Ozone Treatment as a Sustainable Alternative for Suppressing Blue Mold in Mandarins and Extending Shelf Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruits in the Experiment
2.2. Gaseous Ozone Treatments
2.3. Ozonated Water Treatments
2.4. Readings and Data Analysis
3. Results
3.1. Efficacy of Gaseous Ozone Treatments
3.2. Efficacy of Ozonated Water Treatments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aleza, P.; Cuenca, J.; Juarez, J.; Pina, J.A.; Navarro, L. ‘Garbi’ Mandarin: A New Late-maturing Triploid Hybrid. HortScience 2010, 45, 139–141. [Google Scholar] [CrossRef]
- Liu, Y.; Heying, E.; Tanumihardjo, S.A. History, Global Distribution, and Nutritional Importance of Citrus Fruits. Compr. Rev. Food Sci. Food Saf. 2012, 11, 530–545. [Google Scholar] [CrossRef]
- Agusti, M.; Mesejo, C.; Reig, C.; Martinez-Fuentes, A. Citrus Production. Hortic. Plants People Places 2014, 1, 159–195. [Google Scholar] [CrossRef]
- Cheng, Y.; Lin, Y.; Cao, H.; Li, Z. Citrus Postharvest Green Mold: Recent Advances in Fungal Pathogenicity and Fruit Resistance. Microorganisms 2020, 8, 449. [Google Scholar] [CrossRef]
- Talibi, I.; Boubaker, H.; Boudyach, E.H.; Ait Ben Aoumar, A. Alternative methods for the control of postharvest citrus diseases. J. Appl. Microbiol. 2014, 117, 1–17. [Google Scholar] [CrossRef]
- Usman, M.; Fatima, B. Mandarin (Citrus reticulata Blanco) Breeding. Adv. Plant Breed. Strateg. Fruits 2018, 3, 465–533. [Google Scholar]
- Goldenberg, L.; Yaniv, Y.; Porat, R.; Carmi, N. Mandarin fruit quality: A review. J. Sci. Food Agric. 2017, 98, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Tsurunaga, Y.; Takahashi, T.; Nagata, Y. Production of persimmon and mandarin peel pastes and their uses in food. Food Sci. Nutr. 2021, 9, 1712–1719. [Google Scholar] [CrossRef] [PubMed]
- Shorbagi, M.; Fayek, N.M.; Shao, P.; Farag, M. Citrus reticulata Blanco (the common mandarin) fruit: An update review of its bioactive, extraction types, food quality, therapeutic merits, and bio-waste valorization practices to maximize its economic value. Food Biosci. 2022, 47, 101699. [Google Scholar] [CrossRef]
- Glowacz, M.; Colgan, R.; Rees, D. The use of ozone to extend the shelf-life and maintain quality of fresh produce. J. Sci. Food Agric. 2014, 95, 662–671. [Google Scholar] [CrossRef]
- Shah, N.N.A.K.; Sulaiman, A.; Sidek, N.S.M.; Supian, N.A.M. Quality assessment of ozone-treated citrus fruit juices. Int. Food Res. J. 2019, 26, 1405–1415. [Google Scholar]
- Zainuri, H.; Hasim, A. Post-harvest losses of citrus fruits and perceptions of farmer sin marketing decisions. E3S Web Conf. 2021, 306, 2–6. [Google Scholar] [CrossRef]
- Bahtta, U.K. Alternative Management Approaches of Citrus Diseases Caused by Penicillium digitatum (Green Mold) and Penicillium italicum (Blue Mold). Front. Plant Sci. 2022, 12, 833328. [Google Scholar] [CrossRef]
- Di Renzo, G.C.; Altieri, G.; D’Erchia, L.; Lanza, G.; Strano, M.C. Effects of gaseous ozone exposure on cold stored orange fruit. Acta Hortic. 2005, 682, 1605–1610. [Google Scholar] [CrossRef]
- Ashebre, K.M. Pre-Harvest and Post-Harvest Factors Affecting Citrus Fruit and Post-Harvest Treatments. J. Biol. Agric. Healthc. 2015, 5, 19–29. [Google Scholar]
- Nunes, C.; Usall, J.; Manso, T.; Torres, R.; OImo, M.; Garcia, J.M. Effect of High Temperature Treatments on growth of Penicillium spp. and their Development on ‘Valencia’ Oranges. Food Sci. Technol. Int. 2007, 13, 63–68. [Google Scholar] [CrossRef]
- Droby, S.; Eick, A.; Macarisin, D.; Cohen, L.; Rafael, G.; Stange, R.; McColum, G.; Dudai, N.; Nasser, A.; Wisniewski, M.; et al. Role of citrus volatiles in host recognition, germination and growth of Penicillium digitatum and Penicillium italicum. Postharvest Biol. Technol. 2008, 49, 386–396. [Google Scholar] [CrossRef]
- Papoutsis, K.; Mathioudakis, M.M.; Hasperue, J.H.; Ziogas, V. Non-chemical treatments for preventing the postharvest fungal citrus caused by Penicillium digitatum (green mold) and Penicillium italicum (blue mold). Trends Food Sci. Technol. 2019, 86, 479–491. [Google Scholar] [CrossRef]
- Dabargainya, B.; Acharya, B.; Acharya, P. Effect of different packaging materials on post-harvest life of mandarin (Citrus reticulata Blanco). Rev. Food Agric. 2022, 3, 87–91. [Google Scholar] [CrossRef]
- D’Aquino, S.; Angioni, M.; Schirru, S.; Agabbio, M. Quality and Physiological Changes of Film Packaged ‘Malvasio’ Mandarins during Long Term Storage. LWT Food Sci. Technol. 2001, 34, 206–214. [Google Scholar] [CrossRef]
- Lopez-Gomez, A.; Ros-Chumillas, M.; Buendia-Moreno, L.; Navaroo-Segura, L.; Martinez-Hernandez, G.B. Active Cardboard Box with Smart Internal Lining Based on Encapsulated Essential Oils for Enhancing the Shelf Life of Fresh Mandarins. Foods 2020, 9, 590. [Google Scholar] [CrossRef]
- Baswal, A.K.; Dhaliwal, H.S.; Singh, Z.; Mahajan, B.V.C. Influence of Types of Modified Atmospheric Packaging (MAP) Films on Cold-Storage Life and Fruit Quality of ‘Kinnow’ Mandarin (Citrus nobilis Lour X C. deliciosa Tenora). Int. J. Fruit Sci. 2020, 20, 1552–1569. [Google Scholar] [CrossRef]
- Mahajan, B.V.C.; Dhatt, A.S.; Satish, K.; Manohar, L. Effect of pre-storage treatments and packaging on the storage behaviour and quality of Kinnow mandarin. J. Food Sci. Technol. 2006, 43, 589–593. [Google Scholar]
- Kang, J.H.; Choi, H.Y.; Park, H.H.; Min, S.C. Effects of washing and packaging combined treatments on the quality of satsuma mandarins during storage. LWT Food Sci. Technol. 2020, 121, 108982. [Google Scholar] [CrossRef]
- Smilanick, J.L.; Michael, I.F.; Mansour, M.F.; Mackey, B.E.; Margosan, D.A.; Flores, D.; Weist, C.F. Improved Control of Green Mold of Citrus with Imazalil in Warm Water Compared with Its Use in Wax. Plant Dis. 1997, 81, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
- Moscoso-Ramirez, P.A.; Montesinos-Herrero, C.; Palou, L. Control of citrus postharvest penicillium molds with sodium ethylparaben. Crop Prot. 2013, 46, 44–51. [Google Scholar] [CrossRef]
- Sukorini, H.; Sangchote, S.; Khewkhom, N. Control of postharvest green mold of citrus fruits with yeast, medicinal plants, and their combination. Postharvest Biol. Technol. 2013, 79, 24–31. [Google Scholar] [CrossRef]
- Erasmus, A.; Lennox, C.L.; Korsten, L.; Lesar, K.; Fourie, P.H. Imazalil resistance in Penicillium digitatum and P. italicum causing citrus postharvest green and blue mold: Impact and options. Postharvest Biol. Technol. 2015, 107, 66–76. [Google Scholar] [CrossRef]
- Vas, A.; Korpics, E.; Dernovics, M. Follow-up of the fate of imazalil from post-harvest lemon surface treatment to a baking experiment. Food Addit. Contam. 2015, 32, 1875–1884. [Google Scholar] [CrossRef]
- Palou, L.; Smilanick, J.L.; Crisosto, C.H.; Mansour, M. Effect of Gaseous Ozone Exposure on the Development of Green and Blue Molds on Cold Stored Citrus Fruit. Plant Dis. 2001, 85, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.; Macleod, J.; Blaxland, J. The use of ozone technology to control microorganism growth, enhance food safety and extend shelf life: A promising food decontamination technology. Foods 2023, 12, 814. [Google Scholar] [CrossRef] [PubMed]
- Karaca, H. Use of ozone in the citrus industry. Ozone Sci. Eng. 2010, 32, 122–129. [Google Scholar] [CrossRef]
- Liew, C.L.; Prange, K. Effect of Ozone and Storage Temperature on Postharvest Diseases and Physiology of Carrots (Daucus carota, L). J. Am. Soc. Hortic. Sci. 1994, 119, 563–567. [Google Scholar] [CrossRef]
- Palou, L.; Smilanick, J.L.; Crisosto, C.H.; Mansour, M.; Plaza, P. Ozone gas penetration and control of the sporulation of Penicillium digitatum and Penicillium italicum within commercial packages of oranges during cold storage. Crop Prot. 2003, 22, 1131–1134. [Google Scholar] [CrossRef]
- Guzel-Seydim, Z.B.; Greene, A.K.; Seydim, A.C. Use of ozone in the food industry. Swiss Soc. Food Sci. Technol. 2004, 37, 453–460. [Google Scholar] [CrossRef]
- Karaca, H.; Velioglu, Y.S. Ozone Applications in Fruit and Vegetable Processing. Food Rev. Int. 2007, 23, 91–106. [Google Scholar] [CrossRef]
- Tzortzakis, N.; Singleton, I.; Barnes, J. Deployment of low-level ozone-enrichment for the preservation of chilled fresh produce. Postharvest Biol. Technol. 2007, 43, 261–270. [Google Scholar] [CrossRef]
- Sharpe, D.; Fan, L.; McRae, K.; Walker, B.; MacKay, R.; Doucette, C. Effects of Ozone Treatment on Botrytis cinerea and Sclerotinia sclerotiorum in Relation to Horticultural Product Quality. J. Food Sci. 2009, 74, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, R.; Smilanick, J.L.; Karabulut, O.A. Toxicity of ozone gas to conidia of Penicillium digitatum, Penicillium italicum and Botrytis cinerea and control of gray mold on table grapes. Postharvest Biol. Technol. 2011, 60, 47–51. [Google Scholar] [CrossRef]
- Hibben, C.R.; Stotzky, G. Effects of ozone on the germination of fungus spores. Can. J. Microbiol. 1969, 15, 1187–1196. [Google Scholar] [CrossRef]
- Achen, M.; Yousef, A.E. Efficacy of ozone against Escherichia coli O157:H7 on apples. J. Food Sci. 2001, 66, 1380–1384. [Google Scholar]
- Palou, L.; Ali, A.; Fallik, E.; Romanazzi, G. GRAS, plant-and animal-derived compounds as alternatives to conventional fungicides for the control of postharvest diseases of fresh horticultural produce. Postharvest Biol. Technol. 2016, 122, 41–52. [Google Scholar] [CrossRef]
- Özen, T.; Koyuncu, M.A.; Erbaş, D. Effect of ozone treatments on the removal of pesticide residues and postharvest quality in green pepper. J. Food Sci. Technol. 2021, 58, 2186–2196. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chi, K.; Yu, H.; Guo, Y.; Ya, W.; Qian, H. Degradation, migration, and removal of trichlorfon on harvested apples during storage at room temperature. Food Chem. 2022, 381, 132243. [Google Scholar] [CrossRef]
- Garcia-Martin, J.F.; Olmo, M.; Garcia, J.M. Effect of ozone treatment on postharvest disease and quality of different citrus varieties at laboratory and at industrial facility. Postharvest Biol. Technol. 2018, 137, 77–85. [Google Scholar] [CrossRef]
- Smilanick, J.L.; Margosan, D.M.; Gabler, F.M. Impact of Ozonated Water on the Quality and Shelf-life of Fresh Citrus Fruit, Stone Fruit and Table Grapes. J. Int. Ozone Assoc. 2002, 24, 343–356. [Google Scholar] [CrossRef]
- Tzortzakis, N.; Chrysargyris, A. Postharvest ozone application for the preservation of fruits and vegetables. Food Rev. Int. 2017, 33, 270–315. [Google Scholar] [CrossRef]
- Mustapić, L.; Šimunac, K.; Ivić, D.; Novak, A.; Popović, L. Mandarin plant health analysis in the Neretva valley and its management. Glas. Biljn. Zaštite 2024, 24, 373–384. [Google Scholar]
- European Food Safety Authority (EFSA). Outcome of the consultation with Member States and EFSA on the basic substance application for approval of ozone to be used in plant protection as a bactericide, fungicide, insecticide, nematicide and viricide. EFSA Support. Publ. 2021, 18, 3–121. [Google Scholar]
Variants in the Experiment (Exposure to Ozone in Minutes) | Applied Concentration of Ozone in the Air (ppm) |
---|---|
10 | 3,3 |
30 | 10 |
60 | 20 |
Healthy Mandarin Fruits (%) | ||||
---|---|---|---|---|
Variant | No. of Treatments | Duration of Ozonation (min) | Reading 1 | Reading 2 |
Fungicide (Imazalil) | 1 | - | 100 ± 0 a * | 95.0 ± 2.9 ab |
2 | - | 99.4 ± 4.6 ab | 98.8 ± 0.6 a | |
Gaseous ozone | 1 | 10 | 89.4 ± 4.6 bc | 62.5 ± 4.8 c |
1 | 30 | 87.8 ± 2 bc | 85.0 ± 2.9 b | |
1 | 60 | 82.5 ± 3 c | 81.5 ± 2.5 ab | |
2 | 10 | 99.4 ± 4.6 ab | 90.0 ± 4.1 b | |
2 | 30 | 99.4 ± 4.6 ab | 95.0 ± 2.9 ab | |
2 | 60 | 97.4 ± 5.3 ab | 97.5 ± 2.5 ab | |
3 | 10 | 98.7 ± 6.6 ab | 95.0 ± 2.9 ab | |
3 | 30 | 99.4 ± 4.6 ab | 92.5 ± 2.5 ab | |
3 | 60 | 99.4 ± 5.6 ab | 95.0 ± 2.9 ab | |
No treatment | - | - | 81.3 ± 4.6 c | 35.0 ± 9.6 d |
HSD p = 0.05 | 11.94 | 14.43 |
Healthy Mandarin Fruits (%) | ||||
---|---|---|---|---|
Variant | No. of Treatments | Duration of Ozonation (min) | Reading 1 | Reading 2 |
Fungicide (Imazalil) | 1 | - | 100 ± 0 ns | 95.0 ± 2.9 a* |
2 | - | 99.4 ± 4.6 ns | 98.0 ± 0.5 a | |
Ozone | 1 | 10 | 100 ± 0 ns | 87.5 ± 2.5 ab |
1 | 30 | 100 ± 0 ns | 87.5 ± 4.8 ab | |
1 | 60 | 99.4 ± 4.6 ns | 75.0 ± 2.9 b | |
2 | 10 | 99 ± 4.6 ns | 95.0 ± 2.9 a | |
2 | 30 | 97.4 ± 5.3 ns | 92.5 ± 2.5 a | |
2 | 60 | 100 ± 0 ns | 95.0 ± 2.9 a | |
3 | 10 | 99.4 ± 4.6 ns | 92.5 ± 2.5 a | |
3 | 30 | 99.4 ± 4.6 ns | 97.5 ± 2.5 a | |
3 | 60 | 100 ± 0 ns | 97.5 ± 2.5 a | |
No treatment | - | - | 94.3 ± 4.6 ns | 35.1 ± 9.6 c |
HSD p = 0.05 | - | 13.96 |
Healthy Mandarin Fruits (%) | ||||
---|---|---|---|---|
Variant | No. of Treatments | Ozon Concentration (ppm) | Reading 1 | Reading 2 |
Fungicide (Imazalil) | 1 | - | 97.5 ± 2.5 ab * | 95 ± 2.9 ab |
2 | - | 100 ± 0 a | 100 ± 0 a | |
Ozone | 1 | 2 | 80 ± 4.1 c | 60 ± 4.1 d |
1 | 4 | 85 ± 2.9 abc | 65 ± 2.9 cd | |
1 | 6 | 82.5 ± 2.5 bc | 62.5 ± 4.8 d | |
2 | 2 | 95 ± 2.9 abc | 82.5 ± 2.5 b | |
2 | 4 | 95 ± 2.9 abc | 87.5 ± 2.5 ab | |
2 | 6 | 92.5 ± 4.8 abc | 85 ± 2.9 ab | |
3 | 2 | 90 ± 4.1 abc | 85 ± 6.5 ab | |
3 | 4 | 92.5 ± 2.5 abc | 82.5 ± 4.8 b | |
3 | 6 | 100 ± 0 a | 80 ± 0 bc | |
No treatment | - | - | 92.5 ± 2.5 abce | 33 ± 9.6 e |
HSD p = 0.05 | 15.39 | 16.79 |
Healthy Mandarin Fruits (%) | ||||
---|---|---|---|---|
Variant | No. of Treatments | Ozon Concentration (ppm) | Reading 1 | Reading 2 |
Fungicide (imazalil) | 1 | - | 100 ± 0 ns | 100 ± 0 a* |
2 | - | 100 ± 0 ns | 100 ± 0 a | |
Ozone | 1 | 2 | 92.5 ± 4.8 ns | 82.5 ± 2.5 b |
1 | 4 | 95 ± 5 ns | 80 ± 4.1 b | |
1 | 6 | 92.5 ± 4.8 ns | 92.5 ± 4.8 ab | |
2 | 2 | 97.5 ± 2.5 ns | 95 ± 5 a | |
2 | 4 | 97.5 ± 2.5 ns | 97.5 ± 2.5 a | |
2 | 6 | 95 ± 2.9 ns | 90 ± 4.1 ab | |
3 | 2 | 95 ± 2.9 ns | 87.5 ± 4.8 ab | |
3 | 4 | 95 ± 5 ns | 87.5 ± 2.5 ab | |
3 | 6 | 100 ± 0 ns | 90 ± 0.4 ab | |
No treatment | - | - | 90 ± 4.1 ns | 77.5 ± 2.5 c |
HSD p = 0.05 | - | 14.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemic, D.; Galešić, M.A.; Bjeliš, M.; Viric Gasparic, H. Ozone Treatment as a Sustainable Alternative for Suppressing Blue Mold in Mandarins and Extending Shelf Life. Agriculture 2024, 14, 1196. https://doi.org/10.3390/agriculture14071196
Lemic D, Galešić MA, Bjeliš M, Viric Gasparic H. Ozone Treatment as a Sustainable Alternative for Suppressing Blue Mold in Mandarins and Extending Shelf Life. Agriculture. 2024; 14(7):1196. https://doi.org/10.3390/agriculture14071196
Chicago/Turabian StyleLemic, Darija, Marija Andrijana Galešić, Mario Bjeliš, and Helena Viric Gasparic. 2024. "Ozone Treatment as a Sustainable Alternative for Suppressing Blue Mold in Mandarins and Extending Shelf Life" Agriculture 14, no. 7: 1196. https://doi.org/10.3390/agriculture14071196
APA StyleLemic, D., Galešić, M. A., Bjeliš, M., & Viric Gasparic, H. (2024). Ozone Treatment as a Sustainable Alternative for Suppressing Blue Mold in Mandarins and Extending Shelf Life. Agriculture, 14(7), 1196. https://doi.org/10.3390/agriculture14071196