Amino Acid Changes during Maturation in Solanum Fruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Sample Preparation
2.3. Determination of the Total Protein Content
2.4. Determination of Free Amino Acids by HPLC
2.5. Statistical Analysis
3. Results and Discussion
3.1. Content of Essential and Nonessential Amino Acids
3.2. Content of Total Protein
3.3. Principal Component Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Patel, S. Rose Hip as an Underutilized Functional Food: Evidence-Based Review. Trends Food Sci. Technol. 2017, 63, 29–38. [Google Scholar] [CrossRef]
- Patel, P.; Prasad, A.; Srivastava, K.; Singh, S.S.; Chakrabarty, D.; Misra, P. Updates on Steroidal Alkaloids and Glycoalkaloids in Solanum Spp.: Biosynthesis, in Vitro Production and Pharmacological Values. Stud. Nat. Prod. Chem. 2021, 69, 99–127. [Google Scholar] [CrossRef]
- Staveckienė, J.; Medveckienė, B.; Jarienė, E.; Kulaitienė, J. Effects of Different Ripening Stages on the Content of the Mineral Elements and Vitamin C of the Fruit Extracts of Solanum Species: S. melanocerasum, S. nigrum, S. villosum, and S. retroflexum. Plants 2024, 13, 343. [Google Scholar] [CrossRef]
- Staveckienė, J.; Kulaitienė, J.; Levickienė, D.; Vaitkevičienė, N. Changes in Fatty Acid Content in Solanum Spp. Fruits during Ripening. Plants 2023, 12, 268. [Google Scholar] [CrossRef] [PubMed]
- Staveckienė, J.; Kulaitienė, J.; Levickienė, D.; Vaitkevičienė, N.; Vaštakaitė-Kairienė, V. The Effect of Ripening Stages on the Accumulation of Polyphenols and Antioxidant Activity of the Fruit Extracts of Solanum Species. Plants 2023, 12, 2672. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhang, B.; Luo, Z.; Yuan, Y.; Zhao, Z.; Liu, M. Composition Analysis and Nutritional Value Evaluation of Amino Acids in the Fruit of 161 Jujube Cultivars. Plants 2023, 12, 1744. [Google Scholar] [CrossRef] [PubMed]
- Tegeder, M.; Rentsch, D. Uptake and Partitioning of Amino Acids and Peptides. Mol. Plant 2010, 3, 997–1011. [Google Scholar] [CrossRef] [PubMed]
- Rentsch, D.; Schmidt, S.; Tegeder, M. Transporters for Uptake and Allocation of Organic Nitrogen Compounds in Plants. FEBS Lett. 2007, 581, 2281–2289. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.M.B.; Teixeira, A.R.N. Amino acids, Metabolism. In Encyclopedia of Food Sciences and Nutrition; Academic Press: Cambridge, MA, USA, 2003; pp. 197–206. [Google Scholar] [CrossRef]
- Lea, P.J.; Azevedo, R.A. Amino Acids. In Encyclopedia of Applied Plant Sciences; Academic Press: Cambridge, MA, USA, 2016; Volume 2, pp. 56–66. [Google Scholar] [CrossRef]
- Tegeder, M.; Masclaux-Daubresse, C. Source and Sink Mechanisms of Nitrogen Transport and Use. New Phytol. 2018, 217, 35–53. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S. Amino acid content in Rhododendron schlippenbachii Maxim. flowers of different colors. Biosci. Biotechnol. Res. Asia 2016, 13, 1285–1289. [Google Scholar] [CrossRef]
- Gomes, M.H.; Rosa, E. Free amino acid composition in primary and secondary inflorescences of 11 broccoli (Brassica oleracea var italica) cultivars and its variation between growing seasons. J. Sci. Food Agric. 2001, 81, 295–299. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, Y.; Ge, Q.; Li, Y.; Sun, J.; Zhang, Y.; Liu, X. Comparative Physiological Responses of Solanum nigrum and Solanum torvum to Cadmium Stress. New Phytol. 2012, 196, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, P.; Gupta, A.K.; Majumder, U.K.; Ghosal, S. The chemistry behind the toxicity of black nightshade, Solanum nigrum and the remedy. Pharmacologyonline 2009, 1, 705–723. [Google Scholar]
- Jabamalairaj, A.; Priatama, R.A.; Heo, J.; Park, S.J. Medicinal Metabolites with Common Biosynthetic Pathways in Solanum nigrum. Plant Biotechnol. Rep. 2019, 13, 315–327. [Google Scholar] [CrossRef]
- Kliszcz, A. Phenological Growth Stages and BBCH-Identification Keys of Jerusalem Artichoke (Helianthus tuberosus L.). Ann. Univ. Paedagog. Cracoviensis Stud. Naturae 2021, 6, 203–225. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Corell, M.; Moriana, A.; Hernanz, D.; Stinco, C.M.; Mapelli-Brahm, P.; Meléndez-Martínez, A.J. Effect of Regulated Deficit Irrigation on Commercial Quality Parameters, Carotenoids, Phenolics and Sugars of the Black Cherry Tomato (Solanum lycopersicum L.) ‘Sunchocola’. J. Food Compos. Anal. 2022, 105, 104220. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sharma, A.; Kaur, R.; Thukral, A.K.; Bhardwaj, R.; Ahmad, P. Differential distribution of amino acids in plants. Amino Acids 2017, 49, 821–869. [Google Scholar] [CrossRef]
- Steed, R. Analysis of Amino Acids by HPLC Analysis of Amino Acids by HPLC Amino Acid Analysis-Agilent Restricted; Agilent Technologies, Inc.: Santa Clara, CA, USA, 2010. [Google Scholar]
- Baqir, H.A.; Zeboon, N.H.; Al-Behadili, A.A.J. The role and importance of amino acids within plants: A review. Plant Arch. 2019, 19, 1402–1410. [Google Scholar]
- Sharma-Natu, P.; Ghildiyal, M.C. Potential targets for improving photosynthesis and crop yield. Curr. Sci. 2005, 88, 1918–1928. [Google Scholar]
- Dreccer, M.F.; Van Oijen, M.; Schapendonk, A.H.C.M.; Pot, C.S.; Rabbinge, R. (Dynamics of vertical leaf nitrogen distribution in a vegetative wheat canopy. Impact on canopy photosynthesis. Ann. Bot. 2000, 86, 821–831. [Google Scholar] [CrossRef]
- Abu-Dahi, Y.M.; Al-Younis, M.A. Plant Nutrition Handbook; Ministry of Higher Education and Scientific Research of Baghdad: Baghdad, Iraq, 1988; p. 411. [Google Scholar]
- Oms-Oliu, G.; Hertog, M.L.A.T.M.; Van de Poel, B.; Ampofo-Asiama, J.; Geeraerd, A.H.; Nicolai, B.M. Metabolic characterization of tomato fruit during preharvest development, ripening, and postharvest shelf-life. Postharvest Biol. Technol. 2011, 62, 7–16. [Google Scholar] [CrossRef]
- Trovato, M.; Funck, D.; Forlani, G.; Okumoto, S.; Amir, R. Editorial: Amino Acids in Plants: Regulation and Functions in Development and Stress Defense. Front. Plant Sci. 2021, 12, 772810. [Google Scholar] [CrossRef]
- Ali, M.Y.; Sina, A.A.I.; Khandker, S.S.; Neesa, L.; Tanvir, E.M.; Kabir, A.; Khalil, M.I.; Gan, S.H. Nutritional Composition and Bioactive Compounds in Tomatoes and Their Impact on Human Health and Disease: A Review. Foods 2021, 10, 45. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Q.; Lan, T.; Geng, T.; Gao, C.; Yuan, Q.; Zhang, Q.; Xu, P.; Sun, X.; Liu, X.; et al. Comparative Analysis of Physicochemical Characteristics, Nutritional and Functional Components and Antioxidant Capacity of Fifteen Kiwifruit (Actinidia) Cultivars—Comparative Analysis of Fifteen Kiwifruit (Actinidia) Cultivars. Foods 2020, 9, 1267. [Google Scholar] [CrossRef]
- Guo, N.; Zhang, S.; Gu, M.; Xu, G. Function, Transport, and Regulation of Amino Acids: What Is Missing in Rice? Crop J. 2021, 9, 530–542. [Google Scholar] [CrossRef]
- Pęksa, A.; Miedzianka, J.; Nemś, A.; Rytel, E. The Free-Amino-Acid Content in Six Potatoes Cultivars through Storage. Molecules 2021, 26, 1267. [Google Scholar] [CrossRef]
- Kirakosyan, A.; Seymour, E.; Kaufman, P.B.; Warber, S.; Bolling, S.; Chang, S.C. Antioxidant capacity of polyphenolic extracts from leaves of Crataegus laevigata and Crataegus monogyna (Hawthorn) subjected to drought and cold stress. J. Agric. Food Chem. 2003, 51, 3973–3976. [Google Scholar] [CrossRef]
- Menz, G.; Vriesekoop, F. Physical and chemical changes during the maturation of Gordal sevillana olives (Olea europaea L., cv. Gordal sevillana). J. Agric. Food Chem. 2010, 58, 4934–4938. [Google Scholar]
- Zheng, H.Z.; Kim, Y.I.; Chung, S.K. A profile of physicochemical and antioxidant changes during fruit growth for the utilisation of unripe apples. Food Chem. 2012, 131, 106–110. [Google Scholar] [CrossRef]
- Pollack, M.A. The end of creeping competence? EU policy-making since Maastricht. J. Common Mark. Stud. 2000, 3, 519–538. [Google Scholar] [CrossRef]
- Lopez, M.J.; Mohiuddin, S.S. Biochemistry, Essential Amino Acids. In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2020. [Google Scholar]
- Baum, J.I.; Børsheim, E.; Allman, B.R.; Walker, S. Health benefits of dietary protein throughout the life cycle. In The Health Benefits of Foods-Current Knowledge and Further Development; IntechOpen: London, UK, 2020. [Google Scholar]
- Pikosky, M.A.; Ragalie-Carr, J.; Miller, G.D. Recognizing the Importance of Protein Quality in an Era of Food Systems Transformation. Front. Sustain. Food Syst. 2022, 6, 1012813. [Google Scholar] [CrossRef]
- Phillips, S.M.; Chevalier, S.; Leidy, H.J. Protein “Requirements” beyond the RDA: Implications for Optimizing Health. Appl. Physiol. Nutr. Metab. 2016, 41, 565–572. [Google Scholar] [CrossRef]
- Tlili, N.; Tir, M.; Benlajnef, H.; Khemiri, S.; Mejri, H.; Rejeb, S.; Khaldi, A. Variation in protein and oil content and fatty acid composition of Rhus tripartitum fruits collected at different maturity stages in different locations. Ind. Crops Prod. 2014, 59, 197–201. [Google Scholar] [CrossRef]
- Vendramini, A.L.; Trugo, L.C. Chemical composition of acerola fruit (Malpighia punicifolia L.) at three stages of maturity. Food Chem. 2000, 71, 195–198. [Google Scholar] [CrossRef]
Species | Ripening Stage | Glutamic Acid | Aspartic Acid | Proline | Arginine | Alanine | Serine | Glycine | Tyrosine | Cysteine |
---|---|---|---|---|---|---|---|---|---|---|
SM | I | 1.95 cd | 1.69 a | 1.25 a | 0.67 f | 0.71 a | 0.64 bc | 0.60 cd | 0.41 c | 0.28 efg |
SM | II | 2.51 a | 1.68 ab | 1.07 ab | 1.02 ab | 0.75 a | 0.72 a | 0.68 a | 0.44 ab | 0.34 cde |
SM | III | 2.62 a | 1.60 dcb | 1.08 ab | 1.11 a | 0.70 a | 0.70 ab | 0.66 ab | 0.41 c | 0.34 cde |
SV | I | 1.82 de | 1.21 fe | 0.65 cde | 0.77 e | 0.55 c | 0.50 ef | 0.52 e | 0.33 e | 0.23 fg |
SV | II | 1.83 cde | 1.01 g | 0.54 de | 0.74 ef | 0.44 d | 0.45 fg | 0.43 f | 0.23 g | 0.23 fg |
SV | III | 1.67 e | 0.93 h | 0.40 e | 0.67 f | 0.40 d | 0.42 g | 0.40 f | 0.22 g | 0.22 g |
SN | I | 2.45 a | 1.59 dc | 0.84 bcd | 0.98 bc | 0.71 a | 0.72 a | 0.64 abc | 0.42 bc | 0.37 bcd |
SN | II | 2.05 bc | 1.29 e | 0.94 abc | 0.81 de | 0.53 c | 0.55 de | 0.51 e | 0.30 f | 0.33 cde |
SN | III | 1.76 de | 1.14 f | 0.66 cde | 0.66 f | 0.44 d | 0.46 fg | 0.43 f | 0.24 g | 0.31 def |
SR | I | 2.65 a | 1.64 abc | 1.19 ab | 1.12 a | 0.75 a | 0.75 a | 0.68 a | 0.45 a | 0.50 a |
SR | II | 2.46 a | 1.53 d | 1.20 ab | 1.03 ab | 0.63 b | 0.65 bc | 0.62 bc | 0.37 d | 0.44 ab |
SR | III | 2.225 d | 1.57 dc | 1.12 ab | 0.89 cd | 0.57 bc | 0.60 cd | 0.55 de | 0.31 ef | 0.41 bc |
Species | Ripening Stage | Leucine | Lysine | Valine | Phenylalanine | Isoleucine | Threonine | Histidine | Methionine |
---|---|---|---|---|---|---|---|---|---|
SM | I | 1.07 a | 0.96 a | 0.77 a | 0.64 b | 0.65 ab | 0.56 bc | 0.27 cd | 0.21 ab |
SM | II | 1.13 a | 0.89 b | 0.78 a | 0.72 a | 0.68 a | 0.62 a | 0.33 a | 0.21 ab |
SM | III | 1.10 a | 0.81 c | 0.75 ab | 0.75 a | 0.67 a | 0.59 ab | 0.31 ab | 0.22 a |
SV | I | 0.86 b | 0.64 d | 0.58 d | 0.57 c | 0.52 c | 0.41 ef | 0.26 d | 0.16 cd |
SV | II | 0.66 d | 0.46 g | 0.45 fg | 0.47 d | 0.41 de | 0.36 g | 0.21 fg | 0.14 e |
SV | III | 0.60 d | 0.43 g | 0.40 gh | 0.43 d | 0.37 ef | 0.34 g | 0.19 g | 0.13 e |
SN | I | 1.05 a | 0.83 bc | 0.70 c | 0.72 a | 0.61 b | 0.60 ab | 0.31 ab | 0.21 ab |
SN | II | 0.75 c | 0.55 ef | 0.49 ef | 0.54 c | 0.45 d | 0.45 de | 0.23 ef | 0.17 c |
SN | III | 0.61 d | 0.43 g | 0.40 h | 0.43 d | 0.36 f | 0.37 fg | 0.20 g | 0.15 de |
SR | I | 1.11 a | 0.80 c | 0.72 bc | 0.76 a | 0.64 ab | 0.62 a | 0.29 bc | 0.21 ab |
SR | II | 0.88 b | 0.61 de | 0.56 d | 0.63 b | 0.52 c | 0.54 c | 0.25 ed | 0.19 b |
SR | III | 0.77 c | 0.53 f | 0.50 e | 0.55 c | 0.45 d | 0.47 d | 0.22 fg | 0.16 cd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staveckienė, J.; Medveckienė, B.; Vaštakaitė-Kairienė, V.; Kulaitienė, J.; Jarienė, E. Amino Acid Changes during Maturation in Solanum Fruit. Agriculture 2024, 14, 802. https://doi.org/10.3390/agriculture14060802
Staveckienė J, Medveckienė B, Vaštakaitė-Kairienė V, Kulaitienė J, Jarienė E. Amino Acid Changes during Maturation in Solanum Fruit. Agriculture. 2024; 14(6):802. https://doi.org/10.3390/agriculture14060802
Chicago/Turabian StyleStaveckienė, Jūratė, Brigita Medveckienė, Viktorija Vaštakaitė-Kairienė, Jurgita Kulaitienė, and Elvyra Jarienė. 2024. "Amino Acid Changes during Maturation in Solanum Fruit" Agriculture 14, no. 6: 802. https://doi.org/10.3390/agriculture14060802
APA StyleStaveckienė, J., Medveckienė, B., Vaštakaitė-Kairienė, V., Kulaitienė, J., & Jarienė, E. (2024). Amino Acid Changes during Maturation in Solanum Fruit. Agriculture, 14(6), 802. https://doi.org/10.3390/agriculture14060802