Effects of Maize/Peanut Intercropping on Yield and Nitrogen Uptake and Utilization under Different Nitrogen Application Rates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Sample Collection and Measurement Methods
2.3.1. Peanut Nodule Characteristics
2.3.2. Yield Determination
2.3.3. Plant Nitrogen Content Measurement
2.4. Calculation Formulas and Statistical Analysis Methods
2.4.1. Relevant Calculation Formulas
- (1)
- Harvest index (HI):
- (2)
- The relative increase rate of peanut nodule number and fresh weight were calculated as follows [21]:
- (3)
- The nitrogen equivalent ratio (NER) was calculated as follows [22]:
- (4)
- The aggressivity between maize and peanuts (Amp) was calculated as follows [23]:
- (5)
- The competitive ratio of nitrogen (CRmp) was calculated as follows [23]:
- (6)
- The partial factor productivity from applied N (PFPN) was calculated as follows:
- (7)
- The nitrogen use efficiency (NUE) is the ratio of economic yield to N uptake by crops.
- (8)
- The normalized grain yield (Yi) was calculated as follows:
2.4.2. Statistical Analysis
3. Results
3.1. Effect of Maize/Peanut Intercropping and Nitrogen Fertilization on Yield
3.2. The Effect of Maize/Peanut Intercropping and Nitrogen Fertilization on the Crop Harvest Index
3.3. The Impact of Maize/Peanut Intercropping and Nitrogen Fertilization on Peanut Nodule Characteristics
3.4. The Influence of Maize/Peanut Intercropping and Nitrogen Fertilization on Plant Nitrogen Content and Nitrogen Uptake
3.5. The Influence of Maize/Peanut Intercropping and Nitrogen Fertilization on the Nitrogen Uptake Equivalent Ratio (NER)
3.6. The Influence of Maize/Peanut Intercropping and Nitrogen fertilization on Interspecific Competition and the Nitrogen Nutrition Competition Ratio
3.7. The Impact of Maize/Peanut Intercropping and Nitrogen Fertilization on Nitrogen Fertilizer Partial Productivity and Nitrogen Use Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, H.L.; Ling, N.; Wang, T.T.; Zhu, C.; Wang, Y.; Wang, S.J.; Gao, Q. Responses of soil biological traits and bacterial communities to nitrogen fertilization mediate maize yields across three soil types. Soil Tillage Res. 2019, 185, 61–69. [Google Scholar] [CrossRef]
- Yin, C.; Fan, F.L.; Song, A.L.; Fan, X.P.; Ding, H.; Ran, W.; Qiu, H.Z.; Liang, Y.C. The response patterns of community traits of N2O emission-related functional guilds to temperature across different arable soils under inorganic fertilization. Soil Biol. Biochem. 2017, 108, 65–77. [Google Scholar] [CrossRef]
- Zhou, J.; Guan, D.; Zhou, B.; Zhao, B.; Ma, M.; Qin, J.; Jiang, X.; Chen, S.; Cao, F.; Shen, D.; et al. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China. Soil Biol. Biochem. 2015, 90, 42–51. [Google Scholar] [CrossRef]
- Li, L. Intercropping enhances agroecosystem services and functioning, Current knowledge and perspectives. Chin. J. Eco-Agric. 2016, 24, 403–415. (In Chinese) [Google Scholar] [CrossRef]
- Feng, C.; Sun, Z.X.; Zhang, L.Z.; Feng, L.S.; Zheng, J.M.; Bai, W.; Gu, C.F.; Wang, Q.; Xu, Z.; Werf, W.V.D. Maize/peanut intercropping increases land productivity: A meta-analysis. Field Crops Res. 2021, 270, 108208. [Google Scholar] [CrossRef]
- Jensen, E.S.; Carlsson, G.; Hauggaard-Nielsen, H. Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N, A global-scale analysis. Agron. Sustain. Dev. 2020, 40, 5. [Google Scholar] [CrossRef]
- Jiao, N.; Wang, F.; Ma, C.; Zhang, F.S.; Jensen, E.S. Interspecific interactions of iron and nitrogen use in peanut (Arachis hypogaea L.)-maize (Zea mays L.) intercropping on a calcareous soil. Eur. J. Agron. 2021, 128, 126303. [Google Scholar] [CrossRef]
- Bodacious, L.; Etienne-Pascal, J.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Jensen, E.S.; Prieur, L.; Justes, E. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron. Sustain. Dev. 2014, 35, 911–935. [Google Scholar] [CrossRef]
- Wang, R.N.; Sun, Z.X.; Zhang, L.Z.; Yang, N.; Feng, L.S.; Bai, W.; Zhang, D.S.; Wang, Q.; Evers, J.B.; Liu, Y.; et al. Border-row proportion determines strength of interspecific interactions and crop yields in maize/peanut strip intercropping. Field Crop Res. 2020, 253, 107819. [Google Scholar] [CrossRef]
- Jiao, N.Y.; Li, Y.H.; Liu, L.; Qi, F.G.; Yin, F.; Ning, T.Y.; Li, Z.J.; Fu, G.Z. Effects of root barrier on photosynthetic characteristics and intercropping advantage of maize II peanut intercropping. Plant Physiol. J. 2016, 52, 886–894, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Gao, Y.L.; Sun, Z.X.; Bai, W.; Feng, L.S.; Yang, N.; Cai, Q.; Feng, C.; Zhang, Z. Productivity and water use efficiency of maize-peanut intercropping systems in the semi-arid region of western Liaoning province. Sci. Agric. Sin. 2017, 50, 3702–3713, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Jia, X.; Wang, L.; Liu, Z.L.; Li, C.S.; Yin, F.W.; Wang, Y.Y.; Wan, S.B. Effects and analyses of intercropping pattern for maize and peanut on crops disease occurrence. J. Peanut Sci. 2016, 45, 55–60, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhang, D.S. Study on High Efficiency in Capturing and Using Light in Maize/Peanut Intercropping in Semi-Arid Area. Ph.D. Thesis, China Agricultural University, Beijing, China, 2018. (In Chinese with English Abstract). [Google Scholar]
- Cai, Q.; Sun, Z.X.; Zheng, J.M.; Wang, W.B.; Bai, W.; Feng, L.S.; Yang, N.; Xiang, W.Y.; Zhang, Z.; Feng, C. Dry matter accumulation, allocation, yield and productivity of maize-soybean intercropping systems in the semi-arid region of western Liaoning province. Sci. Agric. Sin. 2021, 54, 909–920, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Gao, Y.L.; Sun, Z.X.; Bai, W.; Feng, L.S.; Cai, Q.; Feng, C.; Zhang, Z. Spatial distribution characteristics of root system and the yield in maize ‖ peanut intercropping system. J. Maize Sci. 2016, 24, 79–87. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.G.; Guo, F.; Tang, Z.H.; Yang, S.; Geng, Y.; Meng, J.J.; Li, X.G.; Zhang, J.L.; Wan, S.B. Effects of maize intercropping peanut on crop dry matter accumulation, nitrogen absorption and utilization. Chin. J. Oil Crop Sci. 2020, 42, 994–1001, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Fang, Z.M. Effects of Legume/Cereal Intercropping on N, Fe Nutrition and Biological Nitrogen Fixation. Ph.D. Thesis, China Agricultural University, Beijing, China, 2004. (In Chinese with English Abstract). [Google Scholar]
- Lü, G.D.; Mi, Y.; Chen, Y.J.; Sun, Y.Y.; Wang, C.; Mu, Q.H.; Wu, K.; Qian, Z.G. Effects of nitrogen application on nitrogen accumulation, dry matter accumulation, transport, and yield of maize. J. Maize Sci. 2021, 29, 128–137, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Feng, C.; Huang, B.; Feng, L.S.; Zheng, J.M.; Bai, W.; Du, G.J.; Xiang, W.Y.; Cai, Q.; Zhang, Z.; Sun, Z.X. Effects of different configurations on nitrogen uptake and utilization characteristics of maize-peanut intercropping system in west Liaoning. Sci. Agric. Sin. 2022, 55, 61–73. (In Chinese) [Google Scholar] [CrossRef]
- Lu, R.K. Soil Agrochemical Analysis; China Agricultural Science and Technology Press: Beijing, China, 1999. (In Chinese) [Google Scholar]
- Li, Y.Y.; Yu, C.B.; Cheng, X.; Li, C.J.; Sun, J.H.; Zhang, F.S.; Lambers, H.; Li, L. Intercropping alleviates the inhibitory effect of N fertilization on nodulation and symbiotic N2 fixation of faba bean. Plant Soil 2009, 323, 295–308. [Google Scholar] [CrossRef]
- Xia, H.; Li, X.; Qiao, Y.; Xue, Y.; Yan, W.; Xue, Y.; Cui, Z.; Silva, J.V.; van der Werf, W. Diversification of wheat-maize double cropping with legume intercrops improves nitrogen-use efficiency: Evidence at crop and cropping system levels. Field Crop Res. 2024, 307, 109262. [Google Scholar] [CrossRef]
- Li, L. The Ecological Principles and Applications of Biological N2 Fixation in Legumes-Based Intercropping Systems; China Agricultural University Press: Beijing, China, 2013; pp. 97–101. (In Chinese) [Google Scholar]
- Lin, S.M.; Meng, W.W.; Nan, Z.W.; Xu, J.; Li, L.; Zhang, Z.; Li, X.G.; Guo, F.; Wan, S.B. Canopy microenvironment change of peanut intercropped with maize and its correlation with pod yield. Chin. J. Eco-Agric. 2020, 28, 31–41, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Jiao, N.Y.; Zhao, C.; Ning, T.Y.; Hou, L.T.; Fu, G.Z.; Li, Z.J.; Chen, M.C. Effects of maize-peanut intercropping on economic yield and light response of photosynthesis. Chin. J. Appl. Ecol. 2008, 19, 981–985, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Sun, Q.Q.; Zheng, Y.M.; Yu, T.Y.; Wu, Y.; Yang, J.S.; Wu, Z.F.; Wu, J.X.; Li, S.X. Responses of soil diazotrophic diversity and community composition of nodulating and non-nodulating peanuts (Arachis hypogaea L.) to nitrogen fertilization. Aata Agron. Sin. 2022, 48, 2575–2587, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Hardarson, G.; Atkins, G. Optimizing biological N2 fixation by legumes in farming systems. Plant Soil 2003, 252, 41–54. [Google Scholar] [CrossRef]
- Feng, M.M.; Adams, J.M.; Fan, K.K.; Shi, Y.; Sun, R.B.; Wang, D.Z.; Guo, X.S.; Chu, H.Y. Long-term fertilization influences community assembly processes of soil diazotrophs. Soil Biol. Biochem. 2018, 126, 151–158. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Cassman, K.G.; Specht, J.E.; Walters, D.T.; Weiss, A.; Dobermann, A. Nitrogen uptake, fixation and response to fertilizer N in soybeans, A review. Field Crop. Res. 2008, 11, 1–13. [Google Scholar] [CrossRef]
- Li, B.; Li, Y.Y.; Wu, H.M.; Zhang, F.F.; Li, C.J.; Li, X.X.; Lambers, H.; Li, L. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proc. Natl Acad. Sci. USA 2016, 113, 6496–6501. [Google Scholar] [CrossRef]
- Rerkasem, B.K.; Rerkasem, M.B.; Peoples, D.F. Measurement of N2 fixation in maize-ricebean intercrops. Plant Soil 1988, 198, 125–135. [Google Scholar] [CrossRef]
- Zhao, C.; Fan, Z.; Coulter, J.A.; Yin, W.; Hu, F.; Yu, A.; Fan, H.; Chai, Q. High Maize Density alleviates the inhibitory effect of soil nitrogen on intercropped pea. Agronomy 2020, 10, 248. [Google Scholar] [CrossRef]
- Zhang, X.N.; Chen, P.; Du, Q.; Zhou, Y.; Ren, J.R.; Jin, F.; Yang, W.Y.; Yong, T.W. Effects of maize/soybean and maize/peanut intercropping systems on crops nitrogen uptake and nodulation nitrogen fixation. Chin. J. Eco-Agric. 2019, 27, 1183–1194. (In Chinese) [Google Scholar] [CrossRef]
- Ordóñez, R.A.; Castellano, M.J.; Danalatos, G.N.; Wright, E.E.; Hatfield, J.L.; Burras, L.; Archontoulis, S.V. Insufficient and excessive N fertilizer input reduces maize root mass across soil types. Field Crop. Res. 2021, 267, 108142. [Google Scholar] [CrossRef]
- Ju, X.T.; Xing, G.X.; Chen, X.P.; Zhang, S.L.; Zhang, L.J.; Liu, X.J.; Cui, Z.L.; Yin, B.; Christie, P.; Zhu, Z.L. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [PubMed]
Year (Y) | N Application Rate (N) | Planting Pattern (P) | Grain Yield (g·m−2) | Ear Number (plant−1) | Kernel Number (ear−1) | 1000-Kernel Weight (g) |
---|---|---|---|---|---|---|
2019 | N0 | SM | 703 ± 43 a | 1.00 ± 0.00 a | 397 ± 33 a | 346 ± 5 a |
IM | 500 ± 29 b | 1.33 ± 0.33 a | 400 ± 47 a | 414 ± 7 b | ||
N150 | SM | 1032 ± 113 a | 1.13 ± 0.13 a | 483 ± 45 a | 369 ± 11 a | |
IM | 886 ± 52 b | 1.60 ± 0.23 a | 530 ± 43 a | 374 ± 17 a | ||
N300 | SM | 996 ± 51 a | 1.00 ± 0.00 a | 492 ± 49 a | 387 ± 22 a | |
IM | 918 ± 26 b | 1.73 ± 0.27 b | 550 ± 41 a | 396 ± 13 a | ||
2020 | N0 | SM | 597 ± 14 a | 1.00 ± 0.00 a | 336 ± 40 a | 285 ± 15 a |
IM | 359 ± 9 b | 1.00 ± 0.00 a | 406 ± 35 a | 318 ± 13 a | ||
N150 | SM | 933 ± 16 a | 1.00 ± 0.00 a | 476 ± 33 a | 341 ± 15 a | |
IM | 682 ± 14 b | 1.20 ± 0.12 a | 564 ± 34 a | 377 ± 1 a | ||
N300 | SM | 1043 ± 52 a | 1.07 ± 0.07 a | 478 ± 32 a | 367 ± 2 a | |
IM | 693 ± 11 b | 1.13 ± 0.07 a | 587 ± 22 a | 375 ± 3 a | ||
2019–2020 mean | N0 | SM | 650 ± 16 a | 1.00 ± 0.00 a | 367 ± 26 a | 316 ± 10 b |
IM | 429 ± 11 b | 1.17 ± 0.17 a | 403 ± 29 a | 366 ± 8 a | ||
N150 | SM | 983 ± 56 a | 1.07 ± 0.03 a | 480 ± 27 a | 355 ± 5 a | |
IM | 784 ± 25 b | 1.40 ± 0.17 a | 547 ± 27 a | 375 ± 9 a | ||
N300 | SM | 1019 ± 20 a | 1.03 ± 0.03 a | 485 ± 29 b | 377 ± 11 a | |
IM | 806 ± 17 b | 1.43 ± 0.17 a | 569 ± 23 a | 385 ± 6 a | ||
p-value | Planting patterns (P) | <0.001 | 0.002 | 0.006 | 0.001 | |
N application rates (N) | <0.001 | 0.289 | <0.001 | <0.001 | ||
Years (Y) | <0.001 | 0.013 | 0.974 | <0.001 | ||
P × N | 0.943 | 0.542 | 0.681 | 0.061 | ||
P × Y | 0.015 | 0.024 | 0.233 | 0.895 | ||
N × Y | 0.622 | 0.866 | 0.696 | 0.001 | ||
P × N × Y | 0.189 | 0.613 | 0.972 | 0.176 |
Year (Y) | N Application Rate (N) | Planting Pattern (P) | Seed Yield (g·m−2) | DW per 100-Seeds (g·100-seeds−1) | Seed Number (seed·plant−1) | Effective Pod (pod·plant−1) |
---|---|---|---|---|---|---|
2019 | N0 | SP | 260 ± 29 a | 57.12 ± 2.48 a | 20.10 ± 1.78 a | 11.69 ± 0.67 a |
IP | 116 ± 72 b | 55.32 ± 1.11 a | 15.05 ± 1.46 b | 9.40 ± 0.99 b | ||
N150 | SP | 272 ± 32 a | 56.82 ± 3.53 a | 26.03 ± 9.14 a | 15.31 ± 5.76 a | |
IP | 122 ± 4 b | 53.96 ± 2.02 a | 21.36 ± 6.11 a | 12.54 ± 3.91 a | ||
N300 | SP | 254 ± 34 a | 51.29 ± 1.76 a | 20.81 ± 2.53 a | 12.03 ± 1.38 a | |
IP | 98 ± 19 b | 49.49 ± 8.07 a | 16.78 ± 4.14 a | 9.90 ± 1.97 a | ||
2020 | N0 | SP | 265 ± 5 a | 58.84 ± 1.43 a | 25.87 ± 4.69 a | 13.66 ± 2.86 a |
IP | 145 ± 7 b | 61.11 ± 4.51 a | 25.63 ± 2.79 a | 13.31 ± 1.95 a | ||
N150 | SP | 311 ± 4 a | 61.35 ± 0.84 a | 22.40 ± 0.97 a | 11.09 ± 0.18 a | |
IP | 130 ± 14 b | 60.69 ± 1.25 a | 17.74 ± 2.20 b | 8.88 ± 1.13 a | ||
N300 | SP | 307 ± 20 a | 63.17 ± 1.54 a | 26.63 ± 3.61 a | 13.54 ± 1.62 a | |
IP | 122 ± 2 b | 54.54 ± 1.99 b | 24.16 ± 3.30 a | 12.42 ± 1.72 a | ||
2019–2020 mean | N0 | SP | 262 ± 12 a | 57.98 ± 0.90 a | 22.98 ± 3.08 a | 12.68 ± 1.71 a |
IP | 130 ± 7 b | 58.21 ± 2.29 a | 20.34 ± 2.02 a | 11.35 ± 1.44 a | ||
N150 | SP | 291 ± 16 a | 59.08 ± 1.89 a | 24.22 ± 4.89 a | 13.20 ± 2.96 a | |
IP | 126 ± 7 b | 57.32 ± 1.43 a | 19.55 ± 1.98 a | 10.71 ± 1.42 a | ||
N300 | SP | 281 ± 14 a | 57.23 ± 0.86 a | 23.72 ± 1.37 a | 12.79 ± 0.46 a | |
IP | 110 ± 10 b | 52.01 ± 3.60 b | 20.47 ± 1.22 a | 11.16 ± 0.65 a | ||
p-value | Planting patterns (P) | <0.001 | 0.236 | 0.157 | 0.219 | |
N application rates (N) | 0.523 | 0.219 | 0.989 | 0.999 | ||
Years (Y) | 0.023 | 0.004 | 0.136 | 0.815 | ||
P × N | 0.308 | 0.488 | 0.940 | 0.943 | ||
P × Y | 0.595 | 0.961 | 0.663 | 0.689 | ||
N × Y | 0.700 | 0.585 | 0.117 | 0.128 | ||
P × N × Y | 0.503 | 0.449 | 0.917 | 0.980 |
Year | N Application Rate | Nodule Number | Nodule Fresh Weight |
---|---|---|---|
2019 | N0 | 105.58 | 60.00 |
N150 | −12.21 | 24.48 | |
N300 | −18.97 | 5.73 | |
2020 | N0 | 19.54 | 11.37 |
N150 | −29.88 | −0.39 | |
N300 | −3.48 | 8.86 | |
2019–2020 mean | N0 | 62.56 | 35.69 |
N150 | −21.05 | 12.05 | |
N300 | −11.23 | 7.30 |
Year | N Application Rate | Planting System | N Content (g·kg−1) | N Uptake (kg·ha−1) | ||
---|---|---|---|---|---|---|
(Y) | (N) | (P) | Maize | Peanut | Maize | Peanut |
2019 | N0 | Sole crop | 0.075 ± 0.006 a | 0.15 ± 0.01 a | 139.57 ± 2.34 a | 134.20 ± 5.41 a |
Intercropping | 0.045 ± 0.001 b | 0.10 ± 0.01 b | 116.83 ± 2.20 b | 66.70 ± 0.36 b | ||
N150 | Sole crop | 0.069 ± 0.001 a | 0.15 ± 0.04 a | 161.73 ± 2.15 a | 146.90 ± 3.70 a | |
Intercropping | 0.045 ± 0.001 b | 0.10 ± 0.02 a | 123.97 ± 1.98 b | 77.80 ± 0.29 b | ||
N300 | Sole crop | 0.082 ± 0.002 a | 0.17 ± 0.02 a | 161.77 ± 2.55 a | 144.37 ± 1.08 a | |
Intercropping | 0.056 ± 0.004 b | 0.09 ± 0.01 b | 117.87 ± 0.91 b | 67.33 ± 0.48 b | ||
2020 | N0 | Sole crop | 0.065 ± 0.003 a | 0.16 ± 0.03 a | 104.30 ± 2.02 a | 124.83 ± 0.70 a |
Intercropping | 0.058 ± 0.007 a | 0.06 ± 0.01 b | 96.77 ± 1.01 b | 55.70 ± 1.25 b | ||
N150 | Sole crop | 0.062 ± 0.001 a | 0.17 ± 0.01 a | 123.63 ± 2.22 a | 149.03 ± 3.44 a | |
Intercropping | 0.045 ± 0.001 b | 0.10 ± 0.01 b | 112.60 ± 2.49 b | 70.37 ± 0.99 b | ||
N300 | Sole crop | 0.073 ± 0.005 a | 0.16 ± 0.02 a | 126.93 ± 3.27 a | 137.13 ± 1.12 a | |
Intercropping | 0.060 ± 0.002 a | 0.08 ± 0.01 b | 109.13 ± 2.32 b | 63.07 ± 0.95 b | ||
2019–2020 mean | N0 | Sole crop | 0.078 ± 0.002 a | 0.16 ± 0.01 a | 121.93 ± 1.00 a | 129.52 ± 2.95 a |
Intercropping | 0.058 ± 0.002 b | 0.08 ± 0.01 b | 106.80 ± 1.43 b | 62.33 ± 0.75 b | ||
N150 | Sole crop | 0.065 ± 0.001 a | 0.16 ± 0.02 a | 142.68 ± 1.79 a | 147.97 ± 3.17 a | |
Intercropping | 0.045 ± 0.001 b | 0.10 ± 0.01 b | 118.28 ± 1.81 b | 74.08 ± 0.35 b | ||
N300 | Sole crop | 0.070 ± 0.004 a | 0.17 ± 0.01 a | 144.35 ± 2.91 a | 141.75 ± 1.10 a | |
Intercropping | 0.051 ± 0.003 b | 0.09 ± 0.01 b | 113.50 ± 1.29 b | 65.20 ± 0.59 b | ||
p-value | Cropping patterns (P) | <0.001 | <0.001 | <0.001 | <0.001 | |
N application rates (N) | 0.002 | 0.683 | <0.001 | <0.001 | ||
Years (Y) | 0.192 | 0.626 | <0.001 | <0.001 | ||
P × N | 0.862 | 0.715 | <0.001 | 0.021 | ||
P × Y | 0.005 | 0.381 | <0.001 | 0.320 | ||
N × Y | 0.365 | 0.706 | 0.191 | 0.148 | ||
P × N × Y | 0.401 | 0.592 | 0.138 | 0.196 |
Year | N Application Rate | N Uptake Equivalent Ratio | Aggressivity | Competitive Ratio of N | ||
---|---|---|---|---|---|---|
(Y) | (N) | NERm | NERp | NER | (Amp) | (CRmp) |
2019 | N0 | 0.84 ± 0.01 a | 0.50 ± 0.02 ab | 1.34 ± 0.03 a | 0.67 ± 0.03 b | 1.68 ± 0.04 a |
N150 | 0.77 ± 0.01 b | 0.53 ± 0.01 a | 1.30 ± 0.02 a | 0.82 ± 0.06 b | 1.45 ± 0.04 b | |
N300 | 0.73 ± 0.02 b | 0.47 ± 0.01 b | 1.20 ± 0.01 b | 1.43 ± 0.20 a | 1.56 ± 0.06 ab | |
2020 | N0 | 0.93 ± 0.02 a | 0.46 ± 0.01 a | 1.39 ± 0.03 a | 0.55 ± 0.01 b | 2.00 ± 0.01 a |
N150 | 0.91 ± 0.03 a | 0.47 ± 0.02 a | 1.38 ± 0.02 a | 0.69 ± 0.03 a | 1.94 ± 0.14 a | |
N300 | 0.86 ± 0.04 a | 0.45 ± 0.01 a | 1.31 ± 0.03 a | 0.63 ± 0.04 ab | 1.90 ± 0.12 a | |
2019–2020 mean | N0 | 0.88 ± 0.02 a | 0.48 ± 0.01 ab | 1.36 ± 0.03 a | 0.61 ± 0.02 b | 1.84 ± 0.01 a |
N150 | 0.83 ± 0.02 ab | 0.50 ± 0.01 a | 1.33 ± 0.02 a | 0.76 ± 0.03 b | 1.69 ± 0.08 a | |
N300 | 0.80 ± 0.03 b | 0.46 ± 0.01 b | 1.26 ± 0.02 b | 1.03 ± 0.08 a | 1.73 ± 0.08 a | |
p-value | N application rates (N) | 0.014 | 0.029 | 0.003 | 0.003 | 0.209 |
Years (Y) | <0.001 | 0.008 | 0.001 | 0.001 | <0.001 | |
N × Y | 0.543 | 0.293 | 0.502 | <0.001 | 0.525 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhao, F.; Sun, Z.; Bai, W.; Zhang, Z.; Feng, C.; Cai, Q. Effects of Maize/Peanut Intercropping on Yield and Nitrogen Uptake and Utilization under Different Nitrogen Application Rates. Agriculture 2024, 14, 893. https://doi.org/10.3390/agriculture14060893
Zhang Y, Zhao F, Sun Z, Bai W, Zhang Z, Feng C, Cai Q. Effects of Maize/Peanut Intercropping on Yield and Nitrogen Uptake and Utilization under Different Nitrogen Application Rates. Agriculture. 2024; 14(6):893. https://doi.org/10.3390/agriculture14060893
Chicago/Turabian StyleZhang, Yongyong, Fengyan Zhao, Zhanxiang Sun, Wei Bai, Zhe Zhang, Chen Feng, and Qian Cai. 2024. "Effects of Maize/Peanut Intercropping on Yield and Nitrogen Uptake and Utilization under Different Nitrogen Application Rates" Agriculture 14, no. 6: 893. https://doi.org/10.3390/agriculture14060893
APA StyleZhang, Y., Zhao, F., Sun, Z., Bai, W., Zhang, Z., Feng, C., & Cai, Q. (2024). Effects of Maize/Peanut Intercropping on Yield and Nitrogen Uptake and Utilization under Different Nitrogen Application Rates. Agriculture, 14(6), 893. https://doi.org/10.3390/agriculture14060893