Matrix-Matched Calibration for the Quantitative Analysis of Pesticides in Pepper and Wheat Flour: Selection of the Best Calibration Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. R Package
2.2. ChemACal Package
2.2.1. Evaluation of Linearity and Calibration Model
2.2.2. Selection of the Model of Calibration
2.2.3. Algorithm Used to Select the Best Model of Calibration
2.2.4. Calculation of the Matrix Effect
2.3. Pesticide Analysis
3. Results and Discussion
3.1. Evaluation of the Calibration Data
3.2. Graphical Visualization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, B.; Fan, Y.; Li, H.; Zhao, W.; Luo, S.; Wang, H.; Guan, B.; Li, Q.; Yue, J.; Dong, Z.; et al. Control the Entire Journey of Pesticide Application on Superhydrophobic Plant Surface by Dynamic Covalent Trimeric Surfactant Coacervation. Adv. Funct. Mater. 2021, 31, 2006606. [Google Scholar] [CrossRef]
- Eurostat. Pesticide Sales. Available online: https://ec.europa.eu/eurostat/databrowser/view/aei_fm_salpest09/default/table?lang=en (accessed on 3 May 2024).
- Veiga-del-Baño, J.M.; Cuenca-Martínez, J.J.; Andreo-Martínez, P.; Cámara, M.Á.; Oliva, J.; Motas, M. Uncertainty and associated risks in the analysis of pesticides in homogeneous paprika samples. Food Chem. 2023, 429, 136963. [Google Scholar] [CrossRef] [PubMed]
- EC. Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin and Amending Council Directive 91/414/EEC Text with EEA Relevance. 2005. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32005R0396 (accessed on 10 April 2024).
- Kuchheuser, P.; Birringer, M. Pesticide residues in food in the European Union: Analysis of notifications in the European Rapid Alert System for Food and Feed from 2002 to 2020. Food Control 2022, 133, 108575. [Google Scholar] [CrossRef]
- SANTE. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed SANTE 11312/2021 v2. 2021. Available online: https://food.ec.europa.eu/system/files/2023-11/pesticides_mrl_guidelines_wrkdoc_2021-11312.pdf (accessed on 15 April 2024).
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D. Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) approach for the determination of pesticide residues. In Proceedings of the 4th European Pesticide Residues Workshop (EWPR), Rome, Italy, 28–31 May 2002; Book of Abstracts. p. 51. [Google Scholar]
- European Standard EN 15662; Foods of Plant Origin-Determination of Pesticide Residues Using GC-MS and/or LC-MS/MS Following Acetonitrile Extraction/Partitioning and Clean-Up by Dispersive SPE-QuEChERS-Method. European Committee for Standardization. ECS: Newark, CA, USA, 2008. Available online: http://www.chromnet.net/Taiwan/QuEChERS_Dispersive_SPE/QuEChERS_%E6%AD%90%E7%9B%9F%E6%96%B9%E6%B3%95_EN156622008_E.pdf (accessed on 20 April 2024).
- Rutkowska, E.; Łozowicka, B.; Kaczyński, P. Three approaches to minimize matrix effects in residue analysis of multiclass pesticides in dried complex matrices using gas chromatography tandem mass spectrometry. Food Chem. 2019, 279, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Damale, R.D.; Dutta, A.; Shaikh, N.; Pardeshi, A.; Shinde, R.; Babu, K.D.; Gaikwad, N.N.; Banerjee, K. Multiresidue analysis of pesticides in four different pomegranate cultivars: Investigating matrix effect variability by GC-MS/MS and LC-MS/MS. Food Chem. 2023, 407, 135179. [Google Scholar] [CrossRef] [PubMed]
- Cuadros-Rodríguez, L.; García-Campaña, A.M.; Almansa-López, E.; Egea-González, F.J.; Lourdes Castro Cano, M.; Garrido Frenich, A.; Martínez-Vidal, J.L. Correction function on biased results due to matrix effects: Application to the routine analysis of pesticide residues. Anal. Chim. Acta 2003, 478, 281–301. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, J.; Qin, J.; Dou, X.; Luo, J.; Yang, M. Representative matrices for use in matrix-matched calibration in gas chromatography-mass spectrometry for the analysis of pesticide residues in different types of food-medicine plants. J. Food Compost. Anal. 2022, 111, 104617. [Google Scholar] [CrossRef]
- Zhao, J.; Pu, J.; Wu, X.; Chen, B.; He, Y.; Zhang, Y.; Han, B. Evaluation of the matrix effect of pH value and sugar content on the analysis of pesticides in tropical fruits by UPLC-MS/MS. Microchem. J. 2021, 168, 106375. [Google Scholar] [CrossRef]
- UNE-CEN/TS-17061; Foodstuffs—Guidelines for the Calibration and Quantitative Determination of Pesticide Residues and Organic Contaminants Using Chromatographic Methods (Endorsed by Asociación Española de Normalización in October of 2019). UNE: Armidale, NSW, Australia, 2019. Available online: https://www.normadoc.com/spanish/une-cen-ts-17061-2019.html (accessed on 15 April 2024).
- Cuadros-Rodríguez, L.; Gámiz-Gracia, L.; Almansa-López, E.M.; Bosque-Sendra, J.M. Calibration in chemical measurement processes. II. A methodological approach. TrAC Trends Anal. Chem. 2001, 20, 620–636. [Google Scholar] [CrossRef]
- ISO Guide 33:2015; Reference Materials. Good Practice in Using Reference Materials. ISO: Geneva, Switzerland, 2015. Available online: https://www.iso.org/standard/46212.html (accessed on 15 April 2024).
- Sloop, J.T.; Allen, S.C.; Carter, J.A.; Donati, G.L.; Jones, B.T. Matrix-matched two-point calibration based on the standard dilution analysis method. Microchem. J. 2021, 160, 105740. [Google Scholar] [CrossRef]
- Hoff, R.B.; Rübensam, G.; Jank, L.; Barreto, F.; Ruaro Peralba, M.d.C.; Pizzolato, T.M.; Silvia Díaz-Cruz, M.; Barceló, D. Analytical quality assurance in veterinary drug residue analysis methods: Matrix effects determination and monitoring for sulfonamides analysis. Talanta 2015, 132, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Zrostlíková, J.; Hajšlová, J.; Poustka, J.; Begany, P. Alternative calibration approaches to compensate the effect of co-extracted matrix components in liquid chromatography–electrospray ionisation tandem mass spectrometry analysis of pesticide residues in plant materials. J. Chromatogr. A 2002, 973, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Ikonomou, M.G.; Blades, A.T.; Kebarle, P. Investigations of the electrospray interface for liquid chromatography/mass spectrometry. Anal. Chem. 1990, 62, 957–967. [Google Scholar] [CrossRef]
- Carrera, M.A.; Sánchez, L.M.; Morales, M.M.; Fernández-Alba, A.R.; Hernando, M.D. Method optimisation for large scope pesticide multiresidue analysis in bee pollen: A pilot monitoring study. Food Chem. 2024, 436, 137652. [Google Scholar] [CrossRef] [PubMed]
- Parrilla Vázquez, P.; Ferrer, C.; Martínez Bueno, M.J.; Fernández-Alba, A.R. Pesticide residues in spices and herbs: Sample preparation methods and determination by chromatographic techniques. TrAC Trends Anal. Chem. 2019, 115, 13–22. [Google Scholar] [CrossRef]
- Huertas-Pérez, J.F.; Baslé, Q.; Dubois, M.; Theurillat, X. Multi-residue pesticides determination in complex food matrices by gas chromatography tandem mass spectrometry. Food Chem. 2024, 436, 137687. [Google Scholar] [CrossRef]
- Pszczolińska, K.; Shakeel, N.; Barchanska, H. A simple approach for pesticide residues determination in green vegetables based on QuEChERS and gas chromatography tandem mass spectrometry. J. Food Compost. Anal. 2022, 114, 104783. [Google Scholar] [CrossRef]
- Uclés, S.; Lozano, A.; Sosa, A.; Parrilla Vázquez, P.; Valverde, A.; Fernández-Alba, A.R. Matrix interference evaluation employing GC and LC coupled to triple quadrupole tandem mass spectrometry. Talanta 2017, 174, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Valverde, A.; Aguilera, A.; Valverde-Monterreal, A. Practical and valid guidelines for realistic estimation of measurement uncertainty in multi-residue analysis of pesticides. Food Control 2017, 71, 1–9. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. Informetrics 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Raposo, F. Evaluation of analytical calibration based on least-squares linear regression for instrumental techniques: A tutorial review. TrAC Trends Anal. Chem. 2016, 77, 167–185. [Google Scholar] [CrossRef]
- Logue, B.A.; Manandhar, E. Percent residual accuracy for quantifying goodness-of-fit of linear calibration curves. Talanta 2018, 189, 527–533. [Google Scholar] [CrossRef]
- Vankeerberghen, P.; Smeyers-Verbeke, J. The quality coefficient as a tool in decisions about the quality of calibration in graphite furnace atomic absorption spectrometry. Chemom. Intellig. Lab. Syst. 1992, 15, 195–202. [Google Scholar] [CrossRef]
- Huber, W. On the use of the correlation coefficient r for testing the linearity of calibration functions. Accredit. Qual. Assur. 2004, 9, 726. [Google Scholar] [CrossRef]
- Massart, D.L.; Vandeginste, B.G.; Buydens, L.M.C.; Lewi, P.J.; Smeyers-Verbeke, J.; De Jong, S. Handbook of Chemometrics and Qualimetrics: Part A; Elsevier Science Inc.: New York, NY, USA, 1997; Volume 20A. [Google Scholar]
- ISO 8466-1:2021; Water Quality—Calibration and Evaluation of Analytical Methods—Part 1: Linear Calibration Function. ISO: Geneva, Switzerland, 2021. Available online: https://www.iso.org/standard/77139.html (accessed on 22 April 2024).
- ISO 8466-2:2001; Water Quality. Calibration and Evaluation of Analytical Methods and Estimation of Performance Characteristics Part 2: Cali-bration Strategy for Non-Linear Second-Order Calibration Functions. ISO: Geneva, Switzerland, 2001. Available online: https://www.iso.org/standard/34816.html (accessed on 3 May 2024).
- ISO 11843-2:2000; Capability of Detection. Part 2: Methodology in the Linear Calibration Case. ISO: Geneva, Switzerland, 2000. Available online: https://www.iso.org/standard/20186.html (accessed on 20 April 2024).
- Lozano, A.; Rajski, Ł.; Uclés, S.; Belmonte-Valles, N.; Mezcua, M.; Fernández-Alba, A.R. Evaluation of zirconium dioxide-based sorbents to decrease the matrix effect in avocado and almond multiresidue pesticide analysis followed by gas chromatography tandem mass spectrometry. Talanta 2014, 118, 68–83. [Google Scholar] [CrossRef] [PubMed]
- UNE-EN 15662:2019; Foods of Plant Origin—Multimethod for the Determination of Pesticide Residues Using GC- and LC-Based Analysis Following Acetonitrile Extraction/Partitioning and Clean-Up by Dispersive SPE—Modular QuEChERS-Method. UNE: Armidale, NSW, Australia, 2019. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0061576 (accessed on 24 April 2024).
- Barbosa, P.G.A.; Martins, F.I.C.C.; Lima, L.K.; Milhome, M.A.L.; Cavalcante, R.M.; do Nascimento, R.F. Statistical analysis for quality adjustment of the analytical curve for determination of pesticide multiresidue in pineapple samples. Food Anal. Methods 2018, 11, 466–478. [Google Scholar] [CrossRef]
- Gomes, H.d.O.; Cardoso, R.d.S.; da Costa, J.G.M.; Andrade da Silva, V.P.; Nobre, C.d.A.; Teixeira, R.N.P.; do Nascimento, R.F. Statistical evaluation of analytical curves for quantification of pesticides in bananas. Food Chem. 2021, 345, 128768. [Google Scholar] [CrossRef]
- Hakme, E.; Koubeissy, A.; Katsikouli, P. Quantifying pesticide residues in food matrices using statistical methods. J. Food Compos. Anal. 2024, 132, 106305. [Google Scholar] [CrossRef]
Compound | Model | COD | GOF | Score |
---|---|---|---|---|
Chlorpropham | Linear | 2.27 | 1.5 | 43 |
Linear-Weighted | 0.53 | 1.5 | 86 | |
Second-order | 1.43 | 0.8 | 41 | |
Fenpropathrin | Linear | 3.13 | 2.1 | 33 |
Linear-Weighted | 0.645 | 2.3 | 77 | |
Second-order | 0.805 | 0.5 | 54 | |
Endimethalin | Linear | 4.6 | 3.1 | 9 |
Linear-Weighted | 0.964 | 3.5 | 65 | |
Second-order | 0.719 | 0.4 | 80 | |
Cypermethrin | Linear | 7.83 | 4.9 | 33 |
Linear-Weighted | 1.7 | 5.5 | 75 | |
Second-order | 1.97 | 1 | 56 | |
Cyproconazole | Linear | 2.98 | 2 | 64 |
Linear-Weighted | 0.766 | 2 | 66 | |
Second-order | 1.87 | 1.1 | 42 | |
Cyprodinil | Linear | 1.7 | 1.1 | 84 |
Linear-Weighted | 0.801 | 1.2 | 78 | |
Second-order | 2.08 | 1.2 | 40 | |
Dimethomorph | Linear | 3.12 | 2.2 | 75 |
Linear-Weighted | 1.03 | 2.2 | 75 | |
Second-order | 2.98 | 1.8 | 40 | |
Fludioxonil | Linear | 0.996 | 0.6 | 92 |
Linear-Weighted | 0.714 | 0.7 | 76 | |
Second-order | 1.32 | 0.8 | 38 | |
Iprodione | Linear | 2.63 | 1.7 | 85 |
Linear-Weighted | 1.28 | 1.7 | 80 | |
Second-order | 3.15 | 1.8 | 40 | |
Pyriproxyfen | Linear | 5.22 | 3.3 | 41 |
Linear-Weighted | 1.25 | 3.6 | 82 | |
Second-order | 2.81 | 1.5 | 43 |
Compound | Model | COD | GOF | Score |
---|---|---|---|---|
Mandipropamid | Linear | 2.31 | 4.2 | 61 |
Linear-Weighted | 0.835 | 4.2 | 100 | |
Second-order | 2.78 | 4.3 | 38 | |
Spirotetramat (sum) | Linear | 1.35 | 2.5 | 82 |
Linear-Weighted | 0.563 | 2.8 | 77 | |
Second-order | 1.56 | 2.5 | 41 | |
Spirotetramat enol | Linear | 2.94 | 5.1 | 82 |
Linear-Weighted | 1.2 | 5.4 | 78 | |
Second-order | 3.59 | 5.8 | 36 | |
Acetamiprid | Linear | 2.79 | 5 | 53 |
Linear-Weighted | 0.753 | 5.3 | 93 | |
Second-order | 2.8 | 4.1 | 38 | |
Boscalid | Linear | 1.08 | 2 | 82 |
Linear-Weighted | 0.425 | 2.3 | 76 | |
Second-order | 1.31 | 2.2 | 37 | |
Chlorantraniliprole | Linear | 2.8 | 5.1 | 49 |
Linear-Weighted | 0.973 | 5.4 | 88 | |
Second-order | 1.79 | 3.3 | 46 | |
Fenhexamid | Linear | 3.41 | 6 | 15 |
Linear-Weighted | 0.926 | 7.2 | 73 | |
Second-order | 0.824 | 1.5 | 80 | |
Metaflumizone | Linear | 3.77 | 6.6 | 53 |
Linear-Weighted | 1.16 | 7.3 | 91 | |
Second-order | 2.88 | 5.2 | 42 | |
Pyraclostrobin | Linear | 0.653 | 1.2 | 88 |
Linear-Weighted | 0.382 | 1.5 | 74 | |
Second-order | 0.836 | 1.4 | 40 | |
Spinosad | Linear | 2.55 | 4.4 | 43 |
Linear-Weighted | 0.732 | 5 | 83 | |
Second-order | 1.17 | 2.1 | 49 | |
Spirodiclofen | Linear | 3.7 | 6.4 | 60 |
Linear-Weighted | 1.28 | 6.6 | 99 | |
Second-order | 4.81 | 7.2 | 35 | |
Spiromesifen | Linear | 3.16 | 5.9 | 62 |
Linear-Weighted | 1.22 | 6.8 | 96 | |
Second-order | 3.79 | 5.9 | 40 | |
Thiacloprid | Linear | 5.77 | 10.3 | 50 |
Linear-Weighted | 1.46 | 10.9 | 91 | |
Second-order | 3.91 | 7.7 | 41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veiga-del-Baño, J.M.; Oliva, J.; Cámara, M.Á.; Andreo-Martínez, P.; Motas, M. Matrix-Matched Calibration for the Quantitative Analysis of Pesticides in Pepper and Wheat Flour: Selection of the Best Calibration Model. Agriculture 2024, 14, 1014. https://doi.org/10.3390/agriculture14071014
Veiga-del-Baño JM, Oliva J, Cámara MÁ, Andreo-Martínez P, Motas M. Matrix-Matched Calibration for the Quantitative Analysis of Pesticides in Pepper and Wheat Flour: Selection of the Best Calibration Model. Agriculture. 2024; 14(7):1014. https://doi.org/10.3390/agriculture14071014
Chicago/Turabian StyleVeiga-del-Baño, José Manuel, José Oliva, Miguel Ángel Cámara, Pedro Andreo-Martínez, and Miguel Motas. 2024. "Matrix-Matched Calibration for the Quantitative Analysis of Pesticides in Pepper and Wheat Flour: Selection of the Best Calibration Model" Agriculture 14, no. 7: 1014. https://doi.org/10.3390/agriculture14071014
APA StyleVeiga-del-Baño, J. M., Oliva, J., Cámara, M. Á., Andreo-Martínez, P., & Motas, M. (2024). Matrix-Matched Calibration for the Quantitative Analysis of Pesticides in Pepper and Wheat Flour: Selection of the Best Calibration Model. Agriculture, 14(7), 1014. https://doi.org/10.3390/agriculture14071014