Horticultural Irrigation Systems and Aquacultural Water Usage: A Perspective for the Use of Aquaponics to Generate a Sustainable Water Footprint
Abstract
:1. Introduction
2. Literature Research Methodology
- What is the impact of water-intensive food production systems (agriculture, aquaculture, and aquaponics)?
- What water supply or irrigation systems are used?
- Are there wastewater or water surpluses considered in the water footprint?
- What could be a possible ecological impact of using this kind of system?
3. Groundwater Employment for Agricultural Irrigation
3.1. Surface Irrigation
3.2. Irrigation Systems Based on Drip Lines
3.2.1. Drip Irrigation
3.2.2. Sub-Surface Drip Irrigation
3.3. Sprinkler Irrigation
4. Groundwater Usage and the Environmental Impact in Aquacultural Food Production
5. Optimization of Groundwater Employment in Aquaponic Food Production
- (i)
- The floating raft technology—based on a floating Styrofoam raft above the water line of the fish tank, implementing a system where the roots of the plants move under the waterline and absorb the nutrients of fish effluents concentrated in the tank [152].
- (ii)
- (iii)
- The nutrient film technique—based on grow-bed channels or grow beds in pipes by recirculating fish wastewater residues through plant roots and providing nutrients to plants [155].
6. The Importance of the Water Footprint in Food Production Systems
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X. Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security. Land 2022, 11, 484. [Google Scholar] [CrossRef]
- Penuelas, J.; Coello, F.; Sardans, J. A better use of fertilizers is needed for global food security and environmental sustainability. Agric. Food Secur. 2023, 12, 5. [Google Scholar] [CrossRef]
- Kumar, A.; Choudhary, A.; Kaur, H.; Mehta, S. A walk towards Wild grasses to unlock the clandestine of gene pools for wheat improvement: A review. Plant Stress 2022, 3, 100048. [Google Scholar] [CrossRef]
- Dash, P.K.; Rai, R. Green revolution to grain revolution: Florigen in the frontiers. J. Biotechnol. 2022, 343, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Prager, S.; Wiebe, K. Strategic foresight for agriculture: Past ghosts, present challenges, and future opportunities. Glob. Food Secur. 2021, 28, 100489. [Google Scholar] [CrossRef]
- Ji, X.; Yin, R.; Zhang, H. Food security and overuse of agrochemicals: Evidence from China’s major grain-producing areas policy. Environ. Sci. Pollut. Res. 2023, 30, 64443–64459. [Google Scholar] [CrossRef] [PubMed]
- Intisar, A.; Ramzan, A.; Sawaira, T.; Kareem, A.T.; Hussain, N.; Din, M.I.; Bilal, M.; Iqbal, H.M.N. Occurrence, toxic effects, and mitigation of pesticides as emerging environmental pollutants using robust nanomaterials—A review. Chemosphere 2022, 293, 133538. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Zhang, T.; Jiang, W.; Li, P.; Shi, P.; Xu, G.; Cheng, S.; Cheng, Y.; Zhang, F.; Wang, X. Effects of irrigation and fertilization on different potato varieties growth, yield and resources use efficiency in the Northwest China. Agric. Water Manag. 2022, 261, 107351. [Google Scholar] [CrossRef]
- Rajak, P.; Roy, S.; Ganguly, A.; Mandi, M.; Dutta, A.; Das, K.; Nanda, S.; Ghanty, S.; Biswas, G. Agricultural pesticides—Friends or foes to biosphere? J. Hazard. Mater. Adv. 2023, 10, 100264. [Google Scholar] [CrossRef]
- Mack, G.; Finger, R.; Ammann, J.; El Benni, N. Modelling policies towards pesticide-free agricultural production systems. Agric. Syst. 2023, 207, 103642. [Google Scholar] [CrossRef]
- Bi, R.; Ou, M.; Zhou, S.; Geng, S.; Zheng, Y.; Chen, J.; Mo, R.; Li, Y.; Xiao, G.; Chen, X.; et al. Degradation strategies of pesticide residue: From chemicals to synthetic biology. Synth. Syst. Biotechnol. 2023, 8, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Sherpa, T.S.; Patle, G.T.; Rao, K.V.R. Gravity Fed Micro Irrigation System for Small Landholders and Its Impact on Livelihood—A Review. Int. J. Environ. Clim. Change 2021, 12, 310–323. [Google Scholar] [CrossRef]
- Yang, P.; Baia, J.; Yang, M.; Mad, E.; Yan, M.; Long, H.; Liu, J.; Li, L. Negative pressure irrigation for greenhouse crops in China: A review. Agric. Water Manag. 2022, 264, 107497. [Google Scholar] [CrossRef]
- Zhang, D.; Li, D.; Li, H.; Wang, H.; Liu, J.; Ju, H.; Batchelor, W.D.; Li, R.; Li, Y. Strategies to Reduce Crop Water Footprint in Intensive Wheat-Maize Rotations in North China Plain. Agronomy 2022, 12, 357. [Google Scholar] [CrossRef]
- Yue, Q.; Guo, P.; Wu, H.; Wang, Y.; Zhang, C. Towards sustainable circular agriculture: An integrated optimization framework for crop-livestock-biogas-crop recycling system management under uncertainty. Agric. Syst. 2022, 196, 103347. [Google Scholar] [CrossRef]
- Jiang, H.; Zheng, C. Will the Structure of Food Imports Improve China’s Water-Intensive Food Cultivation Structure? A Spatial Econometric Analysis. Water 2023, 15, 2800. [Google Scholar] [CrossRef]
- Bwambale, E.; Abagale, F.K.; Anornu, G.K. Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review. Agric. Water Manag. 2022, 260, 107324. [Google Scholar] [CrossRef]
- Bjørndal, T.; Dey, M.; Tusvik, A. Economic analysis of the contributions of aquaculture to future food security. Aquaculture 2024, 578, 740071. [Google Scholar] [CrossRef]
- Vasquez-Mejia, C.M.; Shrivastava, S.; Gudjónsdóttir, M.; Manzardo, A.; Ögmundarson, Ó. Current status and future research needs on the quantitative water use of finfish aquaculture using Life Cycle Assessment: A systematic literature review. J. Clean. Prod. 2023, 425, 139009. [Google Scholar] [CrossRef]
- Rogers, A.J. Aquaculture in the Ancient World: Ecosystem Engineering, Domesticated Landscapes, and the First Blue Revolution. J. Archaeol. Res. 2023, 1–65. [Google Scholar] [CrossRef]
- Anyaene, I.H.; Onukwuli, O.D.; Babayemi, A.K.; Obiora-Okafo, I.A.; Ezeh, E.M. Application of Bio Coagulation–Flocculation and Soft Computing Aids for the Removal of Organic Pollutants in Aquaculture Effluent Discharge. Chem. Afr. 2024, 7, 455–478. [Google Scholar] [CrossRef]
- Ndehedehe, C.E.; Adeyeri, O.E.; Onojeghuo, A.O.; Ferreira, V.G.; Kalu, I.; Okwuashi, O. Understanding global groundwater-climate interactions. Sci. Total Environ. 2023, 904, 166571. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, T. Evaluation of quantitative and qualitative sustainability of aquifers by groundwater footprint methodology: Case study: West Azerbaijan Province, Iran. Environ. Monit. Assess. 2021, 193, 368. [Google Scholar] [CrossRef] [PubMed]
- Kumar Mishra, R.K. Fresh Water availability and Its Global challenge. Br. J. Multidiscip. Adv. Stud. 2023, 4, 1–78. [Google Scholar] [CrossRef]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.P.; van Beek, L.P.H. Water balance of global aquifers revealed by groundwater footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Valderrama, J.; Olcina, J.; Delacámara, G.; Guirado, E.; Maestre, F.T. Complex Policy Mixes are Needed to Cope with Agricultural Water Demands Under Climate Change. Water Resour. Manag. 2023, 37, 2805–2834. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual—Setting the Global Standard; Earthscan: London, UK, 2011; Volume 1, pp. 1–288. [Google Scholar]
- Guzmán-Luna, P.; Gerbens-Leenes, P.W.; Vaca-Jiménez, S.D. The water, energy, and land footprint of tilapia aquaculture in mexico, a comparison of the footprints of fish and meat. Resour. Conserv. Recycl. 2021, 165, 105224. [Google Scholar] [CrossRef]
- Viglia, S.; Brown, M.T.; Love, D.C.; Fry, J.P.; Scroggins, R.; Neff, R.A. Analysis of energy and water use in USA farmed catfish: Toward a more resilient and sustainable production system. J. Clean. Prod. 2022, 379 Pt 2, 134796. [Google Scholar] [CrossRef]
- Yin, L.; Tao, F.; Chen, Y.; Wang, Y. Reducing agriculture irrigation water consumption through reshaping cropping systems across China. Agric. For. Meteorol. 2022, 312, 108707. [Google Scholar] [CrossRef]
- Srivastav, A.L. Chemical fertilizers and pesticides: Role in groundwater contamination. In Agrochemicals Detection, Treatment and Remediation; Vara Prasad, M.N., Ed.; Butterworth-Heinemann: Oxford, UK, 2020; pp. 143–159. [Google Scholar] [CrossRef]
- Babu, S.; Das, A.; Singh, R.; Mohapatra, K.P.; Kumar, S.; Rathore, S.S.; Yadav, S.K.; Yadav, P.; Ansari, M.A.; Panwar, A.S.; et al. Designing an energy efficient, economically feasible, and environmentally robust integrated farming system model for sustainable food production in the Indian Himalayas. Sustain. Food Technol. 2023, 1, 126–142. [Google Scholar] [CrossRef]
- Ali, A.; Hussain, T.; Tantashutikun, N.; Hussain, N.; Cocetta, G. Application of Smart Techniques, Internet of Things and Data Mining for Resource Use Efficient and Sustainable Crop Production. Agriculture 2023, 13, 397. [Google Scholar] [CrossRef]
- Paolacci, S.; Stejskal, V.; Toner, D.; Jansen, M.A.K. Wastewater valorisation in an integrated multitrophic aquaculture system; assessing nutrient removal and biomass production by duckweed species. Environ. Pollut. 2022, 302, 119059. [Google Scholar] [CrossRef] [PubMed]
- Çakmakçı, S.; Çakmakçı, R. Quality and Nutritional Parameters of Food in Agri-Food Production Systems. Foods 2023, 12, 351. [Google Scholar] [CrossRef] [PubMed]
- Mushtari Nadia, Z.M.; Akhi, A.R.; Roy, P.; Farhad, F.B.; Hossain, M.M.; Salam, M.D.A. Yielding of aquaponics using probiotics to grow tomatoes with tilapia. Aquac. Rep. 2023, 33, 101799. [Google Scholar] [CrossRef]
- Zhang, J.; Çağrı Akyol, C.; Meers, E. Nutrient recovery and recycling from fishery waste and by-products. J. Environ. Manag. 2023, 348, 119266. [Google Scholar] [CrossRef] [PubMed]
- Inosako, K.; Troyo Diéguez, E.; Saito, T.; Lucero Vega, G. Manual Técnico para Cultivo a Cielo Abierto usando Agua Residual de Acuaponia. SATREPS. 2020. Available online: https://www.jica.go.jp/Resource/mexico/espanol/activities/c8h0vm00007f8s9j-att/manual_sp.pdf (accessed on 6 May 2024).
- Pinho, S.M.; Valladão Flores, R.M.; David, L.H.; Emerenciano, M.G.C.; Quagrainie, K.K.; Portella, M.C. Economic comparison between conventional aquaponics and FLOCponics systems. Aquaculture 2022, 552, 737987. [Google Scholar] [CrossRef]
- Aslanidou, M.; Elvanidi, A.; Mourantian, A.; Levizou, E.; Mente, E.; Katsoulas, N. Nutrients Use Efficiency in Coupled and Decoupled Aquaponic Systems. Horticulturae 2023, 9, 1077. [Google Scholar] [CrossRef]
- Al Hamedi, F.H.; Kandhan, K.; Liu, Y.; Ren, M.; Jaleel, A.; Alyafei, M.A.M. Wastewater Irrigation: A Promising Way for Future Sustainable Agriculture and Food Security in the United Arab Emirates. Water 2023, 15, 2284. [Google Scholar] [CrossRef]
- Dotaniya, M.L.; Meena, V.D.; Saha, J.K.; Dotaniya, C.K.; El Din Mahmoud, A.; Meena, B.L.; Meena, M.D.; Sanwal, R.C.; Meena, R.S.; Doutaniya, R.K.; et al. Reuse of poor-quality water for sustainable crop production in the changing scenario of climate. Environ. Dev. Sustain. 2023, 25, 7345–7376. [Google Scholar] [CrossRef]
- Tantoh, H.B.; McKay, T.J.M. Utilizing the water-land-food security nexus to review the underperformance of smallholder farmers in the Eastern Cape, South Africa. Front. Sustain. Food Syst. 2023, 7, 1143630. [Google Scholar] [CrossRef]
- Zhang, T.; Zou, Y.; Kisekka, I.; Biswas, A.; Cai, H. Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area. Agric. Water Manag. 2021, 243, 106497. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Oki, T. Water pricing reform for sustainable water resources management in China’s agricultural sector. Agric. Water Manag. 2023, 275, 108045. [Google Scholar] [CrossRef]
- Rahman, K.Z.; Chen, X.; Blumberg, M.; Bernhard, K.; Müller, R.A.; Mackenzie, K.; Trabitzsch, R.; Moeller, L. Effect of Hydraulic Loading Rate on Treatment Performance of a Pilot Wetland Roof Treating Greywater from a Household. Water 2023, 15, 3375. [Google Scholar] [CrossRef]
- Rong, R.; Hua, L.; Li, T.; Chen, Y.; Xiao, J. Why Have China’s Poverty Eradication Policy Resulted in the Decline of Arable Land in Poverty-Stricken Areas? Land 2023, 12, 1856. [Google Scholar] [CrossRef]
- Shi, K.; Lu, T.; Zheng, W.; Zhang, X.; Zhang, L. A Review of the Category, Mechanism, and Controlling Methods of Chemical Clogging in Drip Irrigation System. Agriculture 2022, 12, 202. [Google Scholar] [CrossRef]
- Kassaye, K.T.; Yilma, W.A. Seeding and NP Fertilizer Rates’ Effect on Irrigated Wheat Yield and Water Use Efficiency in Midland Tropical Environment. J. Soil. Sci. Plant Nutr. 2022, 22, 1490–1505. [Google Scholar] [CrossRef]
- Chuchird, R.; Sasaki, N.; Abe, I. Influencing Factors of the Adoption of Agricultural Irrigation Technologies and the Economic Returns: A Case Study in Chaiyaphum Province, Thailand. Sustainability 2017, 9, 1524. [Google Scholar] [CrossRef]
- Nuraeefar, K.; Parashkoohi, M.G.; Zamani, D.M. Enhancing the efficiency of energy use and reducing the environmental effects of alfalfa and silage barley production. Environ. Sustain. Indic. 2024, 22, 100348. [Google Scholar] [CrossRef]
- Pardo, J.J.; Domínguez, A.; Léllis, B.C.; Montoya, F.; Tarjuelo, J.M.; Martínez-Romero, A. Effect of the optimized regulated deficit irrigation methodology on quality, profitability and sustainability of barley in water scarce areas. Agric. Water Manag. 2022, 266, 107573. [Google Scholar] [CrossRef]
- Alayna, A.; Jacobs, A.A.; Evans, R.S.; Allison, J.K.; Kingery, W.L.; McCulley, R.L.; Brye, K.R. Tillage and Cover Crop Systems Alter Soil Particle Size Distribution in Raised-Bed-and-Furrow Row-Crop Agroecosystems. Soil Syst. 2024, 8, 6. [Google Scholar] [CrossRef]
- Masseroni, D.; Ricart, S.; Ramirez De Cartagena, F.; Monserrat, J.; Gonçalves, J.M.; De Lima, I.; Facchi, A.; Sali, G.; Gandolfi, C. Prospects for Improving Gravity-Fed Surface Irrigation Systems in Mediterranean European Contexts. Water 2017, 9, 20. [Google Scholar] [CrossRef]
- Kurniawan, S.B.; Imron, M.F.; Abdullah, S.R.S.; Othman, A.R.; Purwanti, I.F.; Hasan, H.A. Treatment of real aquaculture effluent using bacteria-based bioflocculant produced by Serratia marcescens. J. Water Process Eng. 2022, 47, 102708. [Google Scholar] [CrossRef]
- Yang, W.Z.; Kang, Y.H.; Feng, Z.W.; Gu, P.; Wen, H.Y.; Liu, L.J. Potential for nitrous oxide emision mitigation from sprinkling irrigation applaications of chemical fertilizer compared to furrow irrigation in arid region agriculture. Appl. Ecol. Environ. Res. 2019, 17, 10963–10976. [Google Scholar] [CrossRef]
- Yang, W.; Jiao, Y.; Yang, M.; Wen, H.; Gu, P.; Yang, J.; Liu, L.; Yu, J. Minimizing Soil Nitrogen Leaching by Changing Furrow Irrigation into Sprinkler Fertigation in Potato Fields in the Northwestern China Plain. Water 2020, 12, 2229. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, H.X.; Wei, X.X.; Guo, Z.G. Effect of partial root-zone drying irrigation (PRDI) on alfalfa available soil P. Arch. Agron. Soil Sci. 2023, 69, 2631–2644. [Google Scholar] [CrossRef]
- Vaulin, A.Y. A new innovative irrigation method for wood, shrub crops and grapes. IOP Conf. Ser. Earth Environ. Sci. 2022, 949, 012089. [Google Scholar] [CrossRef]
- Moursy, M.A.M.; ElFetyany, M.; Meleha, A.M.I.; El-Bialy, M.A. Productivity and profitability of modern irrigation methods through the application of on-farm drip irrigation on some crops in the Northern Nile Delta of Egypt. Alex. Eng. J. 2023, 62, 349–356. [Google Scholar] [CrossRef]
- Arnold Bruns, H.; Young, L.D. Raised Seedbeds for Soybean in Twin Rows Increase Yields over Flat Seedbeds. Crop Manag. Res. 2012, 11, 1–7. [Google Scholar] [CrossRef]
- dos Santos, E.A.; Fortini, R.M.; Cardoso, L.C.B.; Zanuncio, J.C. Climate change in Brazilian agriculture: Vulnerability and adaptation assessment. Int. J. Environ. Sci. Technol. 2023, 20, 10713–10730. [Google Scholar] [CrossRef]
- Sabale, R.; Venkatesh, B.; Jose, M. Sustainable water resource management through conjunctive use of groundwater and surface water: A review. Innov. Infrastruct. Solut. 2023, 8, 17. [Google Scholar] [CrossRef]
- Mawof, A.; Prasher, S.O.; Bayen, S.; Anderson, E.C.; Nzediegwu, C.; Patel, R. Barley Straw Biochar and Compost Affect Heavy Metal Transport in Soil and Uptake by Potatoes Grown under Wastewater Irrigation. Sustainability 2022, 14, 5665. [Google Scholar] [CrossRef]
- Kamran, M.; Yan, Z.; Chang, S.; Chen, X.; Ahmad, I.; Jia, Q.; Ghani, M.U.; Nouman, M.; Hou, F. Enhancing resource use efficiency of alfalfa with appropriate irrigation and fertilization strategy mitigate greenhouse gases emissions in the arid region of Northwest China. Field Crops Res. 2022, 289, 108715. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Y.; Sheng, Z.; Manevski, K.; Andersen, M.N.; Han, S.; Li, H.; Yang, Y. Did water-saving irrigation protect water resources over the past 40 years? A global analysis based on water accounting framework. Agric. Water Manag. 2021, 249, 106793. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Rolbiecki, R.; Sadan, H.A.; Jagosz, B.; Kasperska-Wołowicz, W.; Kanecka-Geszke, E.; Pal-Fam, F.; Atilgan, A.; Krakowiak-Bal, A.; Kuśmierek-Tomaszewska, R.; et al. Sustainable Water Management of Drip-Irrigated Asparagus under Conditions of Central Poland: Evapotranspiration, Water Needs and Rainfall Deficits. Sustainability 2024, 16, 966. [Google Scholar] [CrossRef]
- Nozari, H.; Liaghat, A.M.; Azadi, S. Management of agricultural saline drainage using system dynamics approach. Water Environ. J. 2022, 36, 299–307. [Google Scholar] [CrossRef]
- Yazdanpanah, M.; Klein, K.; Zobeidi, T.; Sieber, S. Why Have Economic Incentives Failed to Convince Farmers to Adopt Drip Irrigation in Southwestern Iran? Sustainability 2022, 14, 2055. [Google Scholar] [CrossRef]
- Bodor, A.; Feigl, G.; Kolossa, B.; Mészáros, E.; Laczi, K.; Kovács, E.; Perei, K.; Rákhely, G. Soils in distress: The impacts and ecological risks of (micro)plastic pollution in the terrestrial environment. Ecotoxicol. Environ. Saf. 2024, 269, 115807. [Google Scholar] [CrossRef] [PubMed]
- Castro-Amoedo, R.; Granacher, J.; Kantor, I.; Dahmen, A.; Barbosa-Povoa, A.; Maréchal, F. On the role of system integration in plastic waste management. Resour. Conserv. Recycl. 2024, 201, 107295. [Google Scholar] [CrossRef]
- Lwanga, E.H.; Beriot, N.; Corradini, F.; Silva, V.; Yang, X.; Baartman, J.; Rezaei, M.; van Schaik, L.; Riksen, M.; Geissen, V. Review of microplastic sources, transport pathways and correlations with other soil stressors: A journey from agricultural sites into the environment. Chem. Biol. Technol. Agric. 2022, 9, 20. [Google Scholar] [CrossRef]
- Rahmana, M.R.; Bin Bakria, M.K.; Jayamani, E.; Chowdhury, F.I. Impact of recycled plastic biocomposites on the economy and socioenvironment. In Recycled Plastic Biocomposites; Woodhead Publishing: Cambridge, UK, 2022; pp. 247–259. [Google Scholar] [CrossRef]
- Ju, H.; Liu, Y.; Zhang, S. Interprovincial agricultural water footprint in China: Spatial pattern, driving forces and implications for water resource management. Sustain. Prod. Consum. 2023, 43, 264–277. [Google Scholar] [CrossRef]
- Feng, T.; Xiong, R.; Huan, P. Productive use of natural resources in agriculture: The main policy lessons. Resour. Policy 2023, 85 Pt A, 103793. [Google Scholar] [CrossRef]
- Cahn, M.; Robert Hutmacher, R. Subsurface drip irrigation. In Microirrigation for Crop Production Design, Operation and Management, 2nd ed.; Ayars, J.E., Zaccaria, D., Bali, K.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 257–301. [Google Scholar] [CrossRef]
- Or, D.; Warrick, A.W. Soil water concepts. In Microirrigation for Crop Production Design, Operation and Management, 2nd ed.; Ayars, J.E., Zaccaria, D., Bali, K.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 21–40. [Google Scholar] [CrossRef]
- Quach, M.; Mele, P.M.; Hayden, H.L.; Marshall, A.J.; Mann, L.; Hua, H.W.; He, J.Z. Proximity to subsurface drip irrigation emitters altered soil microbial communities in two commercial processing tomato fields. Appl. Soil Ecol. 2022, 171, 104315. [Google Scholar] [CrossRef]
- Rolbiecki, R.; Sadan, H.; Rolbiecki, S.; Jagosz, B.; Szczepanek, M.; Figas, A.; Atilgan, A.; Pal-Fam, F.; Pańka, D. Effect of Subsurface Drip Fertigation with Nitrogen on the Yield of Asparagus Grown for the Green Spears on a Light Soil in Central Poland. Agronomy 2022, 12, 241. [Google Scholar] [CrossRef]
- Wang, J.; Du, Y.; Niu, W.; Han, J.; Li, Y.; Yang, P. Drip irrigation mode affects tomato yield by regulating root–soil–microbe interactions. Agric. Water Manag. 2022, 260, 107188. [Google Scholar] [CrossRef]
- Devkota, K.P.; Devkota, M.; Rezaei, M.; Oosterbaan, R. Managing salinity for sustainable agricultural production in salt-affected soils of irrigated drylands. Agric. Syst. 2022, 198, 103390. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, S.; Miao, Q.; Feng, L.; Chi, Z.; Li, Z.; Li, W. Effect of Subsurface Drainage in Regulating Water on Desalinization and Microbial Communities in Salinized Irrigation Soils. Agronomy 2024, 14, 282. [Google Scholar] [CrossRef]
- Yang, F.; Wu, P.; Zhang, L.; Liu, Q.; Zhou, W.; Liu, X. Subsurface irrigation with ceramic emitters improves the yield of wolfberry in saline soils by maintaining a stable low-salt environment in root zone. Sci. Hortic. 2023, 319, 112181. [Google Scholar] [CrossRef]
- Yang, F.; Wu, P.; Zhang, L.; Wie, Y.; Tong, X.; Wang, Z. Effects of subsurface irrigation types on root distribution, leaf photosynthetic characteristics, and yield of greenhouse tomato. Sci. Hortic. 2024, 328, 112883. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, L.; Liu, Q.; Yang, F.; Han, M.; Yao, S. Subsurface irrigation with ceramic emitters: Optimal working water head improves yield, fruit quality and water productivity of greenhouse tomato. Sci. Hortic. 2023, 310, 111712. [Google Scholar] [CrossRef]
- Cai, Y.; Wu, P.; Zhu, D.; Zhang, L.; Zhao, X.; Gao, X.; Ge, M.; Song, X.; Wu, Y.; Dai, Z. Subsurface irrigation with ceramic emitters: An effective method to improve apple yield and irrigation water use efficiency in the semiarid Loess Plateau. Agric. Ecosyst. Environ. 2021, 313, 107404. [Google Scholar] [CrossRef]
- Selvaraj, S.K.; Kumar, S.; Balamurugan, K.; Joany, R.M.; Dorothy, R.; Nguyen, T.A.; Rajendran, S. Wireless nanosensor network for irrigation control. In Nanosensors for Smart Agriculture; Elsevier: Amsterdam, The Netherlands, 2022; pp. 463–478. [Google Scholar] [CrossRef]
- Kalli, R.; Jena, P.R.; Timilsina, R.R.; Rahut, D.B.; Sonobe, T. Effect of irrigation on farm efficiency in tribal villages of Eastern India. Agric. Water Manag. 2024, 291, 108647. [Google Scholar] [CrossRef]
- Reuben, T.N.; Fiwa, L.; Sanjika, T.M.; Singa, D.D.; Mwepa, G.; Chipula, G. Soil and Irrigation Water Quality Evaluation: Case of Katumba Irrigation Scheme in Malawi. SSRN Electron. J. 2022, 1–28. [Google Scholar] [CrossRef]
- Mermer, S.; Tait, G.; Pfab, F.; Mirandola, E.; Bozaric, A.; Thomas, C.D.; Moeller, M.; Oppenheimer, K.G.; Xue, L.; Wang, L.; et al. Comparative Insecticide Application Techniques (MicroSprinkler) Against Drosophila suzukii Matsumura (Diptera:Drosophilidae) in Highbush Blueberry. Environ. Entomol. 2022, 51, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Parlakova Karagoz, F.; Dursun, A.; Karaşal, M. A review: Use of soilless culture techniques in ornamental plants. Ornam. Hortic. 2022, 28, 172–180. [Google Scholar] [CrossRef]
- Zhuravleva, L. Technical and technological Solutions for environmentally safe Irrigation with wide-reach Sprinklers. E3S Web Conf. 2023, 463, 02012. [Google Scholar] [CrossRef]
- Pan, Q.; Lu, Y.; Hu, H.; Hu, Y. Review and research prospects on sprinkler irrigation frost protection for horticultural crops. Sci. Hortic. 2024, 326, 112775. [Google Scholar] [CrossRef]
- Chauhdary, J.N.; Li, H.; Jiang, Y.; Pan, X.; Hussain, Z.; Javaid, M.; Rizwan, M. Advances in Sprinkler Irrigation: A Review in the Context of Precision Irrigation for Crop Production. Agronomy 2024, 14, 47. [Google Scholar] [CrossRef]
- Grigorieva, E.; Livenets, A.; Stelmakh, E. Adaptation of Agriculture to Climate Change: A Scoping Review. Climate 2023, 11, 202. [Google Scholar] [CrossRef]
- Bhavsar, D.; Limbasia, B.; Mori, Y.; Aglodiya, M.I.; Shah, M. A comprehensive and systematic study in smart drip and sprinkler irrigation systems. Smart Agric. Technol. 2023, 5, 100303. [Google Scholar] [CrossRef]
- Zhu, X. Review of Intelligent Sprinkler Irrigation Technologies for Autonomous and Remote Sensing System. In Dynamic Fluidic Sprinkler and Intelligent Sprinkler Irrigation Technologies; Smart Agriculture; Springer: Singapore, 2023; Volume 3. [Google Scholar] [CrossRef]
- Sharma, K.; Rajan, S.; Nayak, S.K. Water pollution: Primary sources and associated human health hazards with special emphasis on rural areas. In Water Resources Management for Rural Development Challenges and Mitigation; Madhav, S., Srivastav, A.L., Izah, S.C., van Hullebusch, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 3–14. [Google Scholar] [CrossRef]
- Capetillo-Contreras, O.; Pérez-Reynoso, F.D.; Zamora-Antuñano, M.A.; Álvarez-Alvarado, J.M.; Rodríguez-Reséndiz, J. Artificial Intelligence-Based Aquaculture System for Optimizing the Quality of Water: A Systematic Analysis. J. Mar. Sci. Eng. 2024, 12, 161. [Google Scholar] [CrossRef]
- Tran, N.; Shikuku, K.M.; Hoffmann, V.; Lagerkvist, C.J.; Pincus, L.; Akintola, S.L.; Fakoya, K.A.; Olagunjue, O.F.; Bailey, C. Are consumers in developing countries willing to pay for aquaculture food safety certification? Evidence from a field experiment in Nigeria. Aquaculture 2022, 550, 737829. [Google Scholar] [CrossRef]
- Verdegem, M.; Buschmann, A.H.; Win Latt, U.; Dalsgaard, A.J.T.; Lovatelli, A. The contribution of aquaculture systems to global aquaculture production. J. World Aquac. Soc. 2023, 54, 206–250. [Google Scholar] [CrossRef]
- Rector, M.E.; Filgueira, R.; Bailey, M.; Walker, T.R.; Grant, J. Sustainability outcomes of aquaculture eco-certification: Challenges and opportunities. Rev. Aquac. 2023, 15, 840–852. [Google Scholar] [CrossRef]
- Jiang, Q.; Bhattarai, N.; Pahlow, M.; Xu, Z. Environmental sustainability and footprints of global aquaculture. Resour. Conserv. Recycl. 2022, 180, 106183. [Google Scholar] [CrossRef]
- Nagaraju, T.V.; Bala, G.S.; Bonthu, S.; Mantena, S. Modelling biochemical oxygen demand in a large inland aquaculture zone of India: Implications and insights. Sci. Total Environ. 2024, 906, 167386. [Google Scholar] [CrossRef]
- Zaibel, I.; Arnon, S.; Zilberg, D. Treated municipal wastewater as a water source for sustainable aquaculture: A review. Rev. Aquac. 2022, 14, 362–377. [Google Scholar] [CrossRef]
- Pahlow, M.; van Oel, P.R.; Mekonnen, M.M.; Hoekstra, A.Y. Increasing pressure on freshwater resources due to terrestrial feed ingredients for aquaculture production. Sci. Total Environ. 2015, 536, 847–857. [Google Scholar] [CrossRef] [PubMed]
- Naylor, R.L.; Goldburg, R.J.; Primavera, J.H.; Kautsky, N.; Beveridge, M.C.M.; Clay, J.; Folke, C.; Lubchenco, J.; Mooney, H.; Troell, M. Effect of aquaculture on world fish supplies. Nature 2000, 405, 1017–1024. [Google Scholar] [CrossRef]
- Bohnes, F.A.; Hauschild, M.Z.; Schlundt, J.; Nielsen, M.; Laurent, A. Environmental sustainability of future aquaculture production: Analysis of Singaporean and Norwegian policies. Aquaculture 2022, 549, 737717. [Google Scholar] [CrossRef]
- Garlock, T.; Asche, F.; Anderson, J.; Bjørndal, T.; Kumar, G.; Lorenzen, K.; Ropicki, A.; Smith, M.D.; Tveterås, R. A Global Blue Revolution: Aquaculture Growth Across Regions, Species, and Countries. Rev. Fish. Sci. Aquac. 2020, 28, 107–116. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture. In Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar]
- Madsen, H.; Stauffer, J.R., Jr. Aquaculture of Animal Species: Their Eukaryotic Parasites and the Control of Parasitic Infections. Biology 2024, 13, 41. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Khan, M.A.; Nielsen, R.; Kumar, G.; Takibur Rahman, M.d.T. Review of environmental challenges in the Bangladesh aquaculture industry. Environ. Sci. Pollut. Res. 2024, 31, 8330–8340. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Córdova, L.R.; Robles-Porchas, G.R.; Vargas-Albores, F.; Porchas-Cornejo, M.A.; Martínez-Porchas, M. Microbial bioremediation of aquaculture effluents. In Microbial Biodegradation and Bioremediation; Elsevier: Amsterdam, The Netherlands, 2022; pp. 409–417. [Google Scholar] [CrossRef]
- Lai, W.W.P.; Lin, Y.C.; Wang, Y.H.; Guo, Y.L.; Lin, A.Y.C. Occurrence of Emerging Contaminants in Aquaculture Waters: Cross-Contamination between Aquaculture Systems and Surrounding Waters. Water Air Soil. Pollut. 2018, 229, 229. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.; Chen, J.; Jin, H.; Wang, T.; Zhu, W.; Li, L. Underestimated nutrient from aquaculture ponds to Lake Eutrophication: A case study on Taihu Lake Basin. J. Hydrol. 2024, 630, 130749. [Google Scholar] [CrossRef]
- Vijayaram, S.; Ringø, F.; Ghafarifarsani, H.; Hoseinifar, S.H.; Ahani, S.; Chou, C.C. Use of Algae in Aquaculture: A Review. Fishes 2024, 9, 63. [Google Scholar] [CrossRef]
- Geng, B.; Li, Y.; Liu, X.; Ye, J.; Guo, W. Efective treatment of aquaculture wastewater with mussel/microalgae/bacteria complex ecosystem: A pilot study. Sci. Rep. 2022, 12, 2263. [Google Scholar] [CrossRef] [PubMed]
- Bohnes, F.A.; Hauschild, M.Z.; Schlundt, J.; Laurent, A. Life cycle assessments of aquaculture systems: A critical review of reported findings with recommendations for policy and system development. Rev. Aquac. 2019, 11, 1061–1079. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Chin, J.Y.; Mohd Harun, M.H.Z.; Low, S.C. Environmental impacts and imperative technologies towards sustainable treatment of aquaculture wastewater: A review. J. Water Process Eng. 2022, 46, 102553. [Google Scholar] [CrossRef]
- Leung, K.M.Y.; Yeung, K.W.Y.; You, J.; Choi, K.; Zhang, X.; Smith, R.; Zhou, G.J.; Yung, M.M.N.; Arias-Barreiro, C.; An, Y.J.; et al. Toward Sustainable Environmental Quality: Priority Research Questions for Asia. Environ. Toxicol. Chem. 2020, 39, 1485–1505. [Google Scholar] [CrossRef]
- Cooney, R.; Tahar, A.; Kennedy, A.; Clifford, E. Impact and recovery of water quality in a river with salmon aquaculture. Aquac. Fish Fish. 2024, 4, e142. [Google Scholar] [CrossRef]
- Brooks, B.W.; Conkle, J.L. Commentary: Perspectives on aquaculture, urbanization and water quality. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019, 217, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Fedorova, G.; Grabic, R.; Grabicová, K.; Turek, J.; Van Nguyen, T.; Randak, T.; Brooks, B.W.; Zlabek, V. Water reuse for aquaculture: Comparative removal efficacy and aquatic hazard reduction of pharmaceuticals by a pond treatment system during a one year study. J. Hazard. Mater. 2022, 421, 126712. [Google Scholar] [CrossRef] [PubMed]
- Penserini, L.; Moretti, A.; Mainardis, M.; Cantoni, B.; Antonelli, M. Tackling climate change through wastewater reuse in agriculture: A prioritization methodology. Sci. Total Environ. 2024, 914, 169862. [Google Scholar] [CrossRef] [PubMed]
- Ting, K.H.; Lin, K.L.; Jhan, H.T.; Huang, T.J.; Wang, C.M.; Liu, W.H. Application of a Sustainable Fisheries Development Indicator System for Taiwan’s Aquaculture Industry. Aquaculture 2015, 437, 398–407. [Google Scholar] [CrossRef]
- Krisht, G.; Said, R.B.; Aboujaoude, L.; Hajjar, T.; Kamaleddine, F.; Soufi, A.R.; Bashour, I.; Yanni, S.F.; Mohtar, R.; Dare, A. Irrigating with Treated Wastewater. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Ramírez-Morales, D.; Masís-Mora, M.; Montiel-Mora, J.R.; Méndez-Rivera, M.; Gutiérrez-Quirós, J.A.; Brenes-Alfaro, L.; Rodríguez-Rodríguez, C.E. Pharmaceuticals, hazard and ecotoxicity in surface and wastewater in a tropical dairy production area in Latin America. Chemosphere 2024, 346, 140443. [Google Scholar] [CrossRef] [PubMed]
- Hossain, A.; Habibullah-Al-Mamun, M.; Nagano, I.; Masunaga, S.; Kitazawa, D.; Matsuda, H. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: Risks, current concern, and future thinking. Environ. Sci. Pollut. Res. 2022, 29, 11054–11075. [Google Scholar] [CrossRef] [PubMed]
- Wan Mahari, W.A.; Waiho, K.; Azwar, E.; Fazhan, H.; Peng, W.; Ishak, S.D.; Tabatabaei, M.; Yek, P.N.Y.; Almomani, F.; Aghbashlo, M.; et al. A state-of-the-art review on producing engineered biochar from shellfish waste and its application in aquaculture wastewater treatment. Chemosphere 2022, 288, 132559. [Google Scholar] [CrossRef] [PubMed]
- Aranda-Vega, Y.; Pankaj Bhatt, P.; Huang, J.Y.; Brown, P.; Bhasin, A.; Hussain, A.S.; Simsek, H. Biodegradability and bioavailability of dissolved substances in aquaculture effluent: Performance of indigenous bacteria, cyanobacteria, and green microalgae. Environ. Pollut. 2024, 345, 123468. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.d.O.; Kashem, M.A.; Nayan, A.A.; Akter, M.F.; Rabbi, F.; Ahmed, M.; Asaduzzaman, M. Internet of Things (IoT) Based ECG System for Rural Health Care. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 470–477. [Google Scholar] [CrossRef]
- Fathoni, H.; Yang, C.T.; Huang, C.Y.; Chen, C.Y. Empowered edge intelligent aquaculture with lightweight Kubernetes and GPU-embedded. Wirel. Netw. 2024. [Google Scholar] [CrossRef]
- Jafari, L.; Montjouridès, M.A.; Diesen Hosfeld, C.; Attramadal, K.; Fivelstad, S.; Dahle, H. Biofilter and degasser performance at different alkalinity levels in a brackish water pilot scale recirculating aquaculture system (RAS) for post-smolt Atlantic salmon. Aquac. Eng. 2024, 106, 102407. [Google Scholar] [CrossRef]
- Liu, W.; Yang, Y.; Li, X.; Fan, X. Enhanced biofiltration coupled with ultrafiltration process in marine recirculating aquaculture system: Fast start-up of nitrification and long-term performance. J. Water Process Eng. 2024, 58, 104901. [Google Scholar] [CrossRef]
- Okomoda, V.T.; Oladimeji, S.A.; Solomon, S.G.; Olufeagba, S.O.; Ogah, S.I.; Ikhwanuddin, M. Aquaponics production system: A review of historical perspective, opportunities, and challenges of its adoption. Food Sci. Nutr. 2023, 11, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Pueppke, S.G.; Nurtazin, S.; Ou, W. Water and Land as Shared Resources for Agriculture and Aquaculture: Insights from Asia. Water 2020, 12, 2787. [Google Scholar] [CrossRef]
- Wahyu Sejati, W.; Akbar, T.T. Optimization Study of Cropping Pattern in the Klakah Irrigation Area, Lumajang Regency, Using Linear Programming. ADI J. Recent. Innov. 2023, 5, 136–145. [Google Scholar] [CrossRef]
- Pantjara, B.; Novriadi, R.; Hendrajat, E.A.; Herlinah, H.; Reynalta, R.; Prihadi, T.H.; Kristanto, A.H.; Syah, R.; Subagja, J.; Widyastuti, Y.R. Juvenile production technology for tiger shrimp, Penaeus monodon, through different stocking density using a recirculation system. J. World Aquac. Soc. 2024, 55, e13055. [Google Scholar] [CrossRef]
- Al-Zahrani, M.S.; Hassanien, H.A.; Alsaade, F.W.; Wahsheh, H.A.M. Sustainability of Growth Performance, Water Quality, and Productivity of Nile Tilapia-Spinach Affected by Feeding and Fasting Regimes in Nutrient Film Technique-Based Aquaponics. Sustainability 2024, 16, 625. [Google Scholar] [CrossRef]
- Palm, H.W.; Knaus, U.; Kotzen, B. Aquaponics nomenclature matters: It is about principles and technologies and not as much about coupling. Rev. Aquac. 2024, 16, 473–490. [Google Scholar] [CrossRef]
- Turcios, A.E.; Papenbrock, J. Sustainable Treatment of Aquaculture Effluents—What Can We Learn from the Past for the Future? Sustainability 2014, 6, 836–856. [Google Scholar] [CrossRef]
- Masabni, J.; Niu, G. Aquaponics. In Plant Factory Basics, Applications and Advances; Academic Press: Cambridge, MA, USA, 2022; pp. 167–180. [Google Scholar] [CrossRef]
- Pinho, S.; Meneses Leal, M.; Shaw, C.; Baganz, D.; Baganz, G.; Staaks, G.; Kloas, W.; Oliver Körner, O.; Monsees, H. Insect-based fish feed in decoupled aquaponic systems: Effect on lettuce production and resource use. PLoS ONE 2024, 19, e0295811. [Google Scholar] [CrossRef]
- Fedorova, V.; Shvydchenko, S.; Dubovik, I.; Shvydchenko, D. The method of complex biological water treatment in aquaponic recirculation systems. BIO Web Conf. 2024, 84, 05043. [Google Scholar] [CrossRef]
- Goddek, S.; Delaide, B.; Mankasingh, U.; Ragnarsdottir, K.V.; Jijakli, H.; Thorarinsdottir, R. Challenges of Sustainable and Commercial Aquaponics. Sustainability 2015, 7, 4199–4224. [Google Scholar] [CrossRef]
- Rakocy, J.E.; Masser, M.P.; Losordo, T.M. Recirculating aquaculture tank production systems: Aquaponics-Integrating fish and plant culture. SRAC Publ. 2006, 454, 344–386. [Google Scholar]
- Tokunaga, K.; Tamaru, C.; Ako, H.; Leung, P.S. Economics of Small-scale Commercial Aquaponics in Hawai‘i. J. World Aquac. Soc. 2015, 46, 20–32. [Google Scholar] [CrossRef]
- Channa, A.A.; Munir, K.; Hansen, M.; Tariq, M.F. Optimisation of Small-Scale Aquaponics Systems Using Artificial Intelligence and the IoT: Current Status, Challenges, and Opportunities. Encyclopedia 2024, 4, 313–336. [Google Scholar] [CrossRef]
- Körner, O.; Bisbis, M.B.; Baganz, G.F.M.; Baganz, D.; Staaks, G.B.O.; Monsees, H.; Goddek, S.; Keesman, K.J. Environmental impact assessment of local decoupled multi-loop aquaponics in an urban context. J. Clean. Prod. 2021, 313, 127735. [Google Scholar] [CrossRef]
- Papadopoulos, D.K.; Lattos, A.; Chatzigeorgiou, I.; Tsaballa, A.; Ntinas, G.K.; Giantsis, I.A. The Influence of Water Nitrate Concentration Combined with Elevated Temperature on Rainbow Trout Oncorhynchus mykiss in an Experimental Aquaponic Setup. Fishes 2024, 9, 74. [Google Scholar] [CrossRef]
- Patloková, K.; Pokluda, R. Optimization of Plant Nutrition in Aquaponics: The Impact of Trichoderma harzianum and Bacillus mojavensis on Lettuce and Basil Yield and Mineral Status. Plants 2024, 13, 291. [Google Scholar] [CrossRef] [PubMed]
- Ibarra, M.J.; Alcarraz, E.W.; Tapia, O.; Ponce, Y.; Calderon-Vilca, H.D.; Quispe, C.R. A Comparison of Cultivation Techniques NFT-I, FR and Soil: An IoT Monitoring Approach. In Proceedings of International Conference on Data Science and Applications; Saraswat, M., Roy, S., Chowdhury, C., Gandomi, A.H., Eds.; Lecture Notes in Networks and Systems; Springer: Berlin/Heidelberg, Germany, 2022; Volume 288. [Google Scholar] [CrossRef]
- Sarmiento Guevara, G.A. Acuaponia Implementacion de un modelo acuaponico para el control y monitoreo mediante herramientas TIC’S e IOT en un cultivo modular en Villavicencio. Doc. Trab. ECBTI 2020, 1, 1–19. [Google Scholar]
- Knaus, U.; Zimmermann, J.; Appelbaum, S.; Palm, H.W. Spearmint (Mentha spicata) Cultivation in Decoupled Aquaponics with Three Hydro-Components (Grow Pipes, Raft, Gravel) and African Catfish (Clarias gariepinus) Production in Northern Germany. Sustainability 2022, 14, 305. [Google Scholar] [CrossRef]
- Sathyan, A.; Muthukumaraswamy, S.A.; Rahman, H. On the Study and Analysis of Automated Aquaponics System Using AVR Microcontroller. In Intelligent Manufacturing and Energy Sustainability. Smart Innovation; Reddy, A.N.R., Marla, D., Favorskaya, M.N., Satapathy, S.C., Eds.; Systems and Technologies; Springer: Berlin/Heidelberg, Germany, 2022; Volume 265. [Google Scholar] [CrossRef]
- Khokhar, N.H.; Panhwar, S.; Keerio, H.A.; Ali, A.; Hassan, S.S.; Uddin, S. Wastewater and Reuse for Agriculture. In Application of Nanotechnology for Resource Recovery from Wastewater, 1st ed.; Pandey, J.K., Tauseef, S.M., Manna, S., Patel, R.K., Singh, V.K., Dasgotra, A., Eds.; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar] [CrossRef]
- Goddek, S.; Joyce, A.; Wuertz, S.; Körner, O.; Bläser, I.; Reuter, M.; Keesman, K.J. Decoupled Aquaponics Systems. In Aquaponics Food Production Systems; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 201–229. [Google Scholar] [CrossRef]
- Gagnon, V.; Maltais-Landry, G.; Puigagut, J.; Chazarenc, F.; Brisson, J. Treatment of Hydroponics Wastewater Using Constructed Wetlands in Winter Conditions. Water Air Soil. Pollut. 2010, 212, 483–490. [Google Scholar] [CrossRef]
- Yuan, T.; Lin, Z.B.; Cheng, S.; Wang, R.; Lu, P. Removal of Sulfonamide Resistance Genes in Fishery Reclamation Mining Subsidence Area by Zeolite. Int. J. Environ. Res. Public Health 2022, 19, 4281. [Google Scholar] [CrossRef]
- Vanham, D.; Leip, A.; Galli, A.; Kastner, T.; Bruckner, M.; Uwizeye, A.; van Dijk, K.; Ercin, E.; Dalin, C.; Brandão, M.; et al. Environmental footprint family to address local to planetary sustainability and deliver on the SDGs. Sci. Total Environ. 2019, 693, 133642. [Google Scholar] [CrossRef] [PubMed]
- Joyce, A.; Goddek, S.; Kotzen, B.; Wuertz, S. Aquaponics: Closing the Cycle on Limited Water, Land and Nutrient Resources. In Aquaponics Food Production Systems; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer: Cham, Switzerland, 2019; pp. 19–34. [Google Scholar] [CrossRef]
- D’Ambrosio, E.; De Girolamo, A.M.; Rulli, M.C. Assessing sustainability of agriculture through water footprint analysis and in-stream monitoring activities. J. Clean. Prod. 2018, 200, 454–470. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. PNAS Environ. Sci. 2012, 109, 3232–3237. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Zhuo, L.; Xie, D.; Mao, Y.; Gao, J.; Xie, P.; Wu, P. A quantitative review of water footprint accounting and simulation for crop production based on publications during 2002–2018. Ecol. Indic. 2021, 120, 106962. [Google Scholar] [CrossRef]
- Bigdeli Nalbandan, R.; Delavar, M.; Abbasi, H.; Zaghiyan, M.R. Model-based water footprint accounting framework to evaluate new water management policies. J. Clean. Prod. 2023, 382, 135220. [Google Scholar] [CrossRef]
- Cao, X.; Bao, Y.; Li, Y.; Li, J.; Wu, M. Unravelling the effects of crop blue, green and grey virtual water flows on regional agricultural water footprint and scarcity. Agric. Water Manag. 2023, 278, 108165. [Google Scholar] [CrossRef]
- Li, M.; Xu, Z.; Jiang, S.; Zhuo, L.; Gao, X.; Zhao, Y.; Liu, Y.; Wang, W.; Jin, J.; Wu, P. Non-negligible regional differences in the driving forces of crop-related water footprint and virtual water flows: A case study for the Beijing-Tianjin-Hebei region. J. Clean. Prod. 2021, 279, 123670. [Google Scholar] [CrossRef]
- Nouri, H.; Stokvis, B.; Galindo, A.; Blatchford, M.; Hoekstra, A.Y. Water scarcity alleviation through water footprint reduction in agriculture: The effect of soil mulching and drip irrigation. Sci. Total Environ. 2019, 653, 241–252. [Google Scholar] [CrossRef]
- Wang, L.; Yan, C.; Zhang, W.; Zhang, Y. Water Footprint Assessment of Agricultural Crop Productions in the Dry Farming Region, Shanxi Province, Northern China. Agronomy 2024, 14, 546. [Google Scholar] [CrossRef]
- Cai, J.; Xie, R.; Wang, S.; Deng, Y.; Sun, D. Patterns and driving forces of the agricultural water footprint of Chinese cities. Sci. Total Environ. 2022, 843, 156725. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Ward, J.D.; Thompson, S.; Saint, C.P.; Diana, J.S. Blue-Green Water Nexus in Aquaculture for Resilience to Climate Change. Rev. Fish. Sci. Aquac. 2018, 26, 139–154. [Google Scholar] [CrossRef]
- Cheng, Q.; Chen, F.; Wang, T. Study on the ecological water demand security assessment for the Panjin wetland based on landscape pattern. J. Water Clim. Change 2023, 14, 1268–1284. [Google Scholar] [CrossRef]
- Jiang, S.; Shi, B.; Zhu, D.; Cheng, X.; Zhou, Z.; Xie, J.; Chen, Z.; Sun, L.; Zhang, Y.; Xie, Y.; et al. Cross-contamination and ecological risk assessment of antibiotics between rivers and surrounding open aquaculture ponds. Environ. Pollut. 2024, 344, 123404. [Google Scholar] [CrossRef] [PubMed]
- Geng, B.; Wu, D.; Zhang, C.; Xie, W.; Mahmood, M.A.; Ali, Q. How Can the Blue Economy Contribute to Inclusive Growth and Ecosystem Resources in Asia? A Comparative Analysis. Sustainability 2024, 16, 429. [Google Scholar] [CrossRef]
- Shu, J.; Wang, J.; Chen, K.; Shen, Q.; Sun, H. Analysis of Factors Affecting Vacuum Formation and Drainage in the Siphon-Vacuum Drainage Method for Marine Reclamation. J. Mar. Sci. Eng. 2024, 12, 430. [Google Scholar] [CrossRef]
- Verdegem, M.C.J.; Bosma, R.H.; Verreth, J.A.J. Reducing Water Use for Animal Production through Aquaculture. Int. J. Water Resour. Dev. 2006, 22, 101–113. [Google Scholar] [CrossRef]
- Gephart, J.A.; Pace, M.L.; D’Odorico, P. Freshwater savings from marine protein consumpti. Environ. Res. Lett. 2014, 9, 014005. [Google Scholar] [CrossRef]
- Gao, X.; Xu, Y.; Shan, J.; Jiang, J.; Zhang, H.; Ni, Q.; Zhang, Y. Effects of different stocking density start-up conditions on water nitrogen and phosphorus use efficiency, production, and microbial composition in aquaponics systems. Aquaculture 2024, 585, 740696. [Google Scholar] [CrossRef]
- Dong, S.L.; Dong, Y.W. Sustainability of Aquaculture Production Systems. In Aquaculture Ecology; Dong, S.L., Tian, X.L., Gao, Q.F., Dong, Y.W., Eds.; Springer: Singapore, 2023; pp. 491–530. [Google Scholar] [CrossRef]
- Steglich, A.; Bürgow, G.; Million, A. Optimising Aquaculture/Aquaponics in Urban Agriculture: Developing Rooftop Water Farms; Burleigh Dodds Science Publishing: Cambridge, UK, 2020; pp. 303–330. [Google Scholar] [CrossRef]
- Mohanty, R.K.; Ambast, S.K.; Panigrahi, P.; Mandal, K.G. Water quality suitability and water use indices: Useful management tools in coastal aquaculture of Litopenaeus vannamei. Aquaculture 2018, 485, 210–219. [Google Scholar] [CrossRef]
- Ibrahim, L.A.; Shaghaleh, H.; El-Kassar, G.M.; Abu-Hashim, M.; Elsadek, E.A.; Hamoud, Y.A. Aquaponics: A Sustainable Path to Food Sovereignty and Enhanced Water Use Efficiency. Water 2023, 15, 4310. [Google Scholar] [CrossRef]
- El-Marsafawy, S.M.; Swelam, A.; Ghanem, A. Evolution of Crop Water Productivity in the Nile Delta over Three Decades (1985–2015). Water 2018, 10, 1168. [Google Scholar] [CrossRef]
- Bedasa, Y.; Deksisa, K. Food insecurity in East Africa: An integrated strategy to address climate change impact and violence conflict. J. Agric. Food Res. 2024, 15, 100978. [Google Scholar] [CrossRef]
- Burri, N.M.; Weatherl, R.; Moeck, C.; Schirmer, M. A review of threats to groundwater quality in the Anthropocene. Sci. Total Environ. 2019, 684, 136–154. [Google Scholar] [CrossRef]
- Mialyk, O.; Schyns, J.F.; Booij, M.J.; Hogeboom, R.J. Historical simulation of maize water footprints with a new global gridded crop model ACEA. HESS 2022, 26, 923–940. [Google Scholar] [CrossRef]
- Suleiman, M.K.; Shahid, S.A. Agricultural Water Footprint of Major Crops Grown in Kuwait Compared to the World Average: A Review. In Terrestrial Environment and Ecosystems of Kuwait; Suleiman, M.K., Shahid, S.A., Eds.; Springer: Cham, Switzerland, 2023; pp. 393–414. [Google Scholar] [CrossRef]
- Ertekin, C.; Comart, A.; Ekinci, K. Energy Analysis for Global Berry Fruit Production. Sustainability 2024, 16, 2520. [Google Scholar] [CrossRef]
- Kuchimanchi, B.R.; Ripoll-Bosch, R.; Steenstra, F.A.; Thomas, R.; Oosting, S.J. The impact of intensive farming systems on groundwater availability in dryland environments: A watershed level study from Telangana, India. Curr. Res. Environ. Sustain. 2023, 5, 100198. [Google Scholar] [CrossRef]
- Morchid, A.; Alblushi, I.G.M.; Khalid, H.M.; El Alami, R.; Sitaramanan, S.R.; Muyeen, S.M. High-technology agriculture system to enhance food security: A concept of smart irrigation system using Internet of Things and cloud computing. J. Saudi Soc. Agric. Sci. 2024; in press. [Google Scholar] [CrossRef]
- Rajkumar, H.; Naik, P.K.; Rishi, M.S. A comprehensive water quality index based on analytical hierarchy process. Ecol. Indic. 2022, 145, 109582. [Google Scholar] [CrossRef]
- Galappaththi, E.K.; Ichien, S.T.; Hyman, A.A.; Aubrac, C.J.; Ford, J.D. Climate change adaptation in aquaculture. Rev. Aquac. 2020, 12, 2160–2176. [Google Scholar] [CrossRef]
- Li, H.; Cui, Z.; Cui, H.; Bai, Y.; Yin, Z.; Qu, K. Hazardous substances and their removal in recirculating aquaculture systems: A review. Aquaculture 2023, 569, 739399. [Google Scholar] [CrossRef]
- Schyns, J.F.; Hoekstra, A.Y.; Booij, M.J.; Mekonnen, M.M. Limits to the world’s green water resources for food, feed, fiber, timber, and bioenergy. Proc. Natl. Acad. Sci. USA 2019, 116, 4893–4898. [Google Scholar] [CrossRef]
- Mundetia, N.; Sharma, D.; Sharma, A. Groundwater sustainability assessment under climate change scenarios using integrated modelling approach and multi-criteria decision method. Ecol. Model. 2024, 487, 110544. [Google Scholar] [CrossRef]
- Mamati, K.; Omare, S.G. Indigenous Knowledge Systems, Climate Change and Food Security: Perspectives from Bungoma County, Kenya. In Religion, Climate Change, and Food Security in Africa; Sustainable Development Goals Series; Maseno, L., Omona, D.A., Chitando, E., Chirongoma, S., Eds.; Palgrave Macmillan: Cham, Switzerland, 2024; pp. 201–218. [Google Scholar] [CrossRef]
- Goddek, S.; Keesman, K.J. Improving nutrient and water use efficiencies in multi-loop aquaponics systems. Aquac. Int. 2020, 28, 2481–2490. [Google Scholar] [CrossRef]
- Baganz, G.F.M.; Junge, R.; Portella, M.C.; Goddek, S.; Keesman, K.J.; Baganz, D.; Staaks, G.; Shaw, C.; Lohrberg, F.; Kloas, W. The aquaponic principle—It is all about coupling. Rev. Aquac. 2022, 14, 252–264. [Google Scholar] [CrossRef]
- Singh, R.R.; Hati, A.J. Soilless Smart Agriculture Systems for Future Climate. In Digital Agriculture; Priyadarshan, P.M., Jain, S.M., Penna, S., Al-Khayri, J.M., Eds.; Springer: Cham, Switzerland, 2024; pp. 61–111. [Google Scholar] [CrossRef]
- Hu, M.; Yu, Q.; Tang, H.; Wu, W. A new factorial sensitivity model for analyzing the impacts of climatic factors on crop water footprint. J. Clean. Prod. 2024, 434, 140194. [Google Scholar] [CrossRef]
- Kurniawan, S.; Novarini; Yuliwati, E.; Ariyanto, E.; Morsin, M.; Sanudin, R.; Nafisah, S. Greywater treatment technologies for aquaculture safety: Review. J. King Saud. Univ. Eng. Sci. 2023, 35, 327–334. [Google Scholar] [CrossRef]
Water Footprint | Characteristics |
---|---|
Green | Rainwater resources |
Seasonal water supply | |
Suitable for crop production | |
Blue | Surface and groundwater resources Evaporation effects |
Used in different production areas | |
Gray | Polluted water resources |
Outputs from production processes | |
High ecological impact |
System | Advantages | Disadvantages |
---|---|---|
Agricultural irrigation |
|
|
Aquaculture |
|
|
Aquaponics |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schoor, M.; Arenas-Salazar, A.P.; Parra-Pacheco, B.; García-Trejo, J.F.; Torres-Pacheco, I.; Guevara-González, R.G.; Rico-García, E. Horticultural Irrigation Systems and Aquacultural Water Usage: A Perspective for the Use of Aquaponics to Generate a Sustainable Water Footprint. Agriculture 2024, 14, 925. https://doi.org/10.3390/agriculture14060925
Schoor M, Arenas-Salazar AP, Parra-Pacheco B, García-Trejo JF, Torres-Pacheco I, Guevara-González RG, Rico-García E. Horticultural Irrigation Systems and Aquacultural Water Usage: A Perspective for the Use of Aquaponics to Generate a Sustainable Water Footprint. Agriculture. 2024; 14(6):925. https://doi.org/10.3390/agriculture14060925
Chicago/Turabian StyleSchoor, Mark, Ana Patricia Arenas-Salazar, Benito Parra-Pacheco, Juan Fernando García-Trejo, Irineo Torres-Pacheco, Ramón Gerardo Guevara-González, and Enrique Rico-García. 2024. "Horticultural Irrigation Systems and Aquacultural Water Usage: A Perspective for the Use of Aquaponics to Generate a Sustainable Water Footprint" Agriculture 14, no. 6: 925. https://doi.org/10.3390/agriculture14060925
APA StyleSchoor, M., Arenas-Salazar, A. P., Parra-Pacheco, B., García-Trejo, J. F., Torres-Pacheco, I., Guevara-González, R. G., & Rico-García, E. (2024). Horticultural Irrigation Systems and Aquacultural Water Usage: A Perspective for the Use of Aquaponics to Generate a Sustainable Water Footprint. Agriculture, 14(6), 925. https://doi.org/10.3390/agriculture14060925