Spelt in Diversified and Spelt-Based Crop Rotations: Grain Yield and Technological and Nutritional Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site, Soil and Climate
2.2. Experimental Design
- CR1
- —winter rape + catch crop (blue tansy), spring barley, field pea and winter spelt (CR1-P); 50% cereals, including 25% spelt (control).
- CR2
- —winter rape, winter spelt (CR2-O) + catch crop (blue tansy), field pea and winter spelt (CR2-P); 50% spelt.
- CR3
- —winter rape + catch crop (blue tansy), field pea, winter spelt (CR3-P) and winter spelt (CR3-S); 50% spelt.
- CR4
- —winter rape, winter spelt (CR4-O) + catch crop (blue tansy), spring barley and winter spelt (CR4-S); 75% cereals, including 50% spelt.
2.3. Measurements
2.3.1. Grain Yield Determination
2.3.2. Grain Quality
2.4. Statistical Analysis
3. Results
3.1. Effect of Crop Rotation on Grain Yield of Spelt and Weight of 1000 Grains
3.2. Effect of Crop Rotation on Grain Quality
3.3. Effect of Crop Rotation on Macro- and Micronutrient Content
4. Discussion
4.1. Spelt Grain Yield
4.2. Grain Quality
4.3. Macro- and Micronutrient Content of Spelt Grain
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bennett, A.J.; Bending, G.D.; Chandler, D.; Hilton, S.; Mills, P. Meeting the demand for crop production: The challenge of yield decline in crops grown in short rotations. Biol. Rev. 2012, 87, 52–71. [Google Scholar] [CrossRef] [PubMed]
- Kirkegaard, J.A.; Ryan, M.H. Magnitude and mechanisms of persistent crop sequence effects on wheat. Field Crop. Res. 2014, 164, 154–165. [Google Scholar] [CrossRef]
- Muller, A.; Schader, C.; Scialabba, N.E.H.; Brüggemann, J.; Isensee, A.; Erb, K.H.; Smith, P.; Klocke, P.; Leiber, F.; Stolze, M.; et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 2017, 8, 1290. [Google Scholar] [CrossRef]
- Esquinas-Alcázar, J. Protecting crop genetic diversity for food security: Political, ethical and technical challenges. Nat. Rev. Genet. 2005, 6, 946–953. [Google Scholar] [CrossRef]
- Marcinska-Mazur, L.; Mierzwa-Hersztek, M. Enhancing productivity and technological quality of wheat and oilseed rape through diverse fertilization practices—An overview. J. Elem. 2023, 28, 717–771. [Google Scholar] [CrossRef]
- Arzani, A.; Ashraf, M. Cultivated ancient wheats (Triticum spp.): A potential source of health-beneficial food products. Compr. Rev. Food Sci. Food Saf. 2017, 16, 477–488. [Google Scholar] [CrossRef]
- Serban, L.R.; Paucean, A.; Man, S.M.; Chis, M.S.; Muresan, V. Ancient wheat species: Biochemical profile and impact on sourdough bread characteristics—A review. Processes 2021, 9, 2008. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hey, S. Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components? J. Cereal Sci. 2015, 65, 236–243. [Google Scholar] [CrossRef]
- Sugár, E.; Fodor, N.; Sándor, R.; Bónis, P.; Vida, G.; Arendás, T. Spelt wheat: An alternative for sustainable plant production at low N-levels. Sustainability 2019, 11, 6726. [Google Scholar] [CrossRef]
- Longin, C.F.H.; Würschum, T. Back to the Future—Tapping into ancient grains for food diversity. Trends Plant Sci. 2016, 21, 731–737. [Google Scholar] [CrossRef]
- Wiwart, M.; Szafranska, A.; Suchowilska, E. Grain of hybrids between spelt (Triticum spelta L.) and bread wheat (Triticum aestivum L.) as a new raw material for breadmaking. Pol. J. Food Nutr. Sci. 2023, 73, 265–277. [Google Scholar] [CrossRef]
- Huertas-García, A.B.; Guzmán, C.; Ibba, M.I.; Rakszegi, M.; Sillero, J.C.; Alvarez, J.B. Processing and bread-making quality profile of Spanish spelt wheat. Foods 2023, 12, 2996. [Google Scholar] [CrossRef] [PubMed]
- Escarnot, E.; Jacquemin, J.M.; Agneessens, R.; Paquot, M. Comparative study of the content and profiles of macronutrients in spelt and wheat, a review. Biotechnol. Agron. Soc. Environ. 2012, 16, 243–256. [Google Scholar]
- Ruibal-Mendieta, N.L.; Delacroix, D.L.; Mignolet, E.; Pycke, J.M.; Marques, C.; Rozenberg, R.; Petitjean, G.; Habib-Jiwan, J.L.; Meurens, M.; Quetin-Leclercq, J.; et al. Spelt (Triticum aestivum ssp. spelta) as source of breadmaking flours and bran naturally enriched in oleic acid and minerals but not phytic acid. J. Agric. Food Chem. 2005, 53, 2751–2759. [Google Scholar] [CrossRef]
- Shewry, P.R. Do ancient types of wheat have health benefits compared with modern bread wheat? J. Cereal Sci. 2018, 79, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Suchowilska, E.; Wiwart, M.; Kandler, W.; Krska, R. A comparison of macro- and microelement concentrations in the whole grain of four Triticum species. Plant Soil Environ. 2012, 58, 141–147. [Google Scholar] [CrossRef]
- Bonafaccia, G.; Galli, V.; Francisci, R.; Mair, V.; Skrabanja, V.; Kreft, I. Characteristics of spelt wheat products and nutritional value of spelt wheat-based bread. Food Chem. 2000, 68, 437–441. [Google Scholar] [CrossRef]
- Rodríguez-Quijano, M.; Vargas-Kostiuk, M.E.; Ribeiro, M.; Callejo, M.J. Triticum aestivum ssp. vulgare and ssp. spelta cultivars. 1. Functional evaluation. Eur. Food Res. Technol. 2019, 245, 1561–1570. [Google Scholar] [CrossRef]
- Tóth, V.; Láng, L.; Vida, G.; Mikó, P.; Rakszegi, M. Characterization of the protein and carbohydrate related quality traits of a large set of spelt wheat genotypes. Foods 2022, 11, 2061. [Google Scholar] [CrossRef]
- Jablonskyte-Rasce, D.; Maiksteniene, S.; Mankeviciene, A. Evaluation of productivity and quality of common wheat (Triticum aestivum L.) and spelt (Triticum spelta L.) in relation to nutrition conditions. Zemdirb.-Agric. 2013, 100, 45–56. [Google Scholar] [CrossRef]
- Wiwart, M.; Szafranska, A.; Wachowska, U.; Suchowilska, E. Quality parameters and rheological dough properties of 15 spelt (Triticum spelta L.) varieties cultivated today. Cereal Chem. 2017, 94, 1037–1044. [Google Scholar] [CrossRef]
- Pospisil, A.; Pospisil, M. The effect of organic fertilizers on the spelt yield and the yield of its components. Poljoprivreda 2021, 27, 37–43. [Google Scholar] [CrossRef]
- Dragicevic, V.; Stoiljkovic, M.; Brankov, M.; Tolimir, M.; Tabakovic, M.; Dodevska, M.S.; Simic, M. Status of essential elements in soil and grain of organically produced maize, spelt, and soybean. Agriculture 2022, 12, 702. [Google Scholar] [CrossRef]
- Babulicova, M. The influence of fertilization and crop rotation on the winter wheat production. Plant Soil Environ. 2014, 60, 297–302. [Google Scholar] [CrossRef]
- Ball, B.C.; Bingham, I.; Rees, R.M.; Watson, C.A.; Litterick, A. The role of crop rotations in determining soil structure and crop growth conditions. Can. J. Soil Sci. 2005, 85, 557–577. [Google Scholar] [CrossRef]
- Houx, J.H.; Wiebold, W.J.; Fritschi, F.B. Long-term tillage and crop rotation determines the mineral nutrient distributions of some elements in a Vertic Epiaqualf. Soil Tillage Res. 2011, 112, 27–35. [Google Scholar] [CrossRef]
- Barbieri, P.; Pellerin, S.; Nesme, T. Comparing crop rotations between organic and conventional farming. Sci. Rep. 2017, 7, 13761. [Google Scholar] [CrossRef]
- Brankov, M.; Simic, M.; Dragicevic, V. The influence of maize-winter wheat rotation and pre-emergence herbicides on weeds and maize productivity. Crop Prot. 2021, 143, 105558. [Google Scholar] [CrossRef]
- Lori, M.; Symnaczik, S.; Mäder, P.; De Deyn, G.; Gattinger, A. Organic farming enhances soil microbial abundance and activity-A meta-analysis and meta-regression. PLoS ONE 2017, 12, e0180442. [Google Scholar] [CrossRef]
- Yao, R.J.; Yang, J.S.; Zhang, T.J.; Gao, P.; Yu, S.P.; Wang, X.P. Short-term effect of cultivation and crop rotation systems on soil quality indicators in a coastal newly reclaimed farming area. J. Soil Sediments 2013, 13, 1335–1350. [Google Scholar] [CrossRef]
- Sun, L.; Wang, S.L.; Zhang, Y.J.; Li, J.; Wang, X.L.; Wang, R.; Lyu, W.; Chen, N.N.; Wang, Q. Conservation agriculture based on crop rotation and tillage in the semi-arid Loess Plateau, China: Effects on crop yield and soil water use. Agric. Ecosyst. Environ. 2018, 251, 67–77. [Google Scholar] [CrossRef]
- Von Tucher, S.; Hörndl, D.; Schmidhalter, U. Interaction of soil pH and phosphorus efficacy: Long-term effects of P fertilizer and lime applications on wheat, barley, and sugar beet. Ambio 2018, 47, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Lukowiak, R.; Grzebisz, W.; Sassenrath, G.F. New insights into phosphorus management in agriculture—A crop rotation approach. Sci. Total Environ. 2016, 542, 1062–1077. [Google Scholar] [CrossRef] [PubMed]
- Kostrzewska, M.K.; Jastrzębska, M.; Marks, M.; Jastrzębski, W.P. Long-term crop rotation and continuous cropping effects on soil chemical properties. J. Elem. 2022, 27, 335–349. [Google Scholar] [CrossRef]
- Faligowska, A.; Szymanska, G.; Panasiewicz, K.; Szukala, J.; Koziara, W.; Ratajczak, K. The long-term effect of legumes as forecrops on the productivity of rotation (winter rape-winter wheat-winter wheat) with nitrogen fertilization. Plant Soil Environ. 2019, 65, 138–144. [Google Scholar] [CrossRef]
- Gill, K.S. Crop rotations compared with continuous canola and wheat for crop production and fertilizer use over 6 yr. Can. J. Plant Sci. 2018, 98, 1139–1149. [Google Scholar] [CrossRef]
- Sieling, K.; Christen, O. Crop rotation effects on yield of oilseed rape, wheat and barley and residual effects on the subsequent wheat. Arch. Agron. Soil Sci. 2015, 61, 1531–1549. [Google Scholar] [CrossRef]
- Lepiarczyk, A.; Kulig, B.; Stepnik, K. The influence of simplified soil cultivation and forecrop on the development LAI of selected cultivars of winter wheat in cereal crop rotation. Fragm. Agron. 2005, 22, 98–105. [Google Scholar]
- Hejcman, M.; Kunzová, E.; Srek, P. Sustainability of winter wheat production over 50 years of crop rotation and N, P and K fertilizer application on illimerized luvisol in the Czech Republic. Field Crop. Res. 2012, 139, 30–38. [Google Scholar] [CrossRef]
- Wanic, M.; Parzonka, M. Assessing the role of crop rotation in shaping foliage characteristics and leaf gas exchange parameters for winter wheat. Agriculture 2023, 13, 958. [Google Scholar] [CrossRef]
- Duru, M.; Therond, O.; Martin, G.; Martin-Clouaire, R.; Magne, M.A.; Justes, E.; Journet, E.P.; Aubertot, J.N.; Savary, S.; Bergez, J.E.; et al. How to implement biodiversity-based agriculture to enhance ecosystem services: A review. Agron. Sustain. Dev. 2015, 35, 1259–1281. [Google Scholar] [CrossRef]
- Wozniak, A. Effect of crop rotation and cereal monoculture on the yield and quality of winter wheat grain and on crop infestation with weeds and soil properties. Int. J. Plant Prod. 2019, 13, 177–182. [Google Scholar] [CrossRef]
- Wozniak, A.; Kawecka-Radomska, M. Crop management effect on chemical and biological properties of soil. Int. J. Plant Prod. 2016, 10, 391–401. [Google Scholar]
- Gawrońska, A. Plant rotation and excruciation of soil. Acta Acad. Agric. Ac Tech. Olst. Agric. 1997, 64, 67–79. [Google Scholar]
- Balota, E.L.; Kanashiro, M.; Colozzi, A.; Andrade, D.S.; Dick, R.P. Soil enzyme activities under long-term tillage and crop rotation systems in subtropical agro-ecosystems. Braz. J. Microbiol. 2004, 35, 300–306. [Google Scholar] [CrossRef]
- Darguza, M.; Gaile, Z. Yield and quality of winter wheat, depending on crop rotation and soil tillage. Res. Rural Dev. 2019, 2, 29–35. [Google Scholar] [CrossRef]
- Babulicová, M.; Gavurníková, S. The influence of cereal share in crop rotations on the grain yield and quality of winter wheat. Agriculture (Poľnohospodárstvo) 2015, 6, 12–21. [Google Scholar] [CrossRef]
- Wanic, M.; Denert, M.; Treder, K. Effect of forecrops on the yield and quality of common wheat and spelt wheat grain. J. Elem. 2019, 24, 369–383. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014. [Google Scholar]
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods of Analysis and Assessment of Soil and Plant Properties. A Catalgoue; Institute of Environmental Protection–National Research Institute: Warsaw, Poland, 1991. [Google Scholar]
- Kopke, U.; Athmann, M.; Han, E.; Kautz, T. Optimising cropping techniques for nutrient and environmental management in organic agriculture. Sustain. Agric. Res. 2015, 4, 15–25. [Google Scholar] [CrossRef]
- Podolska, G.; Aleksandrowicz, E.; Szafranska, A. Bread making potential of Triticum aestivum and Triticum spelta species. Open Life Sci. 2020, 15, 30–40. [Google Scholar] [CrossRef]
- López-Bellido, L.; López-Bellido, R.J.; Castillo, J.E.; López-Bellido, F.J. Effects of long-term tillage, crop rotation and nitrogen fertilization on bread-making quality of hard red spring wheat. Field Crop. Res. 2001, 72, 197–210. [Google Scholar] [CrossRef]
- Tomczynska-Mleko, M.; Kwiatkowski, C.A.; Harasim, E.; Lesniowska-Nowak, J.; Mleko, S.; Terpilowski, K.; Pérez-Huertas, S.; Klikocka-Wisniewska, O. Influence of Farming system and forecrops of spring wheat on protein content in the grain and the physicochemical properties of unsonicated and sonicated gluten. Molecules 2022, 27, 3926. [Google Scholar] [CrossRef] [PubMed]
- Nemeiksiene, D.; Arlauskiene, A.; Slepetiene, A.; Cesevicienen, J.; Maiksteniene, S. Mineral nitrogen content in the soil and winter wheat productivity as influenced by the pre-crop grass species and their management. Zemdirb.-Agric. 2010, 97, 23–36. [Google Scholar]
- Wozniak, A.; Nowak, A.; Gaweda, D. The effect of the three-field crop rotation system and cereal monoculture on grain yield and quality and the economic efficiency of durum wheat production. Pol. J. Environ. Stud. 2021, 30, 5297–5305. [Google Scholar] [CrossRef]
- Liu, C.Y.; Feng, X.M.; Xu, Y.; Kumar, A.; Yan, Z.J.; Zhou, J.; Yang, Y.D.; Peixoto, L.; Zeng, Z.H.; Zang, H.D. Legume-based rotation enhances subsequent wheat yield and maintains soil carbon storage. Agron. Sustain. Dev. 2023, 43, 64. [Google Scholar] [CrossRef]
- Franke, A.C.; van den Brand, G.J.; Vanlauwe, B.; Giller, K.E. Sustainable intensification through rotations with grain legumes in Sub-Saharan Africa: A review. Agric. Ecosyst. Environ. 2018, 261, 172–185. [Google Scholar] [CrossRef]
- Anderson, R.L. synergism: A rotation effect of improved growth efficiency. Adv. Agron. 2011, 112, 205–226. [Google Scholar] [CrossRef]
- Dhakal, Y.; Meena, R.S.; Kumar, S. Effect of INM on nodulation, yield, quality and available nutrient status in soil after harvest of greengram. Legume Res. 2016, 39, 590–594. [Google Scholar] [CrossRef]
- Garland, G.; Edlinger, A.; Banerjee, S.; Degrune, F.; García-Palacios, P.; Pescador, D.S.; Herzog, C.; Romdhane, S.; Saghai, A.; Spor, A.; et al. Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nat. Food 2021, 2, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Nunes, M.R.; van Es, H.M.; Schindelbeck, R.; Ristow, A.J.; Ryan, M. No-till and cropping system diversification improve soil health and crop yield. Geoderma 2018, 328, 30–43. [Google Scholar] [CrossRef]
- Ma, P.; Lan, Y.; Lyu, T.F.; Zhang, Y.J.; Lin, D.; Li, F.J.; Li, Y.; Yang, Z.Y.; Sun, Y.J.; Ma, J. Improving rice yields and nitrogen use efficiency by optimizing nitrogen management and applications to rapeseed in rapeseed-rice rotation system. Agronomy 2020, 10, 1060. [Google Scholar] [CrossRef]
- Sieling, K.; Stahl, C.; Winkelmann, C.; Christen, O. Growth and yield of winter wheat in the first 3 years of a monoculture under varying N fertilization in NW Germany. Eur. J. Agron. 2005, 22, 71–84. [Google Scholar] [CrossRef]
- Podolska, G.; Rothkaehl, J.; Górniak, W.; Stępniewska, S. Effect of nitrogen levels and sowing density on the yield and baking quality of spelt wheat (Triticum aestivum. ssp. spelta) cv. Rokosz. Annales UMCS 2015, 70, 93–103. [Google Scholar]
- Carr, P.M.; Martin, G.B.; Horsley, R.D. Wheat grain quality response to tillage and rotation with field pea. Agron. J. 2008, 100, 1594–1599. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Kijewski, L.; Dubis, B. Milling quality and flour strength of the grain of winter wheat grown in monoculture. Rom. Agric. Res. 2015, 32, 191–200. [Google Scholar]
- Stankowski, S.; Hury, G.; Makrewicz, A.; Jurgiel-Małecka, G.; Gibczyńska, M. Analysis of the content of mineral components in grain of winter spelt (Triticum aestivum ssp spelled L.) depending on: Tillage system, fertilization, nitrogen and variety. Inżynieria Ekol. 2016, 49, 227–232. [Google Scholar]
- Wozniak, A.; Makarski, B. Content of minerals, total protein and wet gluten in grain of spring wheat depending on cropping systems. J. Elem. 2013, 18, 297–305. [Google Scholar] [CrossRef]
- Kraska, P.; Andruszczak, S.; Kwieciniska-Poppe, E.; Palys, E. Effect of chemical crop protection on the content of some elements in grain of spelt wheat (Triticum aestivum ssp. spelta). J. Elem. 2013, 18, 79–90. [Google Scholar] [CrossRef]
- Sharma, V.; Irmak, S.; Padhi, J. Effects of cover crops on soil quality: Part II. Soil exchangeable bases (potassium, magnesium, sodium, and calcium), cation exchange capacity, and soil micronutrients (zinc, manganese, iron, copper, and boron). J. Soil Water Conserv. 2018, 73, 652–668. [Google Scholar] [CrossRef]
- Lollato, R.P.; Figueiredo, B.M.; Dhillon, J.S.; Arnall, D.B.; Raun, W.R. Wheat grain yield and grain-nitrogen relationships as affected by N, P, and K fertilization: A synthesis of long-term experiments. Field Crop. Res. 2019, 236, 42–57. [Google Scholar] [CrossRef]
Season | Months | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sep | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | July | Aug | |
Air temperature (°C) | ||||||||||||
2012/2013 | 14.0 | 7.9 | 4.9 | −3.3 | −4.5 | −0.8 | −4.0 | 6.3 | 15.0 | 17.4 | 17.9 | 18.0 |
2013/2014 | 11.5 | 9.3 | 4.9 | 2.3 | −3.5 | 2.0 | 5.5 | 9.5 | 13.3 | 14.8 | 21.0 | 17.9 |
2014/2015 | 14.5 | 9.5 | 4.4 | −0.6 | 0.6 | 0.3 | 4.6 | 7.2 | 12.1 | 15.7 | 18.0 | 21.3 |
2015/2016 | 13.0 | 8.1 | 2.8 | −1.0 | −2.4 | −1.6 | 1.8 | 7.7 | 13.2 | 15.8 | 18.3 | 17.7 |
2016/2017 | 14.1 | 6.9 | 2.5 | 1.0 | −3.2 | −1.2 | 5.1 | 6.7 | 13.1 | 16.7 | 17.3 | 18.7 |
2017/2018 | 13.5 | 9.4 | 4.3 | 1.9 | 0.0 | −4.1 | −0.5 | 11.9 | 16.5 | 17.9 | 20.0 | 20.4 |
Precipitation (mm) | ||||||||||||
2012/2013 | 41.0 | 57.6 | 48.5 | 15.1 | 34.6 | 21.3 | 14.0 | 22.5 | 46.2 | 45.4 | 163.8 | 25.3 |
2013/2014 | 69.3 | 15.4 | 23.2 | 34.1 | 44.0 | 11.4 | 55.7 | 26.1 | 24.9 | 72.2 | 20.4 | 59.2 |
2014/2015 | 30.8 | 21.3 | 21.2 | 56.6 | 28.5 | 8.8 | 46.0 | 23.4 | 25.4 | 43.0 | 71.0 | 13.0 |
2015/2016 | 56.2 | 51.2 | 46.1 | 42.6 | 30.1 | 23.1 | 30.7 | 29.8 | 62.3 | 72.9 | 81.2 | 70.6 |
2016/2017 | 17.1 | 96.3 | 78.2 | 77.8 | 15.8 | 40.5 | 53.0 | 52.1 | 34.0 | 109.9 | 106.1 | 54.8 |
2017/2018 | 211.1 | 160.3 | 49.0 | 53.8 | 37.6 | 2.0 | 25.0 | 28.1 | 41.0 | 64.7 | 140.7 | 31.2 |
Grain Yield and Weight of 1000 Grains | Crop Rotation (CR) | Year (Y) | Interaction (CR × Y) |
---|---|---|---|
Grain yield | 0.002 | 0.001 | 0.003 |
TGW * | <0.001 | <0.001 | 0.011 |
Years | Fields in Crop Rotations | Mean | ||||||
---|---|---|---|---|---|---|---|---|
CR1-P | CR2-O | CR2-P | CR3-P | CR3-S | CR4-O | CR4-B | ||
2013 | 45.2 a | 45.3 a | 43.8 c | 45.0 a | 43.3 c | 44.9 b | 43.4 c | 44.4 B |
2014 | 43.3 ab | 43.9 a | 41.8 bc | 43.0 b | 42.0 a-c | 42.6 a-c | 40.6 c | 42.5 B |
2015 | 43.7 a | 43.1 a | 41.2 b | 43.2 a | 42.0 b | 43.0 a | 40.1 c | 42.3 B |
2016 | 40.8 a | 40.2 a | 37.8 b | 40.3 a | 37.5 b | 39.9 a | 36.4 b | 39.0 C |
2017 | 43.2 a | 43.9 a | 43.8 ab | 44.2 a | 43.8 ab | 43.7 a | 42.6 c | 43.6 B |
2018 | 45.4 c | 45.7 c | 45.3 c | 47.8 a | 44.8 d | 46.5 b | 44.0 d | 45.6 A |
Mean | 43.6 A | 42.3 A | 42.3 B | 43.9 A | 42.2 B | 43.4 A | 41.2 C |
Technological Properties | Crop Rotation (CR) | Year (Y) | Interaction (CR × Y) |
---|---|---|---|
Total protein content | <0.001 | <0.001 | <0.001 |
Wet gluten content | 0.002 | <0.001 | 0.003 |
Starch content | 0.275 | 0.146 | 0.066 |
Zeleny index * | 0.002 | <0.001 | 0.006 |
Falling number | <0.001 | 0.005 | 0.001 |
Years | Fields in Crop Rotations | Mean | ||||||
---|---|---|---|---|---|---|---|---|
CR1-P | CR2-O | CR2-P | CR3-P | CR3-S | CR4-O | CR4-B | ||
Total protein content (g kg−1) | ||||||||
2013 | 114 a | 110 b | 115 a | 111 ab | 104 c | 103 c | 103 c | 109 D |
2014 | 108 ab | 106 a | 109 a | 100 ab | 100 ab | 103 ab | 94 b | 103 E |
2015 | 113 ab | 117 a | 115 a | 115 a | 110 b | 117 a | 111 b | 114 C |
2016 | 127 a | 126 a | 121 b | 123 ab | 115 b | 129 a | 126 a | 124 B |
2017 | 106 | 104 | 107 | 108 | 100 | 102 | 102 | 104 D |
2018 | 146 a | 134 b | 142 a | 142 a | 137 ab | 138 ab | 131 b | 139 A |
Mean | 119 A | 116 A | 118 A | 117 A | 111 B | 115 A | 111 B | |
Wet gluten content (g kg−1) | ||||||||
2013 | 245 ab | 243 b | 256 a | 250 a | 236 c | 239 c | 234 c | 243 C |
2014 | 233 ab | 237 a | 234 ab | 234 ab | 235 ab | 230 b | 229 b | 233 D |
2015 | 256 b | 255 b | 255 b | 261 a | 244 c | 255 b | 244 c | 253 C |
2016 | 297 | 286 | 293 | 279 | 262 | 287 | 263 | 281 B |
2017 | 247 | 247 | 242 | 240 | 239 | 245 | 235 | 242 C |
2018 | 338 a | 315 b | 323 ab | 328 ab | 296 c | 318 b | 308 bc | 318 A |
Mean | 269 A | 264 AB | 267 A | 265 A | 252 B | 262 AB | 252 B | |
Starch content (g kg−1) | ||||||||
2013 | 674 | 674 | 664 | 664 | 669 | 672 | 669 | 669 |
2014 | 661 | 661 | 664 | 662 | 659 | 661 | 662 | 661 |
2015 | 725 | 717 | 713 | 712 | 718 | 713 | 716 | 716 |
2016 | 699 | 696 | 696 | 693 | 688 | 694 | 686 | 693 |
2017 | 688 | 689 | 689 | 685 | 689 | 687 | 687 | 688 |
2018 | 699 | 696 | 696 | 693 | 688 | 694 | 686 | 693 |
Mean | 691 | 689 | 687 | 685 | 685 | 687 | 684 |
Years | Fields in Crop Rotations | Mean | ||||||
---|---|---|---|---|---|---|---|---|
CR1-P | CR2-O | CR2-P | CR3-P | CR3-S | CR4-O | CR4-B | ||
Zeleny sedimentation index (cm3) | ||||||||
2013 | 33.1 b | 33.7 b | 34.7 a | 33.1 b | 34.0 a | 33.1 b | 32.3 c | 33.4 D |
2014 | 31.9 a | 32.4 a | 31.8 a | 32.4 a | 32.2 a | 32.1 a | 31,0 b | 32.0 D |
2015 | 44.5 a | 44.6 a | 44.5 a | 44.7 a | 43.4 b | 42.4 c | 41.2 d | 43.6 C |
2016 | 51.3 a | 48.8 ab | 50.9 a | 48.4 ab | 43.7 b | 51.0 a | 44.2 b | 48.3 B |
2017 | 46.4 | 46.6 | 46.3 | 47.0 | 50.2 | 45.1 | 44.1 | 46.5 B |
2018 | 67.3 a | 65.3 b | 65.2 b | 65.8 b | 64.4 c | 62.7 cd | 61.3 d | 64.6 A |
Mean | 45.8 A | 45.2 A | 45.6 A | 45.2 A | 44.7 AB | 44.4 AB | 42.4 B | |
Falling number (s) | ||||||||
2013 | 426.0 a | 422.8 a | 419.0 b | 429.8 a | 407.8 c | 393.0 d | 402.8 d | 414.5 A |
2014 | 398.3 b | 399.8 a | 383.5 b | 401.5 a | 391.3 b | 390.5 b | 374.0 c | 391.3 A |
2015 | 398.9 a | 399.6 a | 393.5 b | 398.3 a | 388.5 bc | 390.5 b | 374.0 d | 391.9 A |
2016 | 347.8 a | 338.5 ab | 314.5 b | 333.0 ab | 334.3 ab | 341.5 ab | 301.8 c | 330.2 AB |
2017 | 284.3 | 283.3 | 276.0 | 282.0 | 280.3 | 279.5 | 271.5 | 279.6 B |
2018 | 417.0 | 397.5 | 395.5 | 409.0 | 404.8 | 392.0 | 381.0 | 399.5 A |
Mean | 378.7 A | 373.6 A | 363.7 BC | 375.6 A | 367.8 AB | 364.5 BC | 350.9 C |
Nutrients | Crop Rotation (CR) | Year (Y) | Interaction (CR × Y) |
---|---|---|---|
N | <0.001 | <0.001 | 0.001 |
P | 0.003 | <0.001 | 0.004 |
K | 0.436 | 0.430 | 0.478 |
Mg | 0.616 | 0.310 | 0.507 |
Ca | 0.124 | 0.274 | 0.337 |
Cu | 0.235 | 0.179 | 0.446 |
Fe | <0.001 | <0.001 | <0.001 |
Zn | <0.001 | 0.003 | 0.004 |
Mn | 0.135 | 0.192 | 0.614 |
Years | Fields in Crop Rotations | Mean | ||||||
---|---|---|---|---|---|---|---|---|
CR1-P | CR2-O | CR2-P | CR3-P | CR3-S | CR4-O | CR4-B | ||
N (g kg−1) | ||||||||
2013 | 18.3 a | 17.6 b | 17.7 b | 17.7 b | 16.6 c | 17.4 b | 15.8 d | 17.3 D |
2014 | 15.6 a | 15.9 a | 15.7 a | 16.0 a | 15.0 b | 15.6 ab | 15.0 b | 15.5 E |
2015 | 18.8 a | 18.2 b | 17.8 c | 18.1 bc | 16.7 e | 18.6 a | 17.3 c | 17.9 C |
2016 | 20.2 a | 20.2 a | 20.0 a | 19.0 b | 17.9 c | 20.6 a | 18.5 bc | 19.7 B |
2017 | 17.0 a | 17.0 a | 17.4 a | 17.4 a | 16.7 ab | 17.8 a | 16.1 b | 17.1 D |
2018 | 22.5 a | 22.8 a | 22.6 a | 22.7 a | 21.1 b | 22.1 a | 21.0 b | 22.1 A |
Mean | 18.7 A | 18.6 A | 18.5 A | 18.5 A | 17.3 B | 18.7 A | 17.3 B | |
P (g kg−1) | ||||||||
2013 | 2.71 a | 2.48 b | 2.60 a | 2.70 a | 2.70 a | 2.60 a | 2.50 b | 2.61 C |
2014 | 2.53 a | 2.32 b | 2.38 ab | 2.38 ab | 2.35 b | 2.38 ab | 2.48 ab | 2.40 C |
2015 | 2.90 a | 2.40 bc | 2.22 c | 2.50 bc | 2.68 ab | 2.58 ab | 2.50 bc | 2.54 C |
2016 | 3.00 | 3.18 | 3.00 | 3.12 | 2.90 | 3.18 | 3.15 | 3.08 A |
2017 | 2.88 a | 2.68 b | 2.68 b | 2.90 a | 2.48 c | 2.80 ab | 2.53 c | 2.71 B |
2018 | 2.98 a | 2.75 ab | 3.00 a | 3.00 a | 2.65 b | 3.00 a | 2.60 b | 2.85 A |
Mean | 2.83 A | 2.64 B | 2.65 B | 2.77 A | 2.63 B | 2.76 A | 2.63 B | |
K (g kg−1) | ||||||||
2013 | 4.60 a | 4.32 ab | 4.63 a | 4.58 a | 4.25 b | 4.25 b | 4.30 b | 4.42 |
2014 | 4.90 a | 4.25 b | 4.58 ab | 4.30 b | 4.33 b | 4.60 ab | 4.30 b | 4.47 |
2015 | 4.98 a | 4.55 b | 4.32 b | 4.50 b | 4.55 b | 5.03 a | 4.18 c | 4.59 |
2016 | 4.98 | 4.85 | 4.95 | 4.60 | 4.56 | 4.58 | 4.30 | 4.69 |
2017 | 4.60 | 4.6 0 | 4.55 | 4.58 | 4.60 | 4.58 | 4.60 | 4.59 |
2018 | 5.13 a | 5.08 a | 4.83 a | 4.68 ab | 4.28 b | 4.63 ab | 4.30 b | 4.70 |
Mean | 4.87 | 4.61 | 4.64 | 4.54 | 4.43 | 4.61 | 4.33 | |
Mg (g kg−1) | ||||||||
2013 | 1.10 | 1.15 | 1.18 | 1.20 | 1.10 | 1.18 | 1.05 | 1.14 |
2014 | 1.08 | 1.03 | 1.03 | 1.03 | 1.03 | 1.00 | 0.93 | 1.02 |
2015 | 1.05 | 0.98 | 0.75 | 0.95 | 0.95 | 0.95 | 0.85 | 0.93 |
2016 | 0.75 b | 1.10 ab | 1.05 ab | 0.98 ab | 1.18 a | 1.08 ab | 1.05 ab | 1.03 |
2017 | 1.12 | 1.15 | 1.18 | 1.20 | 1.18 | 1.18 | 1.10 | 1.16 |
2018 | 1.30 | 1.25 | 1.30 | 1.28 | 1.28 | 1.27 | 1.25 | 1.28 |
Mean | 1.07 | 1.11 | 1.08 | 1.11 | 1.12 | 1.11 | 1.04 | |
Ca (g kg−1) | ||||||||
2013 | 0.49 | 0.49 | 0.59 | 0.59 | 0.60 | 0.50 | 0.60 | 0.55 |
2014 | 0.50 | 0.59 | 0.55 | 0.55 | 0.60 | 0.55 | 0.49 | 0.55 |
2015 | 0.64 | 0.44 | 0.40 | 0.55 | 0.60 | 0.50 | 0.45 | 0.51 |
2016 | 0.53 | 0.60 | 0.60 | 0.59 | 0.60 | 0.60 | 0.60 | 0.59 |
2017 | 0.65 | 0.64 | 0.64 | 0.70 | 0.65 | 0.70 | 0.66 | 0.66 |
2018 | 0.65 | 0.55 | 0.58 | 0.70 | 0.65 | 0.50 | 0.51 | 0.59 |
Mean | 0.57 | 0.55 | 0.56 | 0.61 | 0.62 | 0.56 | 0.55 |
Years | Fields in Crop Rotations | Mean | ||||||
---|---|---|---|---|---|---|---|---|
CR1-P | CR2-O | CR2-P | CR3-P | CR3-S | CR4-O | CR4-B | ||
Cu (mg kg−1) | ||||||||
2013 | 1.95 b | 1.95 b | 2.35 a | 2.35 a | 2.38 a | 1.98 b | 2.38 a | 2.19 |
2014 | 2.00 b | 2.35 a | 2.20 ab | 2.20 ab | 2.40 a | 2.20 ab | 1.97 b | 2.19 |
2015 | 2.55 a | 1.75 cd | 1.60 d | 2.20 abc | 2.40 ab | 2.00 c | 1.80 d | 2.04 |
2016 | 2.10 b | 2.39 a | 2.38 a | 2.37 a | 2.40 a | 2.40 a | 2.39 a | 2.35 |
2017 | 2.58 b | 2.57 b | 2.55 b | 2.80 a | 2.60 b | 2.80 a | 2.62 b | 2.65 |
2018 | 2.58 b | 2.20 c | 2.30 c | 2.80 a | 2.60 b | 2.01 d | 2.02 d | 2.36 |
Mean | 2.29 | 2.20 | 2.23 | 2.45 | 2.46 | 2.23 | 2.20 | |
Fe (mg kg−1) | ||||||||
2013 | 92,2 a | 93,6 a | 96,6 a | 96,4 a | 76,5 b | 72,8 b | 63,0 c | 84.4 A |
2014 | 71.4 a | 66.6 b | 65.6 b | 72.4 a | 64.0 c | 69.2 b | 60.1 c | 67.0 C |
2015 | 72.0 b | 74.0 ab | 76.0 a | 74.2 ab | 61.0 c | 76.6 a | 60.2 c | 70.6 B |
2016 | 72.6 a | 72.9 a | 72.6 a | 73.0 a | 68.6 c | 70.8 b | 70.0 c | 71.5 B |
2017 | 57.4 b | 64.0 a | 57.0 b | 52.4 b | 49.2 c | 57.8 b | 49.8 c | 55.4 E |
2018 | 64.0 b | 62.0 b | 64.8 b | 70.0 a | 55.5 c | 63.6 b | 58.6 c | 62.6 D |
Mean | 71.6 A | 72.2 A | 72.1 A | 73.1 A | 62.5 B | 68.5 AB | 60.3 B | |
Zn (mg kg−1) | ||||||||
2013 | 26.0 a | 24.5 b | 24.2 b | 23.6 c | 23.7 c | 24.2 b | 23.0 c | 24.2 B |
2014 | 22.8 b | 22.5 b | 22.8 b | 24.0 a | 21.4 c | 20.6 c | 20.5 d | 22.1 B |
2015 | 22.4 b | 22.6 b | 22.4 b | 20.8 d | 20.6 d | 23.2 a | 21.4 c | 21.9 B |
2016 | 24.4 b | 24.6 b | 22.4 d | 25.4 a | 22.4 d | 25.4 a | 24.0 c | 24.1 B |
2017 | 29.4 b | 27.6 e | 29.0 c | 28.2 d | 27.0 f | 30.8 a | 26.2 g | 28.3 A |
2018 | 32.3 b | 31.8 bcd | 32.0 bc | 34.0 a | 31.2 d | 29.8 e | 31.4 cd | 31.8 A |
Mean | 26.2 A | 25.6 A | 25.5 A | 26.0 A | 24.4 B | 25.7 A | 24.4 B | |
Mn (mg kg−1) | ||||||||
2013 | 38.0 | 30.3 | 37.9 | 30.0 | 29.8 | 30.0 | 34.0 | 31.4 |
2014 | 35.2 | 31.6 | 30.4 | 34.6 | 32.2 | 33.2 | 33.4 | 32.9 |
2015 | 30.0 | 31.8 | 29.0 | 31.2 | 29.0 | 29.0 | 26.4 | 30.9 |
2016 | 32.8 | 30.6 | 32.3 | 34.8 | 30.2 | 32.6 | 30.6 | 32.0 |
2017 | 38.4 a | 37.6 a | 38.2 a | 33.4 b | 36.4 a | 36.1 a | 34.4 b | 36.6 |
2018 | 32.4 | 33.0 | 28.6 | 33.1 | 33.2 | 32.8 | 29.4 | 31.8 |
Mean | 34.5 | 32.5 | 32.7 | 32.9 | 31.8 | 32.3 | 31.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wanic, M.; Jastrzębska, M.; Kostrzewska, M.K.; Parzonka, M. Spelt in Diversified and Spelt-Based Crop Rotations: Grain Yield and Technological and Nutritional Quality. Agriculture 2024, 14, 1123. https://doi.org/10.3390/agriculture14071123
Wanic M, Jastrzębska M, Kostrzewska MK, Parzonka M. Spelt in Diversified and Spelt-Based Crop Rotations: Grain Yield and Technological and Nutritional Quality. Agriculture. 2024; 14(7):1123. https://doi.org/10.3390/agriculture14071123
Chicago/Turabian StyleWanic, Maria, Magdalena Jastrzębska, Marta K. Kostrzewska, and Mariola Parzonka. 2024. "Spelt in Diversified and Spelt-Based Crop Rotations: Grain Yield and Technological and Nutritional Quality" Agriculture 14, no. 7: 1123. https://doi.org/10.3390/agriculture14071123
APA StyleWanic, M., Jastrzębska, M., Kostrzewska, M. K., & Parzonka, M. (2024). Spelt in Diversified and Spelt-Based Crop Rotations: Grain Yield and Technological and Nutritional Quality. Agriculture, 14(7), 1123. https://doi.org/10.3390/agriculture14071123