Nutritional and Functional Properties of Quinoa (Chenopodium quinoa Willd.) Chimborazo Ecotype: Insights into Chemical Composition
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material and Sampling
2.2. Sample Preparation
2.3. Water Activity and Proximate Composition
2.4. Analysis of Mineral Content
2.5. Antioxidant Activity and Functional Compounds
2.5.1. Determination of Total Phenolic Content
2.5.2. Determination of Total Flavonoid Content
2.5.3. Determination of Antioxidant Activity by the ABTS Method
2.5.4. Determination of Antioxidant Capacity by the FRAP Method
2.6. Statistical Analysis
3. Results and Discussion
3.1. Water Activity and Proximate Composition
3.2. Mineral Content
3.3. Antioxidant Activity and Functional Compounds
3.4. Correlations
3.5. Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alandia, G.; Rodriguez, J.P.; Jacobsen, S.-E.; Bazile, D.; Condori, B. Global Expansion of Quinoa and Challenges for the Andean Region. Glob. Food Secur. 2020, 26, 100429. [Google Scholar] [CrossRef]
- FAO; FAOSTAT. Food and Agriculture Data. Available online: https://www.fao.org/faostat/es/#data/TM (accessed on 3 March 2023).
- Pulvento, C.; Bazile, D. Worldwide Evaluations of Quinoa—Biodiversity and Food Security under Climate Change Pressures: Advances and Perspectives. Plants 2023, 12, 868. [Google Scholar] [CrossRef] [PubMed]
- Hinojosa, L.; Leguizamo, A.; Carpio, C.; Muñoz, D.; Mestanza, C.; Ochoa, J.; Castillo, C.; Murillo, A.; Villacréz, E.; Monar, C.; et al. Quinoa in Ecuador: Recent Advances under Global Expansion. Plants 2021, 10, 298. [Google Scholar] [CrossRef] [PubMed]
- Lotfalian Dehkordi, A.; Forootan, M. Estimation of Energy Flow and Environmental Impacts of Quinoa Cultivation through Life Cycle Assessment Methodology. Environ. Sci. Pollut. Res. 2020, 27, 21836–21846. [Google Scholar] [CrossRef] [PubMed]
- Basantes-Morales, E.R.; Alconada, M.M.; Pantoja, J.L. Quinoa (Chenopodium quinoa Willd) Production in the Andean Region: Challenges and Potentials. Am. J. Exp. Agric. 2019, 36, 1–18. [Google Scholar] [CrossRef]
- Vilcacundo, R.; Hernández-Ledesma, B. Nutritional and Biological Value of Quinoa (Chenopodium quinoa Willd.). Curr. Opin. Food Sci. 2017, 14, 1–6. [Google Scholar] [CrossRef]
- Hussain, M.I.; Farooq, M.; Syed, Q.A.; Ishaq, A.; Al-Ghamdi, A.A.; Hatamleh, A.A. Botany, Nutritional Value, Phytochemical Composition and Biological Activities of Quinoa. Plants 2021, 10, 2258. [Google Scholar] [CrossRef]
- Pereira, E.; Encina-Zelada, C.; Barros, L.; Gonzales-Barron, U.; Cadavez, V.; Ferreira, I.C.F.R. Chemical and Nutritional Characterization of Chenopodium quinoa Willd (Quinoa) Grains: A Good Alternative to Nutritious Food. Food Chem. 2019, 280, 110–114. [Google Scholar] [CrossRef]
- Pereira, E.; Cadavez, V.; Barros, L.; Encina-Zelada, C.; Stojković, D.; Sokovic, M.; Calhelha, R.C.; Gonzales-Barron, U.; Ferreira, I.C.F.R. Chenopodium quinoa Willd. (Quinoa) Grains: A Good Source of Phenolic Compounds. Food Res. Int. 2020, 137, 109574. [Google Scholar] [CrossRef]
- Rodríguez Gómez, M.J.; Prieto, J.; Cruz Sobrado, V.; Calvo Magro, P. Nutritional Characterization of Six Quinoa (Chenopodium quinoa Willd) Varieties Cultivated in Southern Europe. J. Food Compos. Anal. 2021, 99, 103876. [Google Scholar] [CrossRef]
- Shams, A. Preliminary Evaluation of New Quinoa Genotypes under Sandy Soil Conditions in Egypt. Agric. Sci. 2018, 9, 1444–1456. [Google Scholar] [CrossRef]
- Gordillo-Bastidas, E.; Díaz-Rizzolo, D. Quinoa (Chenopodium quinoa Willd), from Nutritional Value to Potential Health Benefits: An Integrative Review. J. Nutr. Food Sci. 2016, 6, 3. [Google Scholar] [CrossRef]
- Miranda, M.; Vega-Gálvez, A.; López, J.; Parada, G.; Sanders, M.; Aranda, M.; Uribe, E.; Di Scala, K. Impact of Air-Drying Temperature on Nutritional Properties, Total Phenolic Content and Antioxidant Capacity of Quinoa Seeds (Chenopodium quinoa Willd.). Ind. Crops Prod. 2010, 32, 258–263. [Google Scholar] [CrossRef]
- Wu, G. Nutritional Properties of Quinoa. In Quinoa: Improvement and Sustainable Production; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 193–210. [Google Scholar] [CrossRef]
- Li, L.; Lietz, G.; Seal, C.J. Phenolic, Apparent Antioxidant and Nutritional Composition of Quinoa (Chenopodium quinoa Willd.) Seeds. Int. J. Food Sci. Technol. 2021, 56, 3245–3254. [Google Scholar] [CrossRef]
- Enciso-Roca, E.C.; Aguilar-Felices, E.J.; Tinco-Jayo, J.A.; Arroyo-Acevedo, J.L.; Herrera-Calderon, O. Biomolecules with Antioxidant Capacity from the Seeds and Sprouts of 20 Varieties of Chenopodium quinoa Willd. (Quinoa). Plants 2021, 10, 2417. [Google Scholar] [CrossRef] [PubMed]
- Macavilca, E.A. Assessment of Total Antioxidant Capacity of Altiplano Colored Quinoa (Chenopodium quinoa Willd) by Visible and near-Infrared Diffuse Reflectance Spectroscopy and Chemometrics. LWT 2020, 134, 110182. [Google Scholar] [CrossRef]
- AL-Sayed, M.A.; Zidan, S.; Abdelaleem, M.A. Nutritional Applications of Quinoa Seeds (Chenopodium quinoa W.) and Their Effect on Diabetic Rats. Int. J. Pharm. Res. Allied Sci. 2019, 8, 23–36. [Google Scholar]
- Angeli, V.; Miguel Silva, P.; Crispim Massuela, D.; Khan, M.W.; Hamar, A.; Khajehei, F.; Graeff-Hönninger, S.; Piatti, C. Quinoa (Chenopodium quinoa Willd.): An Overview of the Potentials of the “Golden Grain” and Socio-Economic and Environmental Aspects of Its Cultivation and Marketization. Foods 2020, 9, 216. [Google Scholar] [CrossRef]
- Präger, A.; Munz, S.; Nkebiwe, P.M.; Mast, B.; Graeff-Hönninger, S. Yield and Quality Characteristics of Different Quinoa (Chenopodium quinoa Willd.) Cultivars Grown under Field Conditions in Southwestern Germany. Agronomy 2018, 8, 197. [Google Scholar] [CrossRef]
- García-Parra, M.; Roa-Acosta, D.; Bravo-Gómez, J.E. Effect of the Altitude Gradient on the Physiological Performance of Quinoa in the Central Region of Colombia. Agronomy 2022, 12, 2112. [Google Scholar] [CrossRef]
- Gonzalez, J.A.; Konishi, Y.; Bruno, M.; Valoy, M.; Prado, F.E. Interrelationships among Seed Yield, Total Protein and Amino Acid Composition of Ten Quinoa (Chenopodium quinoa) Cultivars from Two Different Agroecological Regions. J. Sci. Food Agric. 2012, 92, 1222–1229. [Google Scholar] [CrossRef] [PubMed]
- Bioversity International; FAO; PROINPA; INIAF; IFAD. Descriptors for Quinoa (Chenopodium quinoa Willd.) and Wild Relatives; Bioversity International, FAO, PROINPA, INIAF, IFAD: Rome, Italy, 2013. [Google Scholar]
- Castro-Albán, H.A.; Castro-Gómez, R.D.P.; Alvarado-Capó, Y. Morphoagronomic variability of native quinoa (Chenopodium quinoa Willd.) Chimborazo type in Ecuador. Agron. Mesoam. 2023, 34, 53229. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Vidueiros, S.M.; Curti, R.N.; Dyner, L.M.; Binaghi, M.J.; Peterson, G.; Bertero, H.D.; Pallaro, A.N. Diversity and Interrelationships in Nutritional Traits in Cultivated Quinoa (Chenopodium quinoa Willd.) from Northwest Argentina. J. Cereal Sci. 2015, 62, 87–93. [Google Scholar] [CrossRef]
- Oliveira, S.R.; Gomes Neto, J.A.; Nóbrega, J.A.; Jones, B.T. Determination of Macro- and Micronutrients in Plant Leaves by High-Resolution Continuum Source Flame Atomic Absorption Spectrometry Combining Instrumental and Sample Preparation Strategies. Spectrochim. Acta Part B At. Spectrosc. 2010, 65, 316–320. [Google Scholar] [CrossRef]
- Kaflé, B.P. Chemical Analysis and Material Characterization by Spectrophotometry; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Viera, W.; Shinohara, T.; Samaniego, I.; Sanada, A.; Terada, N.; Ron, L.; Suárez-Tapia, A.; Koshio, K. Phytochemical Composition and Antioxidant Activity of Passiflora spp. Germplasm Grown in Ecuador. Plants 2022, 11, 328. [Google Scholar] [CrossRef]
- Espín, S.; Samaniego, I. Manual Para el Análisis de Parámetros Químicos Asociados a la Calidad del Cacao; INIAP, Estación Experimental Santa Catalina, Departamento de Nutrición y Calidad: Quito, Ecuador, 2016. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Babu, D.; Gurumurthy, P.; Borra, S.K.; Cherian, K.M. Antioxidant and Free Radical Scavenging Activity of Triphala Determined by Using Different In Vitro Models. J. Med. Plants Res. 2013, 7, 2898–2905. [Google Scholar]
- Pedrali, D.; Giupponi, L.; De la Peña-Armada, R.; Villanueva-Suárez, M.J.; Mateos-Aparicio, I. The Quinoa Variety Influences the Nutritional and Antioxidant Profile Rather than the Geographic Factors. Food Chem. 2023, 402, 133531. [Google Scholar] [CrossRef]
- Pellegrini, M.; Lucas-Gonzales, R.; Ricci, A.; Fontecha, J.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical, Fatty Acid, Polyphenolic Profile, Techno-Functional and Antioxidant Properties of Flours Obtained from Quinoa (Chenopodium quinoa Willd) Seeds. Ind. Crops Prod. 2018, 111, 38–46. [Google Scholar] [CrossRef]
- Valdez-Arana, J.-C.; Steffolani, M.E.; Repo-Carrasco-Valencia, R.; Pérez, G.T.; Condezo-Hoyos, L. Physicochemical and Functional Properties of Isolated Starch and Their Correlation with Flour from the Andean Peruvian Quinoa Varieties. Int. J. Biol. Macromol. 2020, 147, 997–1007. [Google Scholar] [CrossRef]
- Bakhtavar, M.A.; Afzal, I. Climate Smart Dry Chain Technology for Safe Storage of Quinoa Seeds. Sci. Rep. 2020, 10, 12554. [Google Scholar] [CrossRef] [PubMed]
- Vega-Gálvez, A.; Miranda, M.; Vergara, J.; Uribe, E.; Puente, L.; Martínez, E.A. Nutrition Facts and Functional Potential of Quinoa (Chenopodium quinoa Willd.), an Ancient Andean Grain: A Review. J. Sci. Food Agric. 2010, 90, 2541–2547. [Google Scholar] [CrossRef] [PubMed]
- Reguera, M.; Conesa, C.M.; Gil-Gómez, A.; Haros, C.M.; Pérez-Casas, M.Á.; Briones-Labarca, V.; Bolaños, L.; Bonilla, I.; Álvarez, R.; Pinto, K.; et al. The Impact of Different Agroecological Conditions on the Nutritional Composition of Quinoa Seeds. PeerJ 2018, 6, e4442. [Google Scholar] [CrossRef] [PubMed]
- Mezzatesta, P.; Farah, S.; Di Fabio, A.; Emilia, R. Variation of the Nutritional Composition of Quinoa According to the Processing Used. Proceedings 2020, 53, 4. [Google Scholar] [CrossRef]
- Abugoch James, L.E. Chapter 1 Quinoa (Chenopodium quinoa Willd.): Composition, Chemistry, Nutritional, and Functional Properties. In Advances in Food and Nutrition Research; Academic Press: Cambridge, MA, USA, 2009; Volume 58, pp. 1–31. [Google Scholar] [CrossRef]
- Manai–Djebali, H.; Oueslati, I.; Nouairi, I.; Taamalli, A.; Nait-Mohamed, S.; Mliki, A.; Ghorbel, A. Chemical Composition of Durum Wheat Kernels: Impact of the Growing Location. Euro-Mediterr. J. Environ. Integr. 2021, 6, 26. [Google Scholar] [CrossRef]
- Rachon, L.; Palys, E.; Szumilo, G. Comparison of the Chemical Composition of Spring Durum Wheat Grain (Triticum durum) and Common Wheat Grain (Triticum Aestivum ssp. Vulgare). J. Elem. 2012, 17, 105–114. [Google Scholar] [CrossRef]
- Narducci, V.; Finotti, E.; Galli, V.; Carcea, M. Lipids and Fatty Acids in Italian Durum Wheat (Triticum durum Desf.) Cultivars. Foods 2019, 8, 223. [Google Scholar] [CrossRef]
- Verma, D.K.; Srivastav, P.P. Proximate Composition, Mineral Content and Fatty Acids Analyses of Aromatic and Non-Aromatic Indian Rice. Rice Sci. 2017, 24, 21–31. [Google Scholar] [CrossRef]
- Oko, A.O.; Ubi, B.E.; Efisue, A.A.; Dambaba, N. Comparative Analysis of the Chemical Nutrient Composition of Selected Local and Newly Introduced Rice Varieties Grown in Ebonyi State of Nigeria. Int. J. Agric. For. 2012, 2, 16–23. [Google Scholar] [CrossRef]
- Lee, H.-H.; Kim, H.-Y.; Koh, H.-J.; Ryu, S.-N. Varietal Difference of Chemical Composition in Pigmented Rice Varieties. Korean J. Crop Sci. 2006, 51, 113–118. [Google Scholar]
- Oko, A.O.; Onyekwere, S.C. Studies on the Proximate Chemical Composition, and Mineral Element Contents of Five New Lowland Rice Varieties Planed in Ebonyi State. Int. J. Biotechnol. Biochem. 2010, 6, 949–956. [Google Scholar]
- Matías, J.; Rodríguez, M.J.; Granado-Rodríguez, S.; Cruz, V.; Calvo, P.; Reguera, M. Changes in Quinoa Seed Fatty Acid Profile Under Heat Stress Field Conditions. Front. Nutr. 2022, 9, 820010. [Google Scholar] [CrossRef] [PubMed]
- Ayasan, T. Determination of Nutritional Value of Some Quinoa Varieties. Turk. J. Vet. Anim. Sci. 2020, 44, 950–954. [Google Scholar] [CrossRef]
- Miranda, M.; Vega-Gálvez, A.; Martinez, E.; López, J.; Rodríguez, M.J.; Henríquez, K.; Fuentes, F. Genetic Diversity and Comparison of Physicochemical and Nutritional Characteristics of Six Quinoa (Chenopodium quinoa Willd.) Genotypes Cultivated in Chile. Food Sci. Technol. 2012, 32, 835–843. [Google Scholar] [CrossRef]
- Díaz-Rizzolo, D.A.; Acar-Denizli, N.; Kostov, B.; Roura, E.; Sisó-Almirall, A.; Delicado, P.; Gomis, R. Glycaemia Fluctuations Improvement in Old-Age Prediabetic Subjects Consuming a Quinoa-Based Diet: A Pilot Study. Nutrients 2022, 14, 2331. [Google Scholar] [CrossRef] [PubMed]
- Prado, F.E.; Fernández-Turiel, J.L.; Tsarouchi, M.; Psaras, G.K.; González, J.A. Variation of Seed Mineral Concentrations in Seven Quinoa Cultivars Grown in Two Agroecological Sites. Cereal Chem. 2014, 91, 453–459. [Google Scholar] [CrossRef]
- Chaudhary, N.; Walia, S.; Kumar, R. Functional Composition, Physiological Effect and Agronomy of Future Food Quinoa (Chenopodium quinoa Willd.): A Review. J. Food Compos. Anal. 2023, 118, 105192. [Google Scholar] [CrossRef]
- Miranda, M.; Vega-Gálvez, A.; Quispe-Fuentes, I.; Rodríguez, M.J.; Maureira, H.; Martínez, E.A. Nutritional Aspects of Six Quinoa (Chenopodium quinoa Willd.) Ecotypes from Three Geographical Areas of Chile. Chil. J. Agric. Res. 2012, 72, 175–181. [Google Scholar] [CrossRef]
- Cañarejo-Antamba, M.A.; Bañuelos-Taváres, O.; Reyes-Trejo, B.; Espinosa-Solares, T.; Joshi, V.; Guerra-Ramírez, D.; Cañarejo-Antamba, M.A.; Bañuelos-Taváres, O.; Reyes-Trejo, B.; Espinosa-Solares, T.; et al. Comparison of Nutritional and Nutraceutical Properties of Chenopodium quinoa Cultivated in Mexico and Ecuador. Chil. J. Agric. Res. 2021, 81, 507–517. [Google Scholar] [CrossRef]
- Villacrés, E.; Quelal, M.; Galarza, S.; Iza, D.; Silva, E. Nutritional Value and Bioactive Compounds of Leaves and Grains from Quinoa (Chenopodium quinoa Willd.). Plants 2022, 11, 213. [Google Scholar] [CrossRef]
- Gu, R.; Chang, X.; Bai, G.; Li, X.; Di, Y.; Liu, X.; Sun, L.; Wang, Y. Effects of Household Cooking Methods on Changes of Tissue Structure, Phenolic Antioxidant Capacity and Active Component Bioaccessibility of Quinoa. Food Chem. 2021, 350, 129138. [Google Scholar] [CrossRef]
- Bertero, H.D.; De La Vega, A.J.; Correa, G.; Jacobsen, S.E.; Mujica, A. Genotype and Genotype-by-Environment Interaction Effects for Grain Yield and Grain Size of Quinoa (Chenopodium quinoa Willd.) as Revealed by Pattern Analysis of International Multi-Environment Trials. Field Crops Res. 2004, 89, 299–318. [Google Scholar] [CrossRef]
- Soliman, D.; Attaya, A.; Kamel, A.; ElSarag, E. Response of Quinoa Yield and Seed Chemical Composation to Organic Fertilization and Nitrogen Levels Under El-Arish Region. Sinai J. Appl. Sci. 2019, 8, 101–112. [Google Scholar] [CrossRef]
- Wieme, R.A.; Carpenter-Boggs, L.A.; Crowder, D.W.; Murphy, K.M.; Reganold, J.P. Agronomic and Economic Performance of Organic Forage, Quinoa, and Grain Crop Rotations in the Palouse Region of the Pacific Northwest, USA. Agric. Syst. 2020, 177, 102709. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, Y.J.; Kim, Y.H.; Yoon, K.S. Antioxidant and Antimicrobial Activities of Quinoa (Chenopodium quinoa Willd.) Seeds Cultivated in Korea. Prev. Nutr. Food Sci. 2017, 22, 195–202. [Google Scholar] [CrossRef]
Altitude (m.a.s.l. *) | Canton | |||
---|---|---|---|---|
Colta | Guamote | Riobamba | Total Samples by Altitude | |
3000–3200 | 7 | 2 | 9 | |
3201–3300 | 11 | 1 | 12 | |
3301–3400 | 12 | 3 | 15 | |
3401–3533 | 9 | 2 | 2 | 13 |
Total samples by Canton | 39 | 5 | 5 | 49 |
Altitude /Components | 1 (3000–3200 m.a.s.l) | 2 (3201–3300 m.a.s.l) | 3 (3301–3400 m.a.s.l) | 4 (3401–3533 m.a.s.l) |
---|---|---|---|---|
Initial Moisture * | 15.22 ± 0.45 a | 15.1 ± 0.7 ab | 15.08 ± 0.79 ab | 14.75 ± 0.53 b |
Final Moisture ** | 7.16 ± 0.73 | 7.3 ± 1.2 | 7.42 ± 1.09 | 6.98 ± 0.85 |
Water Activity ** | 0.36 ± 0.03 | 0.36 ± 0.04 | 0.35 ± 0.06 | 0.34 ± 0.05 |
Crude Protein ** | 16.29 ± 1.12 | 16.1 ± 0.85 | 15.72 ± 1.0 | 16.18 ± 0.93 |
Fat ** | 4.99 ± 0.86 ab | 4.63 ± 0.91 b | 5.35 ± 0.78 a | 4.91 ± 0.69 ab |
Ash ** | 2.79 ± 0.65 | 2.93 ± 0.42 | 2.98 ± 0.34 | 2.86 ± 0.32 |
Crude Fiber ** | 7.32 ± 0.56 ab | 7.18 ± 0.45 b | 7.53 ± 0.49 a | 7.1 ± 0.53 b |
Non-Nitrogenous Extract ** | 68.62 ± 1.64 | 69.16 ± 1.35 | 68.42 ± 1.4 | 68.94 ± 1.03 |
Ca ** | 47.79 ± 8.04 b | 50.75 ± 7.36 ab | 54.19 ± 7.05 a | 50.19 ± 6.75 ab |
P ** | 536.06 ± 80.81 b | 553.7 ± 51.31 ab | 537.32 ± 46.58 ab | 570.49 ± 43.49 a |
Mg ** | 195.89 ± 13.77 b | 206.62 ± 20.02 a | 200.45 ± 16.19 ab | 202.03 ± 16.48 ab |
K ** | 779.16 ± 56.04 ab | 751.73 ± 76.31 ab | 790.82 ± 37.06 a | 758.82 ± 53.11 b |
Na ** | 2.05 ± 0.55 b | 2.13 ± 0.69 b | 2.71 ± 0.79 a | 2.34 ± 0.61 ab |
Cu ** | 0.39 ± 0.1 | 0.36 ± 0.18 | 0.31 ± 0.12 | 0.36 ± 0.16 |
Fe ** | 4.16 ± 0.58 a | 4.38 ± 0.73 a | 3.69 ± 0.63 b | 4.11 ± 0.57 a |
Mn ** | 0.83 ± 0.25 a | 0.72 ± 0.13 ab | 0.7 ± 0.19 b | 0.66 ± 0.14 b |
Zn ** | 3.13 ± 0.26 | 3.15 ± 0.47 | 3.18 ± 0.35 | 3.3 ± 0.3 |
TPC ** | 1.91 ± 0.1 | 1.89 ± 0.14 | 1.86 ± 0.1 | 1.86 ± 0.15 |
TFC ** | 1.26 ± 0.25 ab | 1.16 ± 0.18 bc | 1.29 ± 0.23 a | 1.12 ± 0.19 c |
AA ABTS ** | 39.41 ± 2.44 | 39.95 ± 4.11 | 39.48 ± 2.01 | 38.98 ± 2.77 |
AA FRAP ** | 19.22 ± 4.98 a | 17.49 ± 3.64 ab | 18.71 ± 4.1 a | 15.85 ± 2.87 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arguello-Hernández, P.; Samaniego, I.; Leguizamo, A.; Bernalte-García, M.J.; Ayuso-Yuste, M.C. Nutritional and Functional Properties of Quinoa (Chenopodium quinoa Willd.) Chimborazo Ecotype: Insights into Chemical Composition. Agriculture 2024, 14, 396. https://doi.org/10.3390/agriculture14030396
Arguello-Hernández P, Samaniego I, Leguizamo A, Bernalte-García MJ, Ayuso-Yuste MC. Nutritional and Functional Properties of Quinoa (Chenopodium quinoa Willd.) Chimborazo Ecotype: Insights into Chemical Composition. Agriculture. 2024; 14(3):396. https://doi.org/10.3390/agriculture14030396
Chicago/Turabian StyleArguello-Hernández, Paola, Iván Samaniego, Alex Leguizamo, María Josefa Bernalte-García, and María Concepción Ayuso-Yuste. 2024. "Nutritional and Functional Properties of Quinoa (Chenopodium quinoa Willd.) Chimborazo Ecotype: Insights into Chemical Composition" Agriculture 14, no. 3: 396. https://doi.org/10.3390/agriculture14030396
APA StyleArguello-Hernández, P., Samaniego, I., Leguizamo, A., Bernalte-García, M. J., & Ayuso-Yuste, M. C. (2024). Nutritional and Functional Properties of Quinoa (Chenopodium quinoa Willd.) Chimborazo Ecotype: Insights into Chemical Composition. Agriculture, 14(3), 396. https://doi.org/10.3390/agriculture14030396