Effect of Pulsed Electric Field Treatment on Seed Germination and Seedling Growth of Scutellaria baicalensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Seed Treatment and Cultivation
2.3. Experimental Design
2.4. Statistics of Seed Germination Indices
2.5. Determination of Seed Conductivity
2.6. Determination of Physiological Indices of Seedlings
2.7. Statistical Analysis
3. Results
3.1. Study on the Effect of Different Pulse Intensities on Seeds
3.2. Study on the Effect of Different Pulse Widths on Seeds
3.3. Study on the Effect of Different Pulse Numbers on Seeds
3.4. Using the Response Surface Method to Optimize the Parameters of PEF Treatment
3.5. Using the Response Surface Method to Optimize the Parameters of PEF Treatment
3.6. Effects of PEF Treatment on Seed Germination
3.7. Determination of Electrical Conductivity of Scutellaria baicalensis Seeds
3.8. PEF Treatments Affect the Activities of SOD and POD in Seedlings
3.9. PEF Treatments Affect the Contents of Soluble Sugars and Soluble Proteins in Seedlings
3.10. PEF Treatments Affect the Activities of α-Amylase in Seedlings
3.11. Effects of Different PEF Treatments on the Content of Proline in Seedlings
4. Discussion
4.1. Suitable PEF Treatment Can Promote Seed Germination of Scutellaria baicalensis
4.2. PEF Treatment Can Accelerate Cellular Metabolism in Scutellaria baicalensis Seeds
4.3. PEF Treatment Improved the Functional Stability of Seedling Cells after Germination
4.4. PEF Treatment Is Beneficial to the Metabolic Repair of Scutellaria scutellaria Seeds during Imbibition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, J.Y.; Yu, Y.L.; Shi, R.Y.; Xie, G.Y.; Zhu, Y.; Wu, G.; Qin, M.J. Organ-Specific Metabolic Shifts of Flavonoids in Scutellaria baicalensis at Different Growth and Development Stages. Molecules 2018, 23, 428. [Google Scholar] [CrossRef] [PubMed]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; Chinese Medical Science and Technology Press: Beijing, China, 2015; Volume 1, pp. 301–302. [Google Scholar]
- Wang, Y.P.; Yuan, C.S.; Qian, J.X.; Wang, Y.H.; Liu, Y.M.; Liu, Y.X.; Nan, T.G.; Kang, L.P.; Zhan, Z.L.; Guo, L.P.; et al. Reviews and Recommendations in Comparative Studies on Quality of Wild and Cultivated Chinese Crude Drugs. Chin. J. Exp. Formulas Chin. Med. 2023, 1–28. [Google Scholar] [CrossRef]
- Wang, L.Z.; Liu, Y. Advance in germplasm resources and cultural techniques of Scutellaria baicalensis Georgi. J. Beijing For. Univ. 2007, 2, 138–146. [Google Scholar]
- Attri, P.; Okumura, T.; Koga, K.; Shiratani, M.; Wang, D.; Takahashi, K.; Takaki, K. Outcomes of Pulsed Electric Fields and Nonthermal Plasma Treatments on Seed Germination and Protein Functions. Agronomy 2022, 12, 482. [Google Scholar] [CrossRef]
- Elsadek, M.A.; Yousef, E.A.A. Smoke-Water Enhances Germination and Seedling Growth of Four Horticultural Crops. Plants 2019, 8, 104. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zheng, Z.; Han, X.; Zhang, C.; Li, H.; Wu, M. Chitosan Soaking Improves Seed Germination of Platycodon Grandiflorus and Enhances Its Growth, Photosynthesis, Resistance, Yield, and Quality. Horticulturae 2022, 8, 943. [Google Scholar] [CrossRef]
- Wang, Y.H.; Zhang, G.Y.; Huang, Y.; Guo, M.; Song, J.H.; Zhang, T.T.; Long, Y.H.; Wang, B.; Liu, H.M. A Potential Biofertilizer-Siderophilic Bacteria Isolated from the Rhizosphere of Paris polyphylla var. yunnanensis. Front. Microbiol. 2022, 13, 870413. [Google Scholar] [CrossRef] [PubMed]
- Rifna, E.J.; Ratish Ramanan, K.; Mahendran, R. Emerging technology applications for improving seed germination. Trends Food Sci. Technol. 2019, 86, 95–108. [Google Scholar] [CrossRef]
- Van Boekel, M.; Fogliano, V.; Pellegrini, N.; Stanton, C.; Scholz, G.; Lalljie, S.; Somoza, V.; Knorr, D.; Jasti, P.R.; Eisenbrand, G. A review on the beneficial aspects of food processing. Mol. Nutr. Food Res. 2010, 54, 1215–1247. [Google Scholar] [CrossRef]
- Ramteke, A.; Narwade, M.; Gurav, A.; Chavan, S.; Wandre, A. Study of germination effect of fertilizers like urea NPK and biozyme on some vegetable plants. Chem. Sin. 2013, 4, 22–26. Available online: https://api.semanticscholar.org/CorpusID:67784528 (accessed on 7 December 2023).
- Liu, Z.Y.; Song, Y.B.; Guo, Y.M.; Wang, H.T.; Liu, J.T. Optimization of pulsed electric field pretreatment parameters for preserving the quality of Raphanus sativus. Dry. Technol. 2016, 34, 692–702. [Google Scholar] [CrossRef]
- Dymek, K.; Dejmek, P.; Panarese, V.; Vicente, A.A.; Wadsö, L.; Finnie, C.; Galindo, F.G. Effect of pulsed electric field on the germination of barley seeds. LWT-Food Sci. Technol. 2012, 47, 161–166. [Google Scholar] [CrossRef]
- Songnuan, W.; Kirawanich, P. Early growth effects on Arabidopsis thaliana by seed exposure of nanosecond pulsed electric field. J. Electrost. 2012, 70, 445–450. [Google Scholar] [CrossRef]
- Lee, S.; Oh, M.-M. Electric stimulation promotes growth, mineral uptake, and antioxidant accumulation in kale (Brassica oleracea var. acephala). Bioelectrochemistry 2021, 138, 107727. [Google Scholar] [CrossRef] [PubMed]
- Tubić, S.B.; Miladinović, J.; Đukić, V.; Milošević, B.; Vasiljević, S. Effect of electrostatic field on germination of primed and unprimed soybean seeds. Semant. Sch. 2020, 3, 464–474. Available online: https://api.semanticscholar.org/CorpusID:237107580 (accessed on 7 December 2023).
- Liu, Z.Y.; Zhao, L.Y.; Zhang, Q.; Huo, N.; Shi, X.J.; Li, L.W.; Jia, L.Y.; Lu, Y.Y.; Peng, Y.; Song, Y.B. Proteomics-based mechanistic investigation of Escherichia coli inactivation by pulsed electric field. Front. Microbiol. 2019, 10, 2644. Available online: https://www.frontiersin.org/articles/10.3389/fmicb.2019.02644 (accessed on 7 December 2023). [CrossRef] [PubMed]
- Li, H.P.; Sun, H.C.; Ping, W.C.; Liu, L.T.; Zhang, Y.J.; Zhang, K.; Bai, Z.Y.; Li, A.C.; Zhu, J.J.; Li, C.D. Exogenous ethylene promotes the germination of cotton seeds under salt stress. Plant Growth Regul. 2023, 42, 3923–3933. [Google Scholar] [CrossRef]
- Rezaei-Zarchi, S.; Imani, S.; Mehrjerdi, H.A.; Mohebbifar, M.R. The Effect of electric field on the germination and growth of medicago sativa planet, as a native Iranian alfalfa seed. Acta Agric. Serbica 2012, 17, 105–115. Available online: https://api.semanticscholar.org/CorpusID:26751508 (accessed on 7 December 2023).
- Gulsun, A.E.; Bahar, A.; Nurullah, B.; Sibel, U. Development of pulsed electric fields treatment unit to treat wheat grains: Improvement of seed vigor and stress tolerance. Comput. Electron. Agric. 2021, 185, 106129. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, C.; Long, Y.; Wu, X.; Su, Y.; Lei, Y.; Ai, Q. Bioactivity and control efficacy of the novel antibiotic tetramycin against various kiwifruit diseases. Antibiotics 2021, 10, 289. [Google Scholar] [CrossRef]
- Zhang, C.; Long, Y.H.; Wang, Q.P.; Li, J.H.; Wu, X.M.; Li, M. The effect of preharvest 28.6% chitosan composite film sprays for controlling the soft rot on kiwifruit. Hort. Sci. 2019, 46, 180–194. [Google Scholar] [CrossRef]
- Wang, X.K.; Huang, J.L. Principle and Technology of Plant Physiological and Biochemical Experiments, 3rd ed.; Higher Education Press: Beijing, China, 2015. [Google Scholar]
- Fan, T.; Chen, Y.H.; Zhang, N.N.; Wang, Y.F.; Chang, D.L.; Yang, K. Nanosecond pulsed atmospheric-pressure plasma enhanced the germination of melon (Cucumis melo L.) seeds. Plasma Chem. Plasma Process. 2023, 43, 1149–1167. [Google Scholar] [CrossRef]
- Domin, M.; Kluza, F.; Góral, D.; Nazarewicz, S.; Kozłowicz, K.; Szmigielski, M.; Ślaska-Grzywna, B. Germination energy and capacity of maize seeds following low-temperature short storage. Sustainability 2020, 12, 46. [Google Scholar] [CrossRef]
- Kaya, M.D.; İleri, O. A new approach to determine time and temperature combination for electrical conductivity test in sorghum. Turk. J. Agric.-Food Sci. Technol. 2015, 3, 402–405. [Google Scholar] [CrossRef]
- Zhang, H.; Zang, J.; Huo, Y.; Zhang, Z.; Chen, H.; Chen, X.; Liu, J. Identification of the potential genes regulating seed germination speed in Maize. Plants 2022, 11, 556. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.Y.; Burritt, D.J.; Oey, I. Electropriming of wheatgrass seeds using pulsed electric fields enhances antioxidant me-tabolism and the bioprotective capacity of wheatgrass shoots. Sci. Rep. 2016, 6, 25306. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Xu, J.; Li, F.; Zhang, C. Physiological mechanisms of improving rice (‘Oryza sativa’ L.) seed vigor through arc-tooth-shaped corona discharge field treatment. Aust. J. Crop Sci. 2014, 8, 1495–1502. [Google Scholar]
- Hou, T.G.; Wang, Z.Y.; Zhao, M.C.; Liu, C.H.; Xin, M.J.; Wu, L.Y.; Zhang, B.H. Effects of low-frequency high-voltage pulsed electric fields on germination characteristics of aged rice seeds. INMATEH Agric. Eng. 2023, 70, 517–526. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Pre-sowing seed treatment—A shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Adv. Agron. 2005, 88, 223–271. [Google Scholar] [CrossRef]
- Koyama, S.; Tamura, Y.; Ishikawa, G.; Ishikawa, Y. Acceleration of germination and early growth of plant seeds by high frequency and low intensity alternating electric fields. Eng. Agric. Environ. Food 2021, 14, 95–101. [Google Scholar] [CrossRef]
- Ahmed, Z.; Manzoor, M.F.; Ahmad, N.; Zeng, X.A.; Din, Z.U.; Roobab, U.; Qayum, A.; Siddique, R.; Siddeeg, A.; Rahaman, A. Impact of pulsed electric field treatments on the growth parameters of wheat seeds and nutritional properties of their wheat plantlets juice. Food Sci. Nutr. 2020, 8, 2490–2500. [Google Scholar] [CrossRef]
- Kulan, E.G.; Takil, E.D.; Kaya, M.D. A simple estimation of seed viability and emergence potential in Sugar Beet. Sugar Tech. 2019, 21, 532–535. [Google Scholar] [CrossRef]
- Marin, M.; Laverack, G.; Powell, A.A.; Matthews, S. Potential of the electrical conductivity of seed soak water and early counts of radicle emergence to assess seed quality in some native species. Seed Sci. Technol. 2018, 46, 71–86. [Google Scholar] [CrossRef]
- Mavi, K.; Powell, A.A.; Matthews, S. Rate of radicle emergence and leakage of electrolytes provide quick predictions of percentage normal seedlings in standard germination tests of radish (Raphanus sativus). Seed Sci. Technol. 2016, 44, 393–409. [Google Scholar] [CrossRef]
- Mirdad, Z.; Powell, A.A.; Matthews, S. Prediction of germination in artificially aged seeds of Brassica spp. using the bulk conductivity test. Seed Sci. Technol. 2006, 34, 273–286. [Google Scholar] [CrossRef]
- Komalasari, O.; Ramlah, A. Effect of soaking duration in hydropriming on seed vigor of sorghum (Sorghum bicolor L. moench). IOP Conf. Ser. Earth Environ. Sci. 2020, 484, 012121. [Google Scholar] [CrossRef]
- Milosevic, M.; Vujakovic, M.; Karagic, D. Vigour tests as indicators of seed viability. Genetika 2010, 42, 103–118. [Google Scholar] [CrossRef]
- Kim, S.H.; Choe, Z.R.; Kang, J.H.; Copeland, L.O.; Elias, S.G. Multiple seed vigor indices to predict field emergence and performance of barley. Seed Sci. Technol. 1994, 22, 59–68. [Google Scholar]
- Osborne, D.J. Biochemical control systems in the early hours of germination. Can. J. Bot. 1983, 61, 3568–3577. [Google Scholar] [CrossRef]
- Wang, J.; Song, H.; Song, Z.; Lu, Y.; Yan, Y.; Li, F. Effect of Positive and Negative Corona Discharge Field on Vigor of Millet Seeds. IEEE Access 2020, 8, 50268–50275. [Google Scholar] [CrossRef]
Fixed Value | Single Variable | |||||||
---|---|---|---|---|---|---|---|---|
1 | Pulse width: 50 | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | Pulse intensity (kV·cm−1) |
Number of pulses: 50 | ||||||||
2 | Pulse intensity: 0.5 | 0 | 40 | 80 | 120 | 160 | 200 | Pulse width (μs) |
Number of pulses: 50 | ||||||||
3 | Pulse intensity: 0.5 | 0 | 20 | 40 | 60 | 80 | 99 | Number of pulses (n) |
Pulse width: 40 |
Pulse Intensity (kV·cm−1) | Pulse Width (μs) | Number of Pulses (n) |
---|---|---|
0.5 | 40 | 20 |
1.25 | 120 | 60 |
2 | 200 | 99 |
Pulse Intensity (kV·cm−1) | GP (%) | GR (%) | GI | MGT (d) |
---|---|---|---|---|
0 | 70.50 ± 1.50 | 87.10 ± 0.58 | 51.74 ± 0.34 | 2.04 ± 0.01 |
0.5 | 79.50 ± 1.50 *** | 87.00 ± 2.50 | 55.27 ± 0.71 ** | 1.82 ± 0.09 * |
1 | 75.50 ± 2.50 ** | 83.00 ± 2.50 | 51.04 ± 0.79 | 1.93 ± 0.05 |
1.5 | 76.50 ± 1.50 *** | 83.50 ± 20 | 50.76 ± 0.50 | 1.92 ± 0.05 |
2 | 72.00 ± 1 | 83.42 ± 1.08 | 49.08 ± 0.26 | 1.96 ± 0.02 |
2.5 | 74.00 ± 1.00 * | 80.50 ± 0.50 *** | 45.42 ± 1.37 *** | 1.98 ± 0.06 |
Pulse Width (μs) | GP (%) | GR (%) | GI | MGT (d) |
---|---|---|---|---|
0 | 63.70 ± 1.25 | 83.30 ± 1.70 | 41.05 ± 0.43 | 2.86 ± 0.11 |
40 | 74.30 ± 2.05 *** | 86.00 ± 1.00 | 51.26 ± 0.17 *** | 2.71 ± 0.63 |
80 | 69.50 ± 0.50 ** | 84.70 ± 1.70 | 40.79 ± 0.97 | 2.94 ± 0.23 |
120 | 71.50 ± 0.50 *** | 86.00 ± 0.82 | 40.58 ± 0.63 | 2.69 ± 0.36 |
160 | 77.30 ± 1.25 *** | 86.30 ± 0.94 | 36.02 ± 0.62 *** | 2.36 ± 0.95 |
200 | 74.50 ± 0.50 *** | 82.70 ± 1.25 | 37.61 ± 0.73 * | 2.50 ± 0.78 |
Number of Pulses (n) | GP (%) | GR (%) | GI | MGT (d) |
---|---|---|---|---|
0 | 61.00 ± 0.50 | 83.67 ± 0.94 | 58.32 ± 0.34 | 2.86 ± 0.17 |
20 | 77.00 ± 1.00 *** | 86.00 ± 0.82 | 62.02 ± 0.71 *** | 2.71 ± 0.54 |
40 | 72.50 ± 0.25 *** | 83.67 ± 0.47 | 49.40 ± 0.96 *** | 2.94 ± 0.65 |
60 | 73.50 ± 0.25 *** | 85.00 ± 0.82 | 52.47 ± 0.52 *** | 2.69 ± 0.35 |
80 | 72.70 ± 1.64 *** | 85.67 ± 1.25 | 50.48 ± 0.27 *** | 2.36 ± 0.68 |
99 | 75.70 ± 1.66 *** | 84.33 ± 1.25 | 50.20 ± 0.38 *** | 2.50 ± 0.45 |
Test No. | Pulse Intensity (kV·cm−1) | Pulse Width (μs) | Number of Pulses (n) | GP (%) |
---|---|---|---|---|
1 | 1.25 | 200 | 20 | 78% |
2 | 0.5 | 120 | 99 | 84% |
3 | 1.25 | 120 | 60 | 80% |
4 | 1.25 | 40 | 99 | 84% |
5 | 1.25 | 40 | 20 | 72% |
6 | 1.25 | 120 | 60 | 84% |
7 | 2 | 40 | 60 | 72% |
8 | 1.25 | 200 | 99 | 76% |
9 | 1.25 | 120 | 60 | 78% |
10 | 2 | 120 | 99 | 80% |
11 | 1.25 | 120 | 60 | 79% |
12 | 0.5 | 120 | 20 | 80% |
13 | 1.25 | 120 | 60 | 82% |
14 | 0.5 | 40 | 60 | 76% |
15 | 0.5 | 200 | 60 | 80% |
16 | 2 | 120 | 20 | 70% |
17 | 2 | 200 | 60 | 71% |
Source of Variation | F Value | p Value | Sig. |
---|---|---|---|
Model | 8.35 | 0.0053 | Significant |
A | 22.42 | 0.0021 | ** |
B | 0.031 | 0.8658 | |
C | 17.72 | 0.0041 | ** |
AB | 1.54 | 0.2549 | |
AC | 2.21 | 0.1803 | |
BC | 12.06 | 0.0104 | * |
A2 | 6.09 | 0.0429 | * |
B2 | 12.15 | 0.0102 | * |
C2 | 0.11 | 0.7505 | |
Lack of fit | 0.30 | 0.8283 | Not significant |
Test No. | Pulse Intensity (kV·cm−1) | Pulse Width (μs) | Number of Pulses (n) | Predicted Values | Experimental Values |
---|---|---|---|---|---|
CK | 0 | 0 | 0 | 0.66 | 0.66 ± 0.05 |
H | 0.5 | 120 | 99 | 0.85 | 0.85 ± 0.02 |
M | 0.5 | 40 | 60 | 0.76 | 0.73 ± 0.04 |
L | 1.705 | 59 | 28 | 0.71 | 0.71 ± 0.02 |
Test No. | GP (%) | GR (%) | GI | MGT (d) |
---|---|---|---|---|
CK | 65.50 ± 0.05 | 87.34 ± 0.47 | 27.41 ± 0.24 | 1.94 ± 0.16 |
H | 84.66 ± 0.02 *** | 88.66 ± 1.70 | 33.07 ± 0.23 *** | 1.53 ± 0.23 |
M | 72.50 ± 0.04 *** | 79.00 ± 2.60 ** | 29.19 ± 0.42 ** | 1.43 ± 0.41 |
L | 71.00 ± 0.02 *** | 81.00 ± 0.50 * | 28.85 ± 0.36 * | 1.54 ± 0.33 |
Measurement Time/h | Electrical Conductivity/μs·cm−1·g−1 | |||
---|---|---|---|---|
CK | H | M | L | |
0.1 | 31.67 ± 0.94 | 14.41 ± 0.94 *** | 14.04 ± 0.53 *** | 11.21 ± 0.30 *** |
4 | 65.06 ± 0.23 | 50.59 ± 0.21 *** | 48.93 ± 0.31 *** | 49.21 ± 0.44 *** |
12 | 96.89 ± 1.02 | 74.65 ± 0.51 *** | 76.99 ± 0.83 *** | 75.99 ± 0.66 *** |
24 | 137.59 ± 0.77 | 106.82 ± 0.49 *** | 109.21 ± 0.62 *** | 110.01 ± 0.45 *** |
48 | 167.08 ± 0.48 | 118.28 ± 0.35 *** | 120.28 ± 0.38 *** | 119.98 ± 0.29 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Zhao, W.; Su, Z.; Guo, S.; Du, Y.; Song, X.; Shi, X.; Li, X.; Liu, Y.; Liu, Z. Effect of Pulsed Electric Field Treatment on Seed Germination and Seedling Growth of Scutellaria baicalensis. Agriculture 2024, 14, 158. https://doi.org/10.3390/agriculture14010158
Song Y, Zhao W, Su Z, Guo S, Du Y, Song X, Shi X, Li X, Liu Y, Liu Z. Effect of Pulsed Electric Field Treatment on Seed Germination and Seedling Growth of Scutellaria baicalensis. Agriculture. 2024; 14(1):158. https://doi.org/10.3390/agriculture14010158
Chicago/Turabian StyleSong, Yanbo, Weiyu Zhao, Zhenxian Su, Shuhong Guo, Yihan Du, Xinyue Song, Xiaojing Shi, Xiaofeng Li, Yuli Liu, and Zhenyu Liu. 2024. "Effect of Pulsed Electric Field Treatment on Seed Germination and Seedling Growth of Scutellaria baicalensis" Agriculture 14, no. 1: 158. https://doi.org/10.3390/agriculture14010158
APA StyleSong, Y., Zhao, W., Su, Z., Guo, S., Du, Y., Song, X., Shi, X., Li, X., Liu, Y., & Liu, Z. (2024). Effect of Pulsed Electric Field Treatment on Seed Germination and Seedling Growth of Scutellaria baicalensis. Agriculture, 14(1), 158. https://doi.org/10.3390/agriculture14010158