Rice Bund Management by Filipino Farmers and Willingness to Adopt Ecological Engineering for Pest Suppression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Demonstration Plots
2.2. Open Field Days
2.3. Farmer Surveys
2.4. Data Analysis
3. Results
3.1. Farmer Profiles
3.2. Farmers’ Current Management of Bunds
3.2.1. Bund Dimensions and Herbicide Use
3.2.2. Growing Vegetables on Rice Bunds
3.2.3. Growing Flowers on Rice Bunds
3.2.4. Allowing Weeds and Wild Flowers to Grow on Rice Bunds
3.3. Farmers’ Opinions about Ecological Engineering after the Open Field Days
3.4. Farmers’ Willingness to Grow Vegetation on Bunds before and after the OFDs
4. Discussion
4.1. Farmers’ Preferences for Growing Vegetatables on Rice Bunds
4.2. Avoiding Pesticides on Bund-Grown Vegetation
4.3. Farmers’ Appreciation of HDVPs and Other Interventions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Seck, P.A.; Diagne, A.; Mohanty, S.; Wopereis, M.C.S. Crops that feed the world 7: Rice. Food Secur. 2012, 4, 7–24. [Google Scholar] [CrossRef]
- Dasgupta, S.; Meisner, C.; Wheeler, D.; Xuyen, K.; Thi Lam, N. Pesticide poisoning of farm workers–implications of blood test results from Vietnam. Int. J. Hyg. Environ. Health 2007, 210, 121–132. [Google Scholar] [CrossRef]
- Wilson, C.; Tisdell, C. Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecol. Econ. 2001, 39, 449–462. [Google Scholar] [CrossRef]
- Palis, F.G.; Flor, R.J.; Warburton, H.; Hossain, M. Our farmers at risk: Behaviour and belief system in pesticide safety. J. Public Health 2006, 28, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Salazar, C.; Rand, J. Pesticide use, production risk and shocks. The case of rice producers in Vietnam. J. Environ. Manag. 2020, 253, 109705. [Google Scholar] [CrossRef] [PubMed]
- Horgan, F.G.; Vu, Q.; Mundaca, E.A.; Dabholkar, S.; Davis, M.; Settele, J.; Crisol-Martínez, E. Escaping the lock-in to pesticide use: Do Vietnamese farmers respond to flower strips as a restoration practice or pest management action? Sustainability 2023, 15, 12508. [Google Scholar] [CrossRef]
- Horgan, F.G.; Kudavidanage, E.P. Use and avoidance of pesticides as responses by farmers to change impacts in rice ecosystems of southern Sri Lanka. Environ. Manag. 2020, 65, 787–803. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Bari, M.; Ahmed, N.; Kabir, M.; Afrin, S.; Zaman, M.; Haque, S.; Willers, J. Rice production without insecticide in smallholder farmer’s field. Front. Environ. Sci. 2017, 5, 16. [Google Scholar] [CrossRef]
- Thorburn, C. The rise and demise of integrated pest management in rice in Indonesia. Insects 2015, 6, 381–408. [Google Scholar] [CrossRef]
- Lu, Q.-Q.; Song, Y.-F.; Pan, K.-Q.; Li, Y.; Tang, M.-X.; Zhong, G.-H.; Liu, J. Improved crop protection and biodiversity of the agroecosystem by reduced tillage in rice paddy fields in southern China. J. Integr. Agric. 2022, 21, 2345–2356. [Google Scholar] [CrossRef]
- Vo, H.T.; Yabe, M.; Nguyễn, T.T.; Huỳnh, V.K. Environmental efficiency of ecologically engineered rice production in the Mekong Delta of Vietnam. J. Fac. Agric. Kyushu. Univ. 2015, 60, 493–500. [Google Scholar]
- Wu, J.; Ge, L.; Liu, F.; Song, Q.; Stanley, D. Pesticide-induced planthopper population resurgence in rice cropping systems. Annu. Rev. Entomol. 2020, 65, 409–429. [Google Scholar] [CrossRef]
- Horgan, F.G.; Ramal, A.F.; Villegas, J.M.; Jamoralin, A.; Bernal, C.C.; Perez, M.O.; Pasang, J.M.; Naredo, A.I.; Almazan, M.L.P. Effects of bund crops and insecticide treatments on arthropod diversity and herbivore regulation in tropical rice fields. J. Appl. Entomol. 2017, 141, 587–599. [Google Scholar] [CrossRef]
- Gong, Y.; Baylis, K.; Kozak, R.; Bull, G. Farmers’ risk preferences and pesticide use decisions: Evidence from field experiments in China. Agric. Econ. 2016, 47, 411–421. [Google Scholar] [CrossRef]
- Spangenberg, J.H.; Douguet, J.M.; Settele, J.; Heong, K.L. Escaping the lock-in of continuous insecticide spraying in rice: Developing an integrated ecological and socio-political DPSIR analysis. Ecol. Model. 2015, 295, 188–195. [Google Scholar] [CrossRef]
- Horgan, F.G.; Vu, Q.; Mundaca, E.A.; Crisol-Martinez, E. Restoration of rice ecosystem services: ‘ecological engineering for pest management’ incentives and practices in the Mekong Delta Region of Vietnam. Agronomy 2022, 12, 1042. [Google Scholar] [CrossRef]
- Horgan, F.G.; Mundaca, E.A.; Hadi, B.A.R.; Crisol-Martínez, E. Diversified rice farms with vegetable plots and flower strips are associated with fewer pesticide applications in the Philippines. Insects 2023, 14, 778. [Google Scholar] [CrossRef]
- Van den Berg, H.; Jiggins, J. Investing in farmers—The impacts of farmer field schools in relation to integrated pest management. World Dev. 2007, 35, 663–686. [Google Scholar] [CrossRef]
- Feder, G.; Murgai, R.; Quizon, J.B. Sending farmers back to school: The impact of farmer field schools in Indonesia. Appl. Econ. Perspect. Policy 2004, 26, 45–62. [Google Scholar] [CrossRef]
- Jones, K.A. Promotion of integrated pest management by the plant science industry: Activities and outcomes. In Integrated Pest Management: Pesticide Problems; Pimentel, D., Peshin, R., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 3, pp. 393–408. [Google Scholar]
- Heong, K.L.; Escalada, M.M.; Sengsoulivong, V.; Schiller, J. Insect management beliefs and practices of rice farmers in Laos. Agric. Ecosyst. Environ. 2002, 92, 137–145. [Google Scholar] [CrossRef]
- Huan, N.H.; Chien, H.V.; Quynh, P.V.; Tan, P.S.; Du, P.V.; Escalada, M.M.; Heong, K.L. Motivating rice farmers in the Mekong Delta to modify pest management and related practices through mass media. Int. J. Pest Manag. 2008, 54, 339–346. [Google Scholar] [CrossRef]
- Babendreier, D.; Wan, M.; Tang, R.; Gu, R.; Tambo, J.; Liu, Z.; Grossrieder, M.; Kansiime, M.; Wood, A.; Zhang, F. Impact assessment of biological control-based integrated pest management in rice and maize in the greater Mekong subregion. Insects 2019, 10, 226. [Google Scholar] [CrossRef] [PubMed]
- Heong, K.L.; Escalada, M.M. A comparative analysis of pest management practices of rice farmers in Asia. In Pest Management of Rice Farmers Asia; Heong, K.L., Escalada, M.M., Eds.; International Rice Research Institute: Los Baños, Philippines, 1997; pp. 227–245. [Google Scholar]
- Carrión Yaguana, V.; Alwang, J.; Norton, G.; Barrera, V. Does IPM have staying power? Revisiting a potato-producing area years after formal training ended. J. Agric. Econ. 2016, 67, 308–323. [Google Scholar] [CrossRef]
- van de Fliert, E.; Dung, N.T.; Henriksen, O.; Dalsgaard, J.P.T. From collectives to collective decision-making and action: Farmer field schools in Vietnam. J. Agric. Educ. Ext. 2007, 13, 245–256. [Google Scholar] [CrossRef]
- Murage, A.W.; Amudavi, D.M.; Obare, G.; Chianu, J.; Midega, C.A.O.; Pickett, J.A.; Khan, Z.R. Determining smallholder farmers’ preferences for technology dissemination pathways: The case of ‘push–pull’ technology in the control of stemborer and Striga weeds in Kenya. Int. J. Pest Manag. 2011, 57, 133–145. [Google Scholar] [CrossRef]
- Nicholls, C.I.; Altieri, M.A. Pathways for the amplification of agroecology. Agroecol. Sustain. Food Syst. 2018, 42, 1170–1193. [Google Scholar] [CrossRef]
- Leoni, F.; Carlesi, S.; Triacca, A.; Koskey, G.; Croceri, G.; Antichi, D.; Moonen, A.-C. A three-stage approach for co-designing diversified cropping systems with farmers: The case study of lentil-wheat intercropping. Ital. J. Agron. 2023, 18, 2207. [Google Scholar] [CrossRef]
- Ali, M.P.; Bari, M.N.; Haque, S.S.; Kabir, M.M.M.; Afrin, S.; Nowrin, F.; Islam, M.S.; Landis, D.A. Establishing next-generation pest control services in rice fields: Eco-agriculture. Sci. Rep. 2019, 9, 10180. [Google Scholar] [CrossRef]
- Gurr, G.M.; Lu, Z.; Zheng, X.; Xu, H.; Zhu, P.; Chen, G.; Yao, X.; Cheng, J.; Zhu, Z.; Catindig, J.L.; et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2016, 2, 16014. [Google Scholar] [CrossRef]
- Sattler, C.; Schrader, J.; Flor, R.J.; Keo, M.; Chhun, S.; Choun, S.; Hadi, B.A.; Settele, J. Reducing pesticides and increasing crop diversification offer ecological and economic benefits for farmers—A case study in Cambodian rice fields. Insects 2021, 12, 267. [Google Scholar] [CrossRef]
- Qian, P.; Bai, Y.; Zhou, W.; Yu, H.; Zhu, Z.; Wang, G.; Quais, M.K.; Li, F.; Chen, Y.; Tan, Y.; et al. Diversified bund vegetation coupled with flowering plants enhances predator population and early-season pest control. Environ. Entomol. 2021, 50, 842–851. [Google Scholar] [CrossRef]
- Horgan, F.G.; Ramal, A.F.; Bernal, C.C.; Villegas, J.M.; Stuart, A.M.; Almazan, M.L.P. Applying ecological engineering for sustainable and resilient rice production systems. Procedia Food Sci. 2016, 6, 7–15. [Google Scholar] [CrossRef]
- Yele, Y.; Chander, S.; Suroshe, S.S.; Nebapure, S.M.; Arya, P.; Prabhulinga, T. Effect of ecological engineering on incidence of key rice pests. Indian J. Entomol. 2022, 84, 503–508. [Google Scholar] [CrossRef]
- Shanmugam, P.; Sangeetha, M.; Ayyadurai, P.; Prasad, Y. Demonstration of ecological engineering-based pest management in rice Oryza sativa L. through farmers participatory approach. Agric. Sci. Dig. Res. J. 2022, 42, 290–295. [Google Scholar] [CrossRef]
- Heong, K.-L.; Lu, Z.-X.; Chien, H.-V.; Escalada, M.; Settele, J.; Zhu, Z.-R.; Cheng, J.-A. Ecological engineering for rice insect pest management: The need to communicate widely, improve farmers’ ecological literacy and policy reforms to sustain adoption. Agronomy 2021, 11, 2208. [Google Scholar] [CrossRef]
- Zhu, P.; Zheng, X.; Johnson, A.C.; Chen, G.; Xu, H.; Zhang, F.; Yao, X.; Heong, K.; Lu, Z.; Gurr, G.M. Ecological engineering for rice pest suppression in China. A review. Agron. Sustain. Dev. 2022, 42, 69. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Jørgensen, S.E. Ecological engineering and ecosystem restoration; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Lu, Z.-X.; Zhu, P.-Y.; Gurr, G.M.; Zheng, X.-S.; Read, D.M.Y.; Heong, K.-L.; Yang, Y.-J.; Xu, H.-X. Mechanisms for flowering plants to benefit arthropod natural enemies of insect pests: Prospects for enhanced use in agriculture. Insect Sci. 2014, 21, 1–12. [Google Scholar] [CrossRef]
- Lu, Y.-H.; Zheng, X.-S.; Lu, Z.-X. Application of vetiver grass Vetiveria zizanioides: Poaceae (L.) as a trap plant for rice stem borer Chilo suppressalis: Crambidae (Walker) in the paddy fields. J. Integr. Agric. 2019, 18, 797–804. [Google Scholar] [CrossRef]
- Corales, R.G.; Juliano, L.M.; Capistrano, A.O.V.; Tobias, H.S.; Dasalla, N.V.; Cañete, S.D.; Casimero, M.C.; Sebastian, L.S. Palayamanan: A rice-based farming systems model for small-scale farmers. Philipp. J. Crop Sci. 2004, 29, 21–27. [Google Scholar]
- Horgan, F.G.; Ramal, A.F.; Villegas, J.M.; Almazan, M.L.P.; Bernal, C.C.; Jamoralin, A.; Pasang, J.M.; Orboc, G.; Agreda, V.; Arroyo, C. Ecological engineering with high diversity vegetation patches enhances bird activity and ecosystem services in Philippine rice fields. Reg. Environ. Chang. 2017, 17, 1355–1367. [Google Scholar] [CrossRef]
- Abrogena, N.; Catudan, B.; Castro, R.; Cruz, L.; Aguinaldo, A. Economic benefits and production efficiencies of Palayamanan in northwest Luzon. Philipp. J. Crop Sci. 2006, 31, 47–60. [Google Scholar]
- Parreño-de Guzman, L.E.; Zamora, O.B.; Bernardo, D.F. Diversified and integrated farming systems (DIFS): Philippine experiences for improved livelihood and nutrition. J. Dev. Sustain. Agric. 2015, 10, 19–33. [Google Scholar] [CrossRef]
- Noor, H.M.; Burhanuddin, M.; Salim, H.; Asrif, N.A.; Jamian, S.; Azhar, B. Pest rodents’ responses to rice farming in northern peninsular Malaysia. Agronomy 2023, 13, 85. [Google Scholar] [CrossRef]
- Stone, L.; Campbell, J. The use and misuse of surveys in international development: An experiment from Nepal. Hum. Organ. 2008, 43, 27–37. [Google Scholar] [CrossRef]
- Dunn, L.; Latty, T.; Van Ogtrop, F.F.; Tan, D.K.Y. Cambodian rice farmers’ knowledge, attitudes, and practices (KAPs) regarding insect pest management and pesticide use. Int. J. Agric. Sustain. 2023, 21, 2178804. [Google Scholar] [CrossRef]
- Schreinemachers, P.; Chen, H.-p.; Nguyen, T.T.L.; Buntong, B.; Bouapao, L.; Gautam, S.; Le, N.T.; Pinn, T.; Vilaysone, P.; Srinivasan, R. Too much to handle? Pesticide dependence of smallholder vegetable farmers in Southeast Asia. Sci. Total Environ. 2017, 593–594, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Stefopoulou, A.; LaDeau, S.L.; Syrigou, N.; Balatsos, G.; Karras, V.; Lytra, I.; Boukouvala, E.; Papachristos, D.P.; Milonas, P.G.; Kapranas, A.; et al. Knowledge, Attitude, and Practices Survey in Greece before the Implementation of Sterile Insect Technique against Aedes albopictus. Insects 2021, 12, 212. [Google Scholar] [CrossRef] [PubMed]
- Stuart, A.M.; Prescott, C.V.; Singleton, G.R.; Joshi, R.C. Knowledge, attitudes and practices of farmers on rodent pests and their management in the lowlands of the Sierra Madre Biodiversity Corridor, Philippines. Crop Prot. 2011, 30, 147–154. [Google Scholar] [CrossRef]
- Liao, X.; Nguyen, T.P.L.; Sasaki, N. Use of the knowledge, attitude, and practice (KAP) model to examine sustainable agriculture in Thailand. Reg. Sustain. 2022, 3, 41–52. [Google Scholar] [CrossRef]
- Ratcliffe, J.W. Analyst biases in KAP surveys: A cross-cultural comparison. Stud. Fam. Plan. 1976, 7, 322–330. [Google Scholar] [CrossRef]
- Foronda, V.R. Agricultural biodiversity conservation toward sustainable rice-based farming systems. J. Dev. Sustain. Agric. 2007, 2, 167–191. [Google Scholar] [CrossRef]
- Tayobong, R.R.P.; Sanchez, F.C.; Balladares, M.C.E.; Medina, N.G. Edible landscaping in the Philippines: Maximizing the use of small spaces for aesthetics and crop production. J. Dev. Sustain. Agric. 2013, 8, 91–99. [Google Scholar] [CrossRef]
- Zhu, P.; Lu, Z.; Heong, K.; Chen, G.; Zheng, X.; Xu, H.; Yang, Y.; Nicol, H.I.; Gurr, G.M. Selection of nectar plants for use in ecological engineering to promote biological control of rice pests by the predatory bug, Cyrtorhinus lividipennis, (Heteroptera: Miridae). PLoS ONE 2014, 9, e108669. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Wang, G.; Zheng, X.; Tian, J.; Lu, Z.; Heong, K.L.; Xu, H.; Chen, G.; Yang, Y.; Gurr, G.M. Selective enhancement of parasitoids of rice Lepidoptera pests by sesame (Sesamum indicum) flowers. BioControl 2015, 60, 157–167. [Google Scholar] [CrossRef]
- Horgan, F.G.; Martinez, E.C.; Stuart, A.M.; Bernal, C.C.; Martin, E.D.; Almazan, M.L.P.; Ramal, A.F. Effects of vegetation strips, fertilizer levels and varietal resistance on the integrated management of arthropod biodiversity in a tropical rice ecosystem. Insects 2019, 10, 328. [Google Scholar] [CrossRef]
- Vu, Q.; Ramal, A.F.; Villegas, J.M.; Jamoralin, A.; Bernal, C.C.; Pasang, J.M.; Almazan, M.L.P.; Ramp, D.; Settele, J.; Horgan, F.G. Enhancing the parasitism of insect herbivores through diversification of habitat in Philippine rice fields. Paddy Water Environ. 2018, 16, 379–390. [Google Scholar] [CrossRef]
- Zhu, P.; Zheng, X.; Zhang, F.; Xu, H.; Yang, Y.; Chen, G.; Lu, Z.; Johnson, A.C.; Gurr, G.M. Quantifying the respective and additive effects of nectar plant crop borders and withholding insecticides on biological control of pests in subtropical rice. J. Pest Sci. 2018, 91, 575–584. [Google Scholar] [CrossRef]
- Zhu, P.; Liang, R.; Qin, Y.; Xu, H.; Zou, Y.; Johnson, A.C.; Zhang, F.; Gurr, G.M.; Lu, Z. Extrafloras and floral nectar promote biocontrol services provided by parasitoid wasps to rice crops. Entomol. Gen. 2023, 43, 971–979. [Google Scholar] [CrossRef]
- Zhu, P.; Gurr, G.M.; Lu, Z.; Heong, K.; Chen, G.; Zheng, X.; Xu, H.; Yang, Y. Laboratory screening supports the selection of sesame (Sesamum indicum) to enhance Anagrus spp. parasitoids (Hymenoptera: Mymaridae) of rice planthoppers. Biol. Control 2013, 64, 83–89. [Google Scholar] [CrossRef]
- Tian, J.-C.; Chen, Y.; Shelton, A.M.; Zheng, X.-S.; Xu, H.-X.; Lu, Z.-X. Screening sugars can benefit the parasitoid Cotesia chilonis (Hymenoptera: Braconidae) without benefiting its host, Chilo suppressalis (Lepidoptera: Crambidae). J. Econ. Entomol. 2019, 112, 2142–2148. [Google Scholar] [CrossRef] [PubMed]
- Baba, Y.G.; Tanaka, K. Factors affecting abundance and species composition of generalist predators (Tetragnatha spiders) in agricultural ditches adjacent to rice paddy fields. Biol. Control 2016, 103, 147–153. [Google Scholar] [CrossRef]
- Harris, K.M.; Williams, C.T.; Okhidievbie, O.; LaSalle, J.; Polaszek, A. Description of a new species of Orseolia (Diptera: Cecidomyiidae) from Paspalum in West Africa, with notes on its parasitoids, ecology and relevance to natural biological control of the African rice gall midge, O. oryzivora. Bull. Entomol. Res. 2007, 89, 441–448. [Google Scholar] [CrossRef]
- Nwilene, F.E.; Togola, A.; Agunbiade, T.A.; Ogah, E.O.; Ukwungwu, M.N.; Hamadoun, A.; Kamara, S.I.; Dakouo, D. Parasitoid biodiversity conservation for sustainable management of the African rice gall midge, Orseolia oryzivora (Diptera: Cecidomyiidae) in lowland rice. Biocontrol Sci. Technol. 2008, 18, 1075–1081. [Google Scholar] [CrossRef]
- Zheng, X.; Lu, Y.; Zhu, P.; Zhang, F.; Tian, J.; Xu, H.; Chen, G.; Nansen, C.; Lu, Z. Use of banker plant system for sustainable management of the most important insect pest in rice fields in China. Sci. Rep. 2017, 7, 45581. [Google Scholar] [CrossRef]
- Lu, Y.-H.; Kai, L.; Zheng, X.-S.; Lü, Z.-X. Electrophysiological responses of the rice striped stem borer Chilo suppressalis to volatiles of the trap plant vetiver grass (Vetiveria zizanioides L.). J. Integr. Agric. 2017, 16, 2525–2533. [Google Scholar] [CrossRef]
- Zheng, X.-S.; Xu, H.-X.; Chen, G.-H.; Wu, J.-X.; Lü, Z.-X. Potential function of Sudan grass and vetiver grass as trap crops for suppressing population of stripped stem borer, Chilo suppressalis in rice. Chin. J. Biol. Control 2009, 25, 299. [Google Scholar]
- Kebede, Y.; Baudron, F.; Bianchi, F.; Tittonell, P. Unpacking the push-pull system: Assessing the contribution of companion crops along a gradient of landscape complexity. Agric. Ecosyst. Environ. 2018, 268, 115–123. [Google Scholar] [CrossRef]
- Kumela, T.; Mendesil, E.; Enchalew, B.; Kassie, M.; Tefera, T. Effect of the push-pull cropping system on maize yield, stem borer infestation and farmers’ perception. Agronomy 2019, 9, 452. [Google Scholar] [CrossRef]
- Iamba, K. Biological role of marigold (Tagetes erecta L.) in habitat manipulation and sustenance of natural enemy populations in upland rice. Arthropods 2021, 10, 66. [Google Scholar]
- Iamba, K.; Yaubi, T. Incorporating lemon grass (Cymbopogon citratus L.) and marigold (Tagetes erecta L.) as non-host barrier plants to reduce impact of flea beetle (Chaetocnema confinis C.) in cabbage (Brassica oleracea var. capitata L.). Acta Entomol. Zool. 2021, 2, 95–101. [Google Scholar] [CrossRef]
- Aldini, G.M.; Martono, E.; Trisyono, Y.A. Diversity of natural enemies associated with refuge flowering plants of Zinnia elegans, Cosmos sulphureus, and Tagetes erecta in rice ecosystem. J. Perlindungan Tanam. Indones. 2019, 23, 285–291. [Google Scholar] [CrossRef]
- Chavan, D.; Desai, V.; Raut, P. Effect of habitat manipulation on incidence of different pests in rice ecosystem. Trends Biosci. 2015, 8, 5081–5087. [Google Scholar]
- Yan, F.; Jie, W.; Yang, T.; Su, W.; Zhenyu, J.; Shu, L. Effect of nectar plant Cosmos bipinnata on the population dynamics of predatory natural enemies. Chin. J. Biol. Control 2021, 37, 877. [Google Scholar]
- Barros, A.P.; de Carvalho Silva, A.; de Souza Abboud, A.C.; Ricalde, M.P.; Ataide, J.O. Effect of Cosmos, Crotalaria, Foeniculum, and Canavalia species, single-cropped or mixes, on the community of predatory arthropods. Sci. Rep. 2022, 12, 16013. [Google Scholar] [CrossRef] [PubMed]
- Hungerford, H.R.; Volk, T.L. Changing Learner Behavior through Environmental Education. J. Environ. Educ. 1990, 21, 8–21. [Google Scholar] [CrossRef]
- Jacob, J. Response of small rodents to manipulations of vegetation height in agro-ecosystems. Integr. Zool. 2008, 3, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Donkersley, P.; Witchalls, S.; Bloom, E.H.; Crowder, D.W. A little does a lot: Can small-scale planting for pollinators make a difference? Agric. Ecosyst. Environ. 2023, 343, 108254. [Google Scholar] [CrossRef]
- McHugh, N.M.; Bown, B.; McVeigh, A.; Powell, R.; Swan, E.; Szczur, J.; Wilson, P.; Holland, J. The value of two agri-environment scheme habitats for pollinators: Annually cultivated margins for arable plants and floristically enhanced grass margins. Agric. Ecosyst. Environ. 2022, 326, 107773. [Google Scholar] [CrossRef]
- Ollerton, J. Pollinator diversity: Distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 353–376. [Google Scholar] [CrossRef]
- Hall, D.M.; Martins, D.J. Human dimensions of insect pollinator conservation. Curr. Opin. Insect Sci. 2020, 38, 107–114. [Google Scholar] [CrossRef]
- Phillips, B.B.; Wallace, C.; Roberts, B.R.; Whitehouse, A.T.; Gaston, K.J.; Bullock, J.M.; Dicks, L.V.; Osborne, J.L. Enhancing road verges to aid pollinator conservation: A review. Biol. Conserv. 2020, 250, 108687. [Google Scholar] [CrossRef]
- Koffler, S.; Barbiéri, C.; Ghilardi-Lopes, N.P.; Leocadio, J.N.; Albertini, B.; Francoy, T.M.; Saraiva, A.M. A buzz for sustainability and conservation: The growing potential of citizen science studies on bees. Sustainability 2021, 13, 959. [Google Scholar] [CrossRef]
- Toomey, A.H.; Domroese, M.C. Can citizen science lead to positive conservation attitudes and behaviors? Hum. Ecol. Rev. 2013, 20, 50–62. [Google Scholar]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
Questions | Sub-Categories | Sites 1 | Test Statistics 2 | DF | Valid Cases | |||
---|---|---|---|---|---|---|---|---|
Laguna | Rizal | Iloilo | Bukidnon | |||||
Average plot size (ha) | na | 0.17 ± 0.04 | 0.24 ± 0.03 | 0.23 ± 0.03 | 1.232 ns | 2 | 216 | |
Average width of bunds (cm) | 29.96 ± 1.49 | 32.97 ± 1.60 | 33.36 ± 1.55 | 31.57 ± 1.35 | 0.935 ns | 3 | 270 | |
Average height of bunds (cm) | 28.62 ± 1.37 ab | 27.85 ± 1.87 a | 33.81 ± 1.32 ab | 34.32 ± 2.20 b | 3.884 ** | 270 | ||
How many herbicide applications are made to bunds each season? | Zero | 87.04 | 77.78 | 86.32 | 83.58 | 3.581 ns | 6 | 270 |
1× | 7.41 | 16.67 | 10.53 | 13.43 | ||||
2× | 5.56 | 5.56 | 3.16 | 2.99 | ||||
Have you heard of planting vegetables on rice bunds? (% yes) | 70.37 a | 88.89 b | 93.68 b | 93.85 b | 23.688 *** | 3 | 268 | |
Have you planted vegetables on your rice bunds? (% yes) | 33.33 a | 74.07 c | 76.84 c | 53.85 b | 30.720 *** | 3 | 268 | |
If you plant vegetables on bunds, do you apply insecticides? (% yes) | 55.56 ab | 70.00 b | 40.00 ab | 28.57 a | 18.019 *** | 3 | 166 | |
If you currently do not plant vegetables on your bunds, would you consider planting in future? (%) | Yes | 14.81 a | 54.54 c | 35.71 b | 60.00 c | 20.453 *** | 6 | 82 |
No | 62.96 | 45.45 | 64.29 | 36.67 | ||||
Maybe | 22.22 | 0.00 | 0.00 | 0.00 | ||||
Why would you plant vegetables on your bunds (%) | Extra food | 25.00 | 40.00 | 100.00 | 63.16 | 2.036 ns | 3 | 34 3 |
Extra income | 50.00 ab | 25.00 ab | 60.00 b | 15.79 a | 3.148 * | 3 | ||
Pest management | 0.00 | 12.00 | 0.00 | 21.05 | 0.685 ns | 3 | ||
Other benefits 4 | 25.00 | 13.00 | 0.00 | 10.53 | 1.772 ns | 3 | ||
Have you heard of planting flowers on rice bunds? (% yes) | 40.74 b | 24.07 a | 27.37 a | 81.54 c | 56.995 *** | 3 | 268 | |
Have you ever planted flowers on your rice bunds? (% yes) | 7.40 a | 14.81 a | 20.00 b | 27.69 b | 8.749 * | 3 | 268 | |
If you currently do not plant flowers on your bunds, would you consider planting in future? (% yes) | 32.00 a | 36.96 a | 46.67 b | 65.96 c | 134.092 *** | 3 | 219 | |
Why would you plant flowers on your bunds (%) | Extra income | 27.27 ab | 0.00 a | 11.43 a | 41.94 b | 5.970 *** | 3 | 96 |
Pest management | 45.45 | 76.47 | 77.14 | 51.61 | 1.938 ns | |||
Other benefits 5 | 27.27 | 23.53 | 8.57 | 9.68 | 2.631 ns | |||
Do you allow weeds/wild flowers to grow on your rice bunds? (% yes) | 9.26 a | 20.37 b | 34.74 c | 15.38 a | 15.743 *** | 3 | 268 | |
If you currently do not allow weeds/wild flowers on your bunds, would you consider allowing them in future? (% yes) | 22.22 a | 37.21 a | 26.23 a | 50.91 b | 18.835 *** | 3 | 213 |
Questions | Sub-Categories | Sites 2 | Test Statistics 3 | DF | Valid Cases | |||
---|---|---|---|---|---|---|---|---|
Laguna | Rizal | Iloilo | Bukidnon | |||||
What type of vegetation would you prefer to grow on bunds (%) | Vegetables | 92.45 b | 78.00 a | 96.70 b | 98.25 b | 26.232 *** | 6 | 251 |
Flowers | 0.00 | 6.00 | 3.30 | 1.75 | ||||
Both | 7.55 | 16.00 | 0.00 | 0.00 | ||||
Why would you grow vegetables on your bunds? (%) | Extra income | 58.49 | 63.46 | 53.76 | 40.74 | 2.376 ns | 3 | 275 4 |
Extra food | 54.72 ab | 51.92 a | 74.19 b | 62.96 ab | 3.695 * | 3 | ||
Pest management | 16.98 ab | 11.54 ab | 7.53 a | 23.46 b | 3.262 * | 3 | ||
Other benefits 5 | 1.89 | 0.00 | 1.08 | 3.70 | 0.984 ns | 3 | ||
Because advised 6 | 3.77 | 1.92 | 0.00 | 1.23 | 1.141 ns | 3 | ||
How would you manage insect pests on your bund vegetables? (%) | Without insecticides | 74.07 | 56.36 | 76.34 | 76.83 | 13.585 ns | 12 | 284 |
With insecticide | 16.67 | 30.91 | 16.13 | 14.63 | ||||
Using concoctions | 3.70 | 5.45 | 5.38 | 6.10 | ||||
Biocontrol/agroecology | 3.70 | 1.82 | 1.08 | 1.22 | ||||
Cultural/physical | 1.85 | 5.45 | 1.08 | 1.22 | ||||
How would you manage weeds on your bund vegetables? (%) | Without herbicide | 75.61 b | 58.18 a | 56.99 a | 75.61 b | 27.743 *** | 9 | 271 |
With herbicide | 21.95 c | 12.73 b | 8.60 a | 7.32 a | ||||
Using concoctions | 2.44 | 0.00 | 1.08 | 1.22 | ||||
Biocontrol/agroecology 7 | na | na | na | na | ||||
Cultural/physical | 0.00 a | 29.09 b | 31.00 b | 15.85 b | ||||
How would you manage plant diseases on your bund vegetables? (%) | Without fungicide | 66.67 a | 85.19 b | 58.06 a | 64.63 a | 21.309 * | 12 | 282 |
With fungicide | 12.96 | 16.67 | 24.73 | 18.29 | ||||
Using concoctions | 3.70 | 0.00 | 7.53 | 10.98 | ||||
Biocontrol/agroecology | 1.85 | 0.00 | 1.08 | 0.00 | ||||
Cultural/physical | 11.11 | 0.00 | 8.60 | 6.10 | ||||
Will you need extra help/labor to manage bund vegetables (% yes) | 51.92 a | 55.77 a | 75.27 b | 78.21 b | 16.577 *** | 3 | 276 | |
Who is most likely to carry out the extra labor (%) | Hired worker(s) | 37.04 | 34.48 | 47.14 | 31.15 | 10.922 ns | 6 | 187 |
Family member(s) | 66.67 | 55.17 | 51.43 | 67.21 | ||||
Extension support | 3.70 | 10.34 | 1.43 | 1.64 | ||||
Do you anticipate any negative effect of bund cropping? (% yes) | 18.52 | 14.81 | 5.75 | 11.39 | 5.938 ns | 3 | 274 | |
What negative effects do you anticipating? | Added drudgery | 65.00 | 28.57 | 14.29 | 56.25 | 12.654 ns | 9 | 50 |
Lack of Knowledge | 7.00 | 21.43 | 14.29 | 25 | ||||
Added Costs | 7.00 | 7.14 | 0.00 | 12.5 | ||||
Limits to Implementation 8 | 21.00 | 42.86 | 71.43 | 6.25 |
Willingness to Adopt Ecological Engineering | Farmer Category Based on Pre-Event Interviews | Sites 1 | χ2 Region 2 | χ2 Category 2 | Valid Cases | |||
---|---|---|---|---|---|---|---|---|
Laguna | Rizal | Iloilo | Bukidnon | |||||
Pre event | ||||||||
Willing to grow vegetables on bunds (% yes) | Not growing flowers or vegetables 3 | 11.43 a | 44.44 b | 38.46 b | 61.54 c | 17.032 *** | 83 | |
Willing to grow flowers on bunds (% yes) | Not growing flowers or vegetables | 25.71 a | 18.18 a | 23.81 a | 53.85 b | 7.914 * | 9.534 *** | 234 |
Growing vegetables | 41.18 | 45.71 | 54.55 | 50.00 | 5.302 ns | |||
Post event | ||||||||
Willing to grow vegetables on bunds (% yes) | Not growing flowers or vegetables | 65.71 | 61.54 | 73.91 | 82.98 | 4.422 ns | 118 | |
Willing to adopt HDVPs (% yes) | Growing vegetables | 75.00 | 74.42 | 87.67 | 68.42 | 6.540 | 174 | |
Insecticide on bunds (% yes) | No insecticide on bunds | 10.00 | 20.00 | 9.09 | 13.79 | 1.358 ns | 5.861 * | 167 |
Insecticide on bunds | 20.00 | 35.71 | 26.09 | 25.00 | 1.940 ns | |||
Herbicide on bunds (% yes) | No herbicide on bunds | 18.75 b | 21.88 b | 3.13 a | 6.25 a | 10.484 * | 0.429 ns | 173 |
Herbicide on bunds | 0.00 | 18.18 | 22.22 | 0.00 | 2.156 ns |
Models and Dependent Variables | Predictor Variables 1 | Log-Likelihood | DF | Valid Cases | p-Values |
---|---|---|---|---|---|
Currently grow vegetables or flowers on bunds | Region | 28.736 | 3 | 270 | <0.001 |
Plant other crops | 13.585 | 1 | <0.001 | ||
Age of farmer | 4.812 | 1 | 0.028 | ||
Apply biocontrol in rice | 3.835 | 1 | 0.050 | ||
Willing to grow vegetables (pre event) | Region | 21.563 | 3 | 90 | <0.001 |
Other incomes | 12.438 | 1 | <0.001 | ||
Education achieved | 5.498 | 2 | 0.064 | ||
Rice farming experience | 2.879 | 1 | 0.090 | ||
Willing to grow vegetables (post event) | Region | 10.892 | 3 | 224 | 0.012 |
Willing to adopt ecological engineering/HDVPs | Plant other crops | 5.743 | 1 | 133 | 0.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horgan, F.G.; Ramal, A.F.; Villegas, J.M.; Jamoralin, A.; Pasang, J.M.V.; Hadi, B.A.R.; Mundaca, E.A.; Crisol-Martínez, E. Rice Bund Management by Filipino Farmers and Willingness to Adopt Ecological Engineering for Pest Suppression. Agriculture 2024, 14, 1329. https://doi.org/10.3390/agriculture14081329
Horgan FG, Ramal AF, Villegas JM, Jamoralin A, Pasang JMV, Hadi BAR, Mundaca EA, Crisol-Martínez E. Rice Bund Management by Filipino Farmers and Willingness to Adopt Ecological Engineering for Pest Suppression. Agriculture. 2024; 14(8):1329. https://doi.org/10.3390/agriculture14081329
Chicago/Turabian StyleHorgan, Finbarr G., Angelee F. Ramal, James M. Villegas, Alexandra Jamoralin, John Michael V. Pasang, Buyung A. R. Hadi, Enrique A. Mundaca, and Eduardo Crisol-Martínez. 2024. "Rice Bund Management by Filipino Farmers and Willingness to Adopt Ecological Engineering for Pest Suppression" Agriculture 14, no. 8: 1329. https://doi.org/10.3390/agriculture14081329
APA StyleHorgan, F. G., Ramal, A. F., Villegas, J. M., Jamoralin, A., Pasang, J. M. V., Hadi, B. A. R., Mundaca, E. A., & Crisol-Martínez, E. (2024). Rice Bund Management by Filipino Farmers and Willingness to Adopt Ecological Engineering for Pest Suppression. Agriculture, 14(8), 1329. https://doi.org/10.3390/agriculture14081329