen and Applications of Metagenomics on Ruminal Microorganisms. Animals 2022, 12, 3020. [Google Scholar] [CrossRef]
- Pötsch, E.M. Der Ampfer–Verbreitung, Physiologie und Möglichkeiten der Regulierung im Grünland; Abteilung Grünlandmanagement und Kulturlandschaft der HBLFA Raumberg-Gumpenstein: Irdning, Austria, 2006; p. 9. [Google Scholar]
- Harmon, G.; Keim, F. The percentage and viability of weed seeds recovered in the feces of farm animals and their longevity when buried in manure. Agron. J. 1934, 26, 762–767. [Google Scholar] [CrossRef] [Green Version]
- Atkeson, F.W.; Hulbert, H.W.; Warren, T.R. Effect of bovine digestion and of manure storage on viability of weed seeds. J. Am. Soc. Agron. 1934, 26, 390–397. [Google Scholar] [CrossRef] [Green Version]
- Olson, B.E.; Wallander, R.T. Does ruminal retention time affect leafy spurge seed of varying maturity? J. Range Manag. 2002, 55, 65–69. [Google Scholar] [CrossRef]
- Jeyanayagam, S.S.; Collins, E.R. Weed Seed Survival in a Dairy Manure Anaerobic Digester. Trans. Asae 1984, 27, 1518–1523. [Google Scholar] [CrossRef]
- Katovich, E.J.S.; Becker, R.L. Weed Seed Survival in Anaerobic Digesters; Final Report; USDA NRCS EQIP Edu. Assis. Grant Prog.: Washington, DC, USA, 2004; 7p.
- Šarapatka, B.; Holub, M.; Lhotska, M. The effect of farmyard manure anaerobic treatment on weed seed viability. Biol. Agric. Hortic. 1993, 10, 1–8. [Google Scholar] [CrossRef]
Indicators | Calculation Formulae |
---|---|
Germination rate (%) | (Number of germinated seeds ÷ Total number of seeds) × 100 |
Germination energy (%) | (Number of germinated seeds 4d * ÷ Total number of seeds) × 100 |
Seed Treatment | In Vitro Digestion in Rumen Juice (h) ns | Average Seed Treatment *** | |||
---|---|---|---|---|---|
0 | 24 | 36 | 48 | ||
Non-ensiled seeds | 61.7 ± 14 b | 85.0 ± 1.7 a | 82.5 ± 2.8 a | 81.7 ± 2.9 a | 77.7 ± 4.1 A |
Ensiled seeds | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 B |
Average in vitro digestion ns | 30.8 ± 13.3 | 42.5 ± 16.1 | 41.3 ± 15.6 | 40.8 ± 15.5 |
Seed Treatment | In Vitro Digestion in Rumen Juice (h) | Average Seed Treatment *** | |||
---|---|---|---|---|---|
0 | 24 | 36 | 48 | ||
Non-ensiled seeds | 1.8 ± 1.0 d | 29.2 ± 0.8 b | 39.2 ± 4.2 a | 20.8 ± 5.2 c | 22.7 ± 3.9 A |
Ensiled seeds | - | - | - | - | - |
Average in vitro digestion *** | 0.8 ± 0.5 C | 14.6 ± 5.5 AB | 19.9 ± 7.6 A | 10.4 ± 4.6 B |
Slurry | Soaking Time (Weeks) | Average Slurry ns | |||
---|---|---|---|---|---|
0 | 2 | 4 | 24 | ||
Pig | 61.7 ± 14.1 a | 62.5 ± 12.9 a | 25.8 ± 8.8 b | 0.0 c | 37.5 ± 7.7 |
Cattle | 61.7 ± 14.1 a | 49.2 ± 9.9 b | 65.8 ± 32.7 a | 0.0 c | 44.2 ± 8.4 |
Average soaking time *** | 61.7 ± 9.2 A | 55.8 ± 4.5 A | 45.8 ± 10.9 A | 0.0 B | Interaction Tukey’s limit ± 18.09 |
Slurry | Soaking Time (Weeks) | Average Slurry ns | |||
---|---|---|---|---|---|
0 | 2 | 4 | 24 | ||
Pig | 1.8 ± 1.0 b | 55.8 ± 3.7 a | 0.0 ± 8.8 b | 0.0 b | 14.4 ± 6.2 |
Cattle | 1.8 ± 1.0 b | 49.2 ± 4.9 a | 5.0 ± 5.0 b | 0.0 b | 13.9 ± 5.5 |
Average soaking time *** | 1.8 ± 0.6 A | 52.5 ± 3.1 A | 2.5 ± 2.5 A | 0.0 B | Interaction Tukey’s limit ± 8.51 |
Slurry | In Vitro Digestion in Rumen Juice (h) | Average Slurry *** | |||
---|---|---|---|---|---|
0 | 24 | 36 | 48 | ||
Pig | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 B |
Cattle | 0.0 c | 65.8 ± 5.0 a | 39.2 ± 7.4 b | 30.0 ± 8.2 b | 33.8 ± 6.2 A |
Average in vitro digestion *** | 0.0 D | 32.9 ± 12.5 A | 19.6 ± 7.6 B | 15.0 ± 5.9 C |
Slurry | In Vitro Digestion in Rumen Juice (h) | Average Slurry *** | |||
---|---|---|---|---|---|
0 | 24 | 36 | 48 | ||
Pig | - | - | - | - | - |
Cattle | - | 24.2 ± 7.1 a | 12.5 ± 2.8 ab | 5.8 ± 3.7 b | 10.6 ± 2.3 |
Average in vitro digestion *** | - | 12.1 ± 5.6 A | 6.3 ± 2.7 BC | 2.9 ± 2.0 C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gselman, A.; Brus, M. Ensiling, In Vitro Rumen Digestion and Soaking in Slurry Altered the Germination Capacity of Rumex obtusifolius Seeds. Agriculture 2023, 13, 1347. https://doi.org/10.3390/agriculture13071347
Gselman A, Brus M. Ensiling, In Vitro Rumen Digestion and Soaking in Slurry Altered the Germination Capacity of Rumex obtusifolius Seeds. Agriculture. 2023; 13(7):1347. https://doi.org/10.3390/agriculture13071347
Chicago/Turabian StyleGselman, Anastazija, and Maksimiljan Brus. 2023. "Ensiling, In Vitro Rumen Digestion and Soaking in Slurry Altered the Germination Capacity of Rumex obtusifolius Seeds" Agriculture 13, no. 7: 1347. https://doi.org/10.3390/agriculture13071347
APA StyleGselman, A., & Brus, M. (2023). Ensiling, In Vitro Rumen Digestion and Soaking in Slurry Altered the Germination Capacity of Rumex obtusifolius Seeds. Agriculture, 13(7), 1347. https://doi.org/10.3390/agriculture13071347