The Effect of Crop Production Systems and Cultivars on Spring Wheat (Triticum aestivum L.) Yield in a Long-Term Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Field Experiment
2.2. Weather Conditions
2.3. Assessment of Leaf Infestation by Fungal Pathogens
2.4. Assessment of Weed Infestation
2.5. Determination of the Grain Yield
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Wheat Flour–Agribusiness Handbook; FAO: Rome, Italy, 2009; Available online: https://www.fao.org/3/al376e/al376e.pdf (accessed on 4 January 2024).
- FAO. World Food and Agriculture–Statistical Yearbook 2023; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Morris, C.F.; Rose, S.P. Wheat. In Cereal Grain Quality; Henry, R.J., Kettlewell, P.S., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 3–54. [Google Scholar] [CrossRef]
- Erenstein, O.; Jaleta, M.; Mottaleb, K.A.; Sonder, K.; Donovan, J.; Braun, H.J. Global Trends in Wheat Production, Consumption and Trade. In Wheat Improvement; Reynolds, M.P., Braun, H.J., Eds.; Springer: Cham, Switzerland, 2022; pp. 44–66. [Google Scholar] [CrossRef]
- Mäder, P.; Hahn, D.; Dubois, D.; Gunst, L.; Alföldi, T.; Bergmann, H.; Oehme, M.; Amadò, R.; Schneider, H.; Graf, U. Wheat quality in organic and conventional farming: Results of 21-year field experiment. J. Sci. Food Agric. 2007, 87, 1826–1835. [Google Scholar] [CrossRef]
- Rozbicki, J.; Ceglińska, A.; Gozdowski, D.; Jakubczyk, M.; Cacak-Pietrzak, G.; Mądry, W.; Golba, J.; Piechociński, M.; Sobczyński, G.; Studnicki, M.; et al. Influence of the cultivar, environment and management on the grain yield and bread-making quality in winter wheat. J. Cer. Sci. 2015, 61, 126–132. [Google Scholar] [CrossRef]
- Mitura, K.; Cacak-Pietrzak, G.; Feledyn-Szewczyk, B.; Szablewski, T.; Studnicki, M. Yield and Grain Quality of Common Wheat (Triticum aestivum L.) Depending on the Different Farming Systems (Organic vs. Integrated vs. Conventional). Plants 2023, 12, 1022. [Google Scholar] [CrossRef] [PubMed]
- Hallmann, E. The influence of organic and conventional cultivation systems on the nutritional value and content of bioactive compounds in selected tomato types. J. Sci. Food Agric. 2012, 92, 2840–2848. [Google Scholar] [CrossRef] [PubMed]
- Barański, M.; Średnicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef]
- Zieliński, M.; Wrzaszcz, W.; Sobierajewska, J.; Adamski, M. Development and Effects of Organic Farms in Poland, Taking into Account Their Location in Areas Facing Natural or Other Specific Constraints. Agriculture 2024, 14, 297. [Google Scholar] [CrossRef]
- Zegar, J.S. Alternative forms of agriculture in the development strategy of the agri-food sector and rural areas. Synthesis. In From Research on Socially Sustainable Agriculture; IERiGŻ-PIB: Warsaw, Poland, 2014; p. 60. [Google Scholar]
- Cristache, S.-E.; Vuță, M.; Marin, E.; Cioacă, S.-I.; Vuţă, M. Organic versus Conventional Farming—A Paradigm for the Sustainable Development of the European Countries. Sustainability 2018, 10, 4279. [Google Scholar] [CrossRef]
- Trewavas, A. Urban myths of organic farming. Nature 2001, 410, 409–410. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EU) 2018/848 of The European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007; (OJ L 150 14.6.2018, p. 1). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02018R0848-20220101 (accessed on 4 January 2024).
- Prandecki, K.; Wrzaszcz, W.; Zieliński, M. Environmental and Climate Challenges to Agriculture in Poland in the Context of Objectives Adopted in the European Green Deal Strategy. Sustainability 2021, 13, 10318. [Google Scholar] [CrossRef]
- Ponti, T.; Rijk, B.; van Ittersum, M.K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Eisele, J.-A.; Köpke, U. Choice of cultivars in organic farming: New criteria for winter wheat ideotypes. Pflanzenbauwissenschaften 1997, 1, 19–24. [Google Scholar]
- Kuś, J.; Jończyk, K.; Stalenga, J.; Feledyn-Szewczyk, B.; Mróz, A. Yielding of selected spring wheat varieties in organic and integrated cultivation. J. Res. Appl. Agric. Eng. 2011, 56, 18–23. [Google Scholar]
- Feledyn-Szewczyk, B.; Kuś, J.; Jończyk, K.; Stalenga, J. The suitability of different winter and spring wheat varieties for cultivation in organic farming. In Organic Agriculture towards Sustainability; Pilipavicius, V., Ed.; InTech: Rijeka, Croatia, 2014; Volume 9, pp. 197–225. [Google Scholar] [CrossRef]
- Feledyn-Szewczyk, B.; Cacak-Pietrzak, G.; Lenc, L.; Stalenga, J. Rating of Spring Wheat Varieties (Triticum aestivum L.) According to Their Suitability for Organic Agriculture. Agronomy 2020, 10, 1900. [Google Scholar] [CrossRef]
- Vereijken, P. A methodic way to more sustainable farming systems. Netherlands. J. Agric. Sci. 1992, 40, 209–223. [Google Scholar]
- Mäder, P.; Mayer, J. Was Langzeitversuche für die Biolandbauforschung bedeuten. Okol. LANDBAU 2014, 170, 45–47. [Google Scholar]
- EU Common Catalogue of Varieties of Agricultural Plant Species. 2019, Consolidated Version, 20.09.2019. Available online: https://ec.europa.eu/food/sites/food/files/plant/docs/plant_variety_catalogues_agricultural-plant-species.pdf (accessed on 28 January 2024).
- EPPO Standards. Guidelines for the Efficacy Evaluation of Plant Protection Products: PP 1/26, PP 1/28; EPPO: Paris, France, 1999; Volume 1, pp. 187–195.
- Marshall, E.J.P.; Brown, V.K.; Boatman, N.D.; Lutman, P.J.W.; Squire, G.R.; Ward, L.K. The role of weeds in supporting biological diversity within crop fields. Weed Res. 2003, 43, 77–89. [Google Scholar] [CrossRef]
- Batte, M.T.; Forster, D.L.; Hitzhusen, F.J. Organic Agriculture in Ohio: An Economic Perspective. J. Prod. Agric. 1993, 100, 2. [Google Scholar] [CrossRef]
- Mayer, J.; Gunst, L.; Mäder, P.; Samson, M.; Carcea, M.; Narducci, V.; Thomsen, I.; Dubois, D. Productivity, quality and sustainability of winter wheat under long-term conventional and organic management in Switzerland. Eur. J. Agron. 2015, 65, 27–39. [Google Scholar] [CrossRef]
- Smith, O.M.; Cohen, A.L.; Rieser, C.J.; Davis, A.G.; Taylor, J.M.; Adesanya, A.W.; Jones, M.S.; Meier, A.R.; Reganold, J.P.; Orpet, R.J.; et al. Organic Farming Provides Reliable Environmental Benefits but Increases Variability in Crop Yields: A Global Meta-Analysis. Front. Sustain. Food Syst. 2019, 3, 82. [Google Scholar] [CrossRef]
- Tyburski, J.; Rychcik, B. Weed infestation of winter wheat in conventional and organic farm on Elk Lake District. Pam. Puł. 2007, 145, 233–241. (In Polish) [Google Scholar]
- Klima, K.; Łabza, T. Yielding and economic efficiency of oat cultivation in pure and mixed sowing in the organic and conventional systems. Food. Science. Technol. Qual. 2010, 3, 141–147. (In Polish) [Google Scholar]
- Doreen, G.; Sait, S.M.; Kunin, W.E.; Benton, T.G. Food Production vs. Biodiversity: Comparing organic and conventional Agriculture. J. Appl. Ecol. 2013, 50, 355–364. [Google Scholar]
- Alvares, R. Comparing Productivity of Organic and Conventional Farming Systems: A Quantitative Review. Arch. Agron. Soil Sci. 2021, 68, 1947–1958. [Google Scholar] [CrossRef]
- Brückler, M.; Resl, T.; Reindl, A. Comparison of organic and conventional crop yields in Austria. J. Land Manag. Food Environ. 2017, 68, 223–236. [Google Scholar] [CrossRef]
- Schrama, M.; de Haan, J.J.; Kroonen, M.; Verstegend, H.; Van der Putten, W.H. Crop yield gap and stability in organic and conventional farming systems. Agric. Ecosyst. Environ. 2018, 256, 123–130. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Murawska, B.; Piekut, A.; Jachymska, J.; Mitura, K.; Lipińska, K.J. Organic and conventional agriculture and the size and quality of crops of chosen cultivated plants. Infrastruct. Ecol. Rural Areas 2015, III/1, 663–675. [Google Scholar]
- Lockeretz, W.; Shearer, G.; Kohl, D.H. Organic farming in the Corn Belt. Science 1981, 211, 540–546. [Google Scholar] [CrossRef]
- Posner, J.L.; Baldock, J.O.; Hedtcke, J.L. Organic and Conventional Production Systems in the Wisconsin Integrated Cropping Systems Trials: I. Productivity 1990–2002. Agron. J. 2008, 100, 253–260. [Google Scholar] [CrossRef]
- Poutala, R.T.; Korva, J.; Varis, E. Spring wheat cultivar performance in ecological and conventional cropping systems. J. Sustain. Agric. 1993, 3, 63–83. [Google Scholar] [CrossRef]
- Radzikowski, P.; Jończyk, K.; Feledyn-Szewczyk, B.; Jóźwicki, T. Assessment of Resistance of Different Varieties of Winter Wheat to Leaf Fungal Diseases in Organic Farming. Agriculture 2023, 13, 875. [Google Scholar] [CrossRef]
- Watson, C.; Atkinson, D.; Gosling, P.; Jackson, L.; Rayns, F. Managing soil fertility in organic farming systems. Soil Use Manag. 2006, 18, 239–247. [Google Scholar] [CrossRef]
- Lemerle, D.; Verbeek, B.; Cousens, R.D.; Coombers, N.E. The potential for selecting wheat varieties strongly competitive against weeds. Weed Res. 1996, 36, 505–513. [Google Scholar] [CrossRef]
- Kovács-Hostyánszki, A.; Espíndola, A.; Vanbergen, A.J.; Settele, J.; Kremen, C.; Dicks, L.V. Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecol Lett. 2017, 20, 673–689. [Google Scholar] [CrossRef] [PubMed]
- Clarc, S.; Klonsky, K.; Livingston, P.; Temple, S. Crop-Yield and Economic Comparisons of Organic, Low-Input, and Conventional Farming Systems in California’s Sacramento Valley. Am. J. Altern. Agric. 1999, 14, 3. [Google Scholar] [CrossRef]
- Crowder, D.; Northfield, T.; Strand, M. Organic Agriculture Promotes Evenness and Natural Pest Control. Nature 2010, 466, 109–112. [Google Scholar] [CrossRef]
Crop Production System | |||
---|---|---|---|
Specification | Organic | Integrated | Conventional |
Crop rotation |
|
|
|
Organic fertilisation | Compost (30 t·ha−1) to potato catch crop | Compost (30 t·ha−1) to potato 2 × catch crop | Rape straw winter wheat straw |
Mineral fertilization NPK (kg·ha−1) | According to the results of soil analysis and crop needs, natural P + K fertilisers (42 + 60) in 2013 | N (65) + P (32) + K (60) | N (110) + P (35) + K (70) |
Herbicides | - | 1 | 2–3 |
Fungicides | - | 2 | 3 |
Insecticides | - | 1 | 1–2 |
Harrowing | - | 2 x | 0 |
Crop Production System | Plant Protection Products | ||
---|---|---|---|
Herbicides | Fungicides | Insecticides | |
2014 | |||
Organic | - | - | - |
Integrated | Mustang Forte 195 SE 0.8 L ha−1 | Seguris 215 SC 1.0 L ha−1 | Fury 100 EW 0.1 L ha−1 |
Amistar 250 SC 0.6 L ha−1 | |||
Conventional | Mustang Forte 195 SE 0.8 L ha−1 | Seguris 215 SC 1.0 L ha−1 | Fury 100 EW 0.1 L ha−1 |
Puma Uniwersal 1.0 L ha−1 | Amistar 250 SC 0.6 L ha−1 + Artea 330 EC 0.4 L ha−1 | ||
2015 | |||
Organic | - | - | - |
Integrated | Mustang Forte 195 SE 0.8 L ha−1 | Tilt Turbo 575 EC 1.0 L ha−1 | Fury 100 EW 0.1 L ha−1 |
Amistar 250 SC 0.6 L ha−1 | |||
Conventional | Mustang Forte 195 SE 0.8 L ha−1 | Tilt Turbo 575 EC 1.0 L ha−1 | Furry 100 EW 0.1 L ha−1 |
Puma Uniwersal 1.0 L ha−1 | Olympus 480 SC 2.0 L ha−1 + Artea 330EC 0.4 L ha−1 | ||
2016 | |||
Organic | - | - | - |
Integrated | Mustang Forte 195 SE 0.8 L ha−1 | Tilt Turbo 575 EC 1.0 L ha−1 | Furry 100 EW 0.1 L ha−1 |
Menara 410 EC 0.4 L ha−1 | |||
Conventional | Mustang Forte 195 SE 0.8 L ha−1 | Tilt Turbo 575 EC 1.0 L ha−1 | Decis Mega 0.125 L ha−1 |
Axial 100 EC 0.4 L ha−1 + Agritox Turbo 750 SL 1.0 L ha−1 | Menara 410 EC 0.4 L ha−1 + Amistar 250 SC 0.6 L ha−1 | Furry 100 EW 0.1 L ha−1 | |
Active ingredients of plant protection products used: | Mustang Forte 195 SE: aminopyralid—10 g·L−1, florasulam—5 g·L−1, 2.4D—180 g·L−1; Puma Uniwersal: fenoxaprop-P-ethyl—69 g·L−1; Axial 100EC: pinoxaden—100 g·L−1; Agritox Turbo 750 SL: MCPA—660 g·L−1, dicamba—90 g·L−1. | Seguris 215 SC: isopyrazam—125 g·L−1, epoxiconazole —90 g·L−1; Amistar 250 SC: azoxystrobin—250 g·L−1; Artea 330 EC: propiconazole—250 g·L−1, cyproconazole—80 g·L−1; Tilt Turbo 575 EC: propiconazole—125 g·L−1, fenpropidine—450 g·L−1; Olympus 480SC: azoxystrobin—80 g·L−1, chlorothalonil—400 g·L−1; Menara 410 EC: propiconazole 250 g·L−1, cyproconazole—160 g·L−1. | Furry 100 EW: zeta-cypermethrin—100 g·L−1; Decis Mega: deltamethrin—50 g·L−1. |
Month | Temperature (°C) | |||
2014 | 2015 | 2016 | Long-term average (1950–2013) | |
March | 6.4 | 5.2 | 4.1 | 1.9 |
April | 9.8 | 8.6 | 10.2 | 8.1 |
May | 13.6 | 13.0 | 15.0 | 13.8 |
June | 15.7 | 17.3 | 20.7 | 17.1 |
July | 20.7 | 20.1 | 19.5 | 18.6 |
August | 18.3 | 22.4 | 18.3 | 17.8 |
Month | Precipitation (mm) | |||
2014 | 2015 | 2016 | Long-term average (1950–2013) | |
March | 42.7 | 49.0 | 25.1 | 28.1 |
April | 72.9 | 29.0 | 19.9 | 42.0 |
May | 188.9 | 109.0 | 38.5 | 55.0 |
June | 118.1 | 29.0 | 15.4 | 71.0 |
July | 65.8 | 52.0 | 67.9 | 78.2 |
August | 119.0 | 4.0 | 93.5 | 67.3 |
Factors of Experiment | Grain Yield [t·ha−1] | Yield Structure | |
---|---|---|---|
Ear Density [pcs·m−2] | 1000-Grain Weight [g] | ||
Year | * | * | * |
2014 | 5.82 b* (22.0%) | 453 ab (15.4%) | 41.9 b (9.9%) |
2015 | 6.11 c (23.4%) | 470 b (15.9%) | 42.3 b (9.5%) |
2016 | 5.50 a (22.1%) | 422 a (15.7%) | 40.1 a (10.0%) |
Production system | * | * | * |
Organic | 3.68 a (28.4%) | 349 a (17.7%) | 36.3 a (10.1%) |
Conventional | 6.12 b (20.2%) | 503 b (15.1%) | 40.9 b (9.8%) |
Integrated | 7.61 c (19.9%) | 492 b (14.2%) | 44.6 c (9.9%) |
Cultivar | * | * | * |
Kandela | 5.68 ab (24.1%) | 425 a (14.9%) | 41.5 b (10.1%) |
Izera | 5.79 ab (21.3%) | 462 ab (17.4%) | 39.1 a (9.9%) |
Ostka Smolicka | 5.45 a (24.2%) | 415 bc (14.9%) | 42.1 bc (9.7%) |
Waluta | 6.11 b (18.8%) | 492 c (14.7%) | 43.1 c (9.5%) |
Factors | Infestation by Fungal Pathogens (% of Leaf Blade Infected) | Weed Dry Matter in Dough Stage (g m−2) |
---|---|---|
Year | * | n.s. |
2014 | 15.6 a (41.1%) | 14.4 a (25.5%) |
2015 | 27.4 b (38.8%) | 20.0 a (22.4%) |
2016 | 16.9 a (39.7%) | 10.5 a (24.6%) |
Production system | * | * |
Organic | 51.6 b (51.7%) | 33.5 b (37.4%) |
Conventional | 3.7 a (35.5%) | 6.4 a (20.6%) |
Integrated | 3.3 a (34.5%) | 4.8 a (15.0%) |
Cultivar | * | n.s. |
Kandela | 13.4 a (50.1%) | 15.3 a (27.0%) |
Izera | 21.2 b (33.4%) | 15.4 a (29.8%) |
Ostka Smolicka | 23.1 b (29.1%) | 15.7 a (24.0%) |
Waluta | 20.5 b (47.2%) | 13.4 a (30.6%) |
Crop Production System | Fungal Pathogens (% Leaf Infestation) | Dominant Weed Species (Plants·m−2) |
---|---|---|
Organic | Puccinia striiformis (16.0%), Drechslera tritici-repentis (14.3%) Septoria sp. (13.8%) Puccinia recondita (4.7%) Blumaria graminis (2.8%) | Chenopodium album—6.0 Stellaria media—5.0 Fallopia convolvulus—3.0 Viola arvensis—3.0 Vicia sp.—2.5 Capsella bursa-pastoris—2.5 Apera spica-venti −2.0 Cirsium arvense—2.0 Elymus repens −1.5 Lapsana communis—1.5 Tripleurospermum inodorum—1.5 Galinsoga parviflora—1.0 Convolvulus arvensis—1.0 Sonchus arvense—1.0 Polygonum arvense—1.0 Lamium purpureum—1.0 Polygonum maculata—1.0 Myosotis arvensis—1.0 Papaver rhoeas—1.0 Equisetum arvense—1.0 Total species richness in the canopy (2014–2016) = 33 |
Integrated | Puccinia striiformis (2.0%), Blumeria graminis (1.3%) | Viola arvensis—2.5 Galium aparine—1.0 Lamium purpureum—1.0 Erodium cicutarium—1.0 Stellaria media—1.0 Total species richness in the canopy (2014–2016) = 9 |
Conventional | Puccinia striiformis (2.4%), Blumeria graminis (1.3%) | Viola arvensis—2.0 Galium aparine—1.5 Equisetum arvense—1.0 Echinochloa crus-galli—1.0 Total species richness in the canopy (2014–2016) = 8 |
Crop/Type of Comparison | Organic vs. Conventional | Organic vs. Integrated | Literature Citation |
---|---|---|---|
Spring wheat Long-term experiment Poland | 10% higher yields in conventional system (2019–2021) | 38% higher yields in integrated system (2019–2021) | Mitura et al. [7] |
Spring wheat Long-term experiment Poland | Yield in organic system 35% lower (2008–2010) | Kuś et al. [18] | |
Winter wheat Long-term experiment Poland | Yield in organic system 45% lower (2008–2010) | Feledyn-Szewczyk et al. [19] | |
Winter wheat Long-term experiment Switzerland | Yields in organic system 64% of conventional systems | Mayer et al. [27] | |
Winter wheat Poland | Yield in conventional system 31% higher | Tyburski and Rychcik [29] | |
Oats (pure sowing stands and mixed stands of oats, spring barley, triticale, and spring) Poland | Yields in organic system lower by 12% | Klima and Łabza [30] | |
Wheat Comparison of 960 conventional farms and 58 organic farms Ohio, USA | Organic yields 70% of conventional ones | Batte et al. [26] | |
Cereals England | Grain production per unit area 54% lower in organic system | Doreen et al. [31] | |
Crops, including cereals Argentina | Yields under organic farming on average 25% lower | Alvares [32] | |
Different crops Long-term farm analysis (2003–2016) Austria | Organic cereals achieved on average 35% lower crop yields | Bruckler et al. [33] | |
Different crops 62 published organic–conventional comparative crop yields; data covering 43 countries worldwide (85% of data from Europe and North America) | Organic yields on average 80% of conventional ones | Ponti [16] | |
Different crops 13-year period analysis Netherlands | Mean yield in organic system 13% lower | Schrama et al. [34] | |
Different crops Meta-analysis of different research results | Yield from 5% to 34% lower in organic system | Seufert et al. [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feledyn-Szewczyk, B.; Jończyk, K.; Stalenga, J. The Effect of Crop Production Systems and Cultivars on Spring Wheat (Triticum aestivum L.) Yield in a Long-Term Experiment. Agriculture 2024, 14, 625. https://doi.org/10.3390/agriculture14040625
Feledyn-Szewczyk B, Jończyk K, Stalenga J. The Effect of Crop Production Systems and Cultivars on Spring Wheat (Triticum aestivum L.) Yield in a Long-Term Experiment. Agriculture. 2024; 14(4):625. https://doi.org/10.3390/agriculture14040625
Chicago/Turabian StyleFeledyn-Szewczyk, Beata, Krzysztof Jończyk, and Jarosław Stalenga. 2024. "The Effect of Crop Production Systems and Cultivars on Spring Wheat (Triticum aestivum L.) Yield in a Long-Term Experiment" Agriculture 14, no. 4: 625. https://doi.org/10.3390/agriculture14040625
APA StyleFeledyn-Szewczyk, B., Jończyk, K., & Stalenga, J. (2024). The Effect of Crop Production Systems and Cultivars on Spring Wheat (Triticum aestivum L.) Yield in a Long-Term Experiment. Agriculture, 14(4), 625. https://doi.org/10.3390/agriculture14040625