Assessing the Environmental Sustainability of Organic Wine Grape Production with Qualified Designation of Origin in La Rioja, Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Evaluated Scenario
2.2. Environmental Assessment
2.2.1. Goal and Scope Definition
- (i)
- FU1: One hectare of land, to evaluate farming practices without considering the yield of the farm and then see which ones can be acted upon to achieve a better environmental profile [30].
- (ii)
- FU2: One kilogram of produced grapes, to quantify the impacts per unit of product harvested. Thus, the winery stage could opt for a raw material with a lower environmental impact [31], as well as being the most useful when comparing the benefits of this organic farming system with others published in the literature.
2.2.2. Life Cycle Inventory
2.2.3. Life Cycle Impact Assessment
Global Potential Species Loss
Pollination
3. Results
3.1. Environmental Impact Profile
3.1.1. Global Potential Species Loss
3.1.2. Pollination
4. Discussion
5. Study Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DOCa | Qualified Designation of Origin |
LCA | Life Cycle Assessment |
GHG | Greenhouse Gas Emissions |
ES | Ecosystem Services |
DO | Designation of Origin |
IPCC | Intergovernmental Panel on Climate Change |
EEA | European Environmental Agency |
EMEP | European Monitoring and Evaluation Programme |
GW | Global Warming |
SOD | Stratospheric Ozone Depletion |
TA | Terrestrial Acidification |
FE | Freshwater Eutrophication |
ME | Marine Eutrophication |
HNCT | Human Non-Carcinogenic Toxicity |
LU | Land Use |
WS | Water Scarcity |
Global Potential Species Loss |
References
- International Organisation of Vine and Wine. State of the World Vine and Wine Sector in 2023. 2024. Available online: https://www.oiv.int/sites/default/files/2024-04/OIV_STATE_OF_THE_WORLD_VINE_AND_WINE_SECTOR_IN_2023.pdf (accessed on 4 December 2024).
- Geppert, C.; da Cruz, M.; Alma, A.; Andretta, L.; Anfora, G.; Battaglia, D.; Burgio, G.; Caccavo, V.; Chiesa, S.G.; Cinquatti, F.; et al. Climate and landscape composition explain agronomic practices, pesticide use and grape yield in vineyards across Italy. Agric. Syst. 2024, 215, 103853. [Google Scholar] [CrossRef]
- Trioli, G.; Sacchi, A.; Corbo, C.; Trevisan, M. Environmental Impact of Vinegrowing and Winemaking Inputs: An European Survey. Internet J. Vitic. Enol. 2015, 7/2. Available online: https://www.infowine.com/wp-content/uploads/2024/04/libretto12728-02-1.pdf (accessed on 4 December 2024).
- European Commission. Organic Farming. Available online: https://agriculture.ec.europa.eu/farming/organic-farming_en (accessed on 20 February 2025).
- Provost, C.; Pedneault, K. The organic vineyard as a balanced ecosystem: Improved organic grape management and impacts on wine quality. Sci. Hortic. 2016, 208, 43–56. [Google Scholar] [CrossRef]
- Hedley, C.B.; Knox, J.W.; Raine, S.R.; Smith, R. Water: Advanced Irrigation Technologies. In Encyclopedia of Agriculture and Food Systems; Elsevier: Amsterdam, The Netherlands, 2014; pp. 378–406. [Google Scholar] [CrossRef]
- Matos, C.; Castro, M.; Baptista, J.; Valente, A.; Briga-Sá, A. The use of water in wineries: A review. Sci. Total Environ. 2024, 951, 175198. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine. Sustainable Use of Water in Winegrape. 2021. Available online: https://www.oiv.int/sites/default/files/2022-09/2021-oiv-collective-expertise-document-sustainable-use-of-wa_en.pdf (accessed on 9 December 2024).
- Parween, T.; Jan, S. Pesticide consumption and threats to biodiversity. In Ecophysiology of Pesticides; Elsevier: Amsterdam, The Netherlands, 2019; pp. 39–73. [Google Scholar] [CrossRef]
- Pandey, R.; Mishra, S.K.; Mishra, M.K. Agrochemicals and Their Impact on Environment. In Recent Trends in Plant Protection; NIPA: Seoul, Republic of Korea, 2024; Available online: https://www.researchgate.net/publication/375485756 (accessed on 17 December 2024).
- Shrestha, P.; Karim, R.A.; Sieverding, H.L.; Archer, D.W.; Kumar, S.; Nleya, T.; Graham, C.J.; Stone, J.J. Life cycle assessment of wheat production and wheat-based crop rotations. J. Environ. Qual. 2020, 49, 1515–1529. [Google Scholar] [CrossRef]
- Sinisterra-Solís, N.K.; Sanjuán, N.; Estruch, V.; Clemente, G. Assessing the environmental impact of Spanish vineyards in Utiel-Requena PDO: The influence of farm management and on-field emission modelling. J. Environ. Manag. 2020, 262, 110325. [Google Scholar] [CrossRef]
- Fan, J.; Liu, C.; Xie, J.; Han, L.; Zhang, C.; Guo, D.; Niu, J.; Jin, H.; McConkey, B.G. Life Cycle Assessment on Agricultural Production: A Mini Review on Methodology, Application, and Challenges. Int. J. Environ. Res. Public Health 2022, 19, 9817. [Google Scholar] [CrossRef]
- Maia de Souza, D.; Lopes, G.R.; Hansson, J.; Hansen, K. Ecosystem services in life cycle assessment: A synthesis of knowledge and recommendations for biofuels. Ecosyst. Serv. 2018, 30, 200–210. [Google Scholar] [CrossRef]
- Lago-Olveira, S.; Moreira, M.T.; González-García, S. Quantifying spatially explicit LCA midpoint characterization factors to assess the impact of specific farming practices on ecosystem services. Ecosyst. Serv. 2025, 71, 101686. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and human well-being: Synthesis. Phys. Teach. 2005, 34, 534. [Google Scholar]
- ICDA Sustainability. Food System Impacts on Biodiversity Loss. Available online: https://icdasustainability.org/report/food-system-impacts-on-biodiversity-loss-2023/ (accessed on 27 September 2024).
- European Union. Regulation (EU) 2023/1115 of the European Parliament and of the Council of 31 May 2023. Off. J. Eur. Union 2023, 150, 206–247. [Google Scholar]
- Katumo, D.M.; Liang, H.; Ochola, A.C.; Lv, M.; Wang, Q.F.; Yang, C.F. Pollinator diversity benefits natural and agricultural ecosystems, environmental health, and human welfare. Plant Divers. 2022, 44, 429–435. [Google Scholar] [CrossRef] [PubMed]
- BOE. Orden de 3 de Abril de 1991 por la que se Otorga el Carácter de Calificada a la Denominación de Origen «Rioja» y se Aprueba el Reglamento de la Misma y su Consejo Regulador. 1991. Available online: https://www.boe.es/diario_boe/txt.php?id=BOE-A-1991-8566 (accessed on 9 December 2024).
- BOE. Ley 25/1970, de 2 de Diciembre, de Estatuto de la Viña, del Vino y de los 1970. Available online: https://www.boe.es/buscar/doc.php?id=BOE-A-1970-1316 (accessed on 9 December 2024).
- Spanish Government. Designations of Origin, Protected Geographical Indications and Traditional Specialties Guaranteed. Available online: https://administracion.gob.es/pag_Home/en/Tu-espacio-europeo/derechos-obligaciones/empresas/inicio-gestion-cierre/derechos/denominaciones-origen.html (accessed on 17 September 2024).
- DOCa Rioja Regulatory Board. Denominación de Origen Rioja. Available online: https://riojawine.com/ (accessed on 27 September 2024).
- García Castellanos, B.; García García, B.; García García, J. Evaluation of the Sustainability of Vineyards in Semi-Arid Climates: The Case of Southeastern Spain. Agronomy 2022, 12, 3213. [Google Scholar] [CrossRef]
- Villanueva-Rey, P.; Quinteiro, P.; Vázquez-Rowe, I.; Rafael, S.; Arroja, L.; Moreira, M.; Feijoo, G.; Dias, A. Assessing water footprint in a wine appellation: A case study for Ribeiro in Galicia, Spain. J. Clean. Prod. 2018, 172, 2097–2107. [Google Scholar] [CrossRef]
- Dejo-Oricain, N.; Fernández-Olmos, M.; Gargallo-Castel, A.F. Determinants of organic wine production: An application in the DOC Rioja wine industry. Span. J. Agric. Res. 2022, 20, e0104. [Google Scholar] [CrossRef]
- Government of La Rioja. Producción Ecológica. Available online: https://www.larioja.org/agricultura/es/calidad-agroalimentaria/produccion-ecologica (accessed on 4 September 2024).
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneve, Switzerland, 2006.
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneve, Switzerland, 2006.
- Laca, A.; Gancedo, S.; Laca, A.; Díaz, M. Assessment of the environmental impacts associated with vineyards and winemaking. A case study in mountain areas. Environ. Sci. Pollut. Res. 2021, 28, 1204–1223. [Google Scholar] [CrossRef]
- Viveros Santos, I.; Renaud-Gentié, C.; Roux, P.; Levasseur, A.; Bulle, C.; Deschênes, L.; Boulay, A.-M. Prospective life cycle assessment of viticulture under climate change scenarios, application on two case studies in France. Sci. Total Environ. 2023, 880, 163288. [Google Scholar] [CrossRef]
- ARECO. Análisis Comparado de Diferentes Opciones de Distribución de Frutas y Hortalizas en España Mediante el Análisis de Ciclo Vida (ACV). 2017. Available online: https://areco.org.es/wp-content/uploads/2021/02/Resumen_ejecutivo_Estudio_ACV_ARECO.pdf (accessed on 29 November 2024).
- Roselli, L.; Casieri, A.; de Gennaro, B.C.; Sardaro, R.; Russo, G. Environmental and economic sustainability of table grape production in Italy. Sustainability 2020, 12, 3670. [Google Scholar] [CrossRef]
- Ecoinvent. Data with Purpose. Available online: https://ecoinvent.org/ (accessed on 21 August 2024).
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- EMEP/EEA. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2023; Technical Guidance to Prepare National Emission Inventories; European Environment Agency: Copenhagen, Denmark, 2023. [Google Scholar]
- Faist, M.; Zah, R.; Reinhard, J. Sustainable Quick Check for Biofuels (SQCB): A Web-based tool for streamlined biofuels’ LCA. In Environmental Informatics and Industrial Environmental Protection: Concepts, Methods and Tools; Shaker Verla: Aachen, Germany, 2009; pp. 297–303. [Google Scholar]
- USDA. The Twelve Orders of Soil Taxonomy. Available online: https://www.nrcs.usda.gov/resources/education-and-teaching-materials/the-twelve-orders-of-soil-taxonomy (accessed on 9 January 2025).
- Bordoni, M.; Meisina, C.; Vercesi, A.; Bischetti, G.; Chiaradia, E.; Vergani, C.; Chersich, S.; Valentino, R.; Bittelli, M.; Comolli, R.; et al. Quantifying the contribution of grapevine roots to soil mechanical reinforcement in an area susceptible to shallow landslides. Soil Tillage Res. 2016, 163, 195–206. [Google Scholar] [CrossRef]
- Prasuhn, V. Erfassung der PO4-Austräge für die Ökobilanzierung; SALCA-Phosphor: Agroscope, Switzerland, 2006; Volume 20. [Google Scholar]
- European Commission. Product Environmental Footprint Category Rules Guidance; PEFCR Guid; European Commission: Ispra, Italy, 2018. [Google Scholar]
- Schmidt, J.H.; Weidema, B.P.; Brandão, M. A framework for modelling indirect land use changes in Life Cycle Assessment. J. Clean. Prod. 2015, 99, 230–238. [Google Scholar] [CrossRef]
- Haberl, H.; Erb, K.H.; Krausmann, F.; Gaube, V.; Bondeau, A.; Plutzar, C.; Gingrich, S.; Lucht, W.; Fischer-Kowalski, M. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl. Acad. Sci. USA 2007, 104, 12942–12947. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, R.Y.; Kroese, D.P. Simulation and the Monte Carlo Method, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Pérez, R.; Fernández, C.; Laca, A.; Laca, A. Evaluation of Environmental Impacts in Legume Crops: A Case Study of PGI White Bean Production in Southern Europe. Sustainability 2024, 16, 8024. [Google Scholar] [CrossRef]
- Lago-Olveira, S.; Cancela, J.J.; Tubío, M.; Moreira, H.F.; Moreira, M.T.; González-García, S. Environmental benefits of ozonated water for sustainable grapevine disease control: A life cycle and carbon sequestration analysis. J. Clean. Prod. 2024, 478, 143999. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Boulay, A.M.; Bare, J.; Benini, L.; Berger, M.; Lathuillière, M.J.; Manzardo, A.; Margni, M.; Motoshita, M.; Núñez, M.; Pastor, A.V.; et al. The WULCA consensus characterization model for water scarcity footprints: Assessing impacts of water consumption based on available water remaining (AWARE). Int. J. Life Cycle Assess. 2017, 23, 368–378. [Google Scholar] [CrossRef]
- Hanley, N.; Breeze, T.D.; Ellis, C.; Goulson, D. Measuring the economic value of pollination services: Principles, evidence and knowledge gaps. Ecosyst. Serv. 2015, 14, 124–132. [Google Scholar] [CrossRef]
- Porto, R.G.; de Almeida, R.F.; Cruz-Neto, O.; Tabarelli, M.; Viana, B.F.; Peres, C.A.; Lopes, A.V. Pollination ecosystem services: A comprehensive review of economic values, research funding and policy actions. Food Secur. 2020, 12, 1425–1442. [Google Scholar] [CrossRef]
- PRé Sustainability. Simapro Database Manual. Methods Library; PRé Sustainability: Amersfoort, The Netherlands, 2024. [Google Scholar]
- Chaudhary, A.; Verones, F.; De Baan, L.; Hellweg, S. Quantifying Land Use Impacts on Biodiversity: Combining Species-Area Models and Vulnerability Indicators. Environ. Sci. Technol. 2015, 49, 9987–9995. [Google Scholar] [CrossRef]
- Chaudhary, A.; Brooks, T.M. Land Use Intensity-Specific Global Characterization Factors to Assess Product Biodiversity Footprints. Environ. Sci. Technol. 2018, 52, 5094–5104. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial ecoregions of the worlds: A new map of life on Earth. Bioscience 2001, 11, 933–938. [Google Scholar] [CrossRef]
- Lago-Olveira, S.; El-Areed, S.R.M.; Moreira, M.T.; González-García, S. Improving environmental sustainability of agriculture in Egypt through a life-cycle perspective. Sci. Total Environ. 2023, 890, 164335. [Google Scholar] [CrossRef] [PubMed]
- Natural Capital Project. InVEST Crop Pollination Model. Stanford University. Available online: https://naturalcapitalproject.stanford.edu/invest/crop-pollination (accessed on 9 October 2024).
- QGIS Development Team. QGIS Geographic Information System (Version 3.36.3). Open Source Geospatial Foundation Project. Available online: http://qgis.osgeo.org (accessed on 9 October 2024).
- Klein, A.-M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency. CORINE Land Cover 2018. Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 9 October 2024).
- Bartomeus, I.; Lanuza, J.B.; Wood, T.J.; Carvalheiro, L.; Molina, F.P.; Collado, M.Á.; Aguado-Martín, L.O.; Alomar, D.; Álvarez-Fidalgo, M.; Fidalgo, P.Á.; et al. Iberian bees database. Ecosistemas 2022, 31, 2380. [Google Scholar] [CrossRef]
- Zhao, Z.; Shan, R.; Sun, X.; Sun, J.; Wang, B.; Wang, Z. Mapping and assessing supply and demand of crop pollination services in Shandong Province, China. J. Clean. Prod. 2023, 426, 139024. [Google Scholar] [CrossRef]
- Sanguet, A.; Wyler, N.; Guinaudeau, B.; Waller, N.; Urbina, L.; Huber, L.; Fischer, C.; Lehmann, A. Mapping Ecological Infrastructure in a Cross-Border Regional Context. Land 2023, 12, 2010. [Google Scholar] [CrossRef]
- Natural Capital Project. InVEST 3.10.2 Data. Available online: http://releases.naturalcapitalproject.org/?prefix=invest/3.10.2/data/ (accessed on 25 October 2024).
- Torres, I.F.; Bastida, F.; Hernández, T.; García, C. The effects of fresh and stabilized pruning wastes on the biomass, structure and activity of the soil microbial community in a semiarid climate. Appl. Soil Ecol. 2015, 89, 1–9. [Google Scholar] [CrossRef]
- Müller, R. The impact of the rise in atmospheric nitrous oxide on stratospheric ozone: This article belongs to Ambio’s 50th Anniversary Collection. Theme: Ozone Layer. Ambio 2021, 50, 35–39. [Google Scholar] [CrossRef]
- Gazulla, C.; Raugei, M.; Fullana-I-Palmer, P. Taking a life cycle look at crianza wine production in Spain: Where are the bottlenecks? Int. J. Life Cycle Assess. 2010, 15, 330–337. [Google Scholar] [CrossRef]
- Brandão, M.; Canals, L.M. Global characterisation factors to assess land use impacts on biotic production. Int. J. Life Cycle Assess. 2013, 18, 1243–1252. [Google Scholar] [CrossRef]
- Lago-Olveira, S.; Rebolledo-Leiva, R.; Garofalo, P.; Moreira, M.T.; González-García, S. Environmental and economic benefits of wheat and chickpea crop rotation in the Mediterranean region of Apulia (Italy). Sci. Total Environ. 2023, 896, 165124. [Google Scholar] [CrossRef]
- Griffiths-Lee, J.; Davenport, B.; Foster, B.; Nicholls, E.; Goulson, D. Sown wildflowers between vines increase beneficial insect abundance and richness in a British vineyard. Agric. Entomol. 2023, 25, 139–151. [Google Scholar] [CrossRef]
- Casson, A.; Ortuani, B.; Giovenzana, V.; Brancadoro, L.; Corsi, S.; Gharsallah, O.; Guidetti, R.; Facchi, A. A multidisciplinary approach to assess environmental and economic impact of conventional and innovative vineyards management systems in Northern Italy. Sci. Total Environ. 2022, 838, 156181. [Google Scholar] [CrossRef] [PubMed]
- Meneses, M.; Torres, C.M.; Castells, F. Sensitivity analysis in a life cycle assessment of an aged red wine production from Catalonia, Spain. Sci. Total Environ. 2016, 562, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Volanti, M.; Cubillas Martínez, C.; Cespi, D.; Lopez-Baeza, E.; Vassura, I.; Passarini, F. Environmental sustainability assessment of organic vineyard practices from a life cycle perspective. Int. J. Environ. Sci. Technol. 2022, 19, 4645–4658. [Google Scholar] [CrossRef]
- Borsato, E.; Giubilato, E.; Zabeo, A.; Lamastra, L.; Criscione, P.; Tarolli, P.; Marinello, F.; Pizzol, L. Comparison of Water-focused Life Cycle Assessment and Water Footprint Assessment: The case of an Italian wine. Sci. Total Environ. 2019, 666, 1220–1231. [Google Scholar] [CrossRef]
- Lago-Olveira, S.; Ouhemi, H.; Idrissi, O.; Moreira, M.T.; González-García, S. Promoting more sustainable agriculture in the Moroccan drylands by shifting from conventional wheat monoculture to a rotation with chickpea and lentils. Clean. Environ. Syst. 2024, 12, 100169. [Google Scholar] [CrossRef]
Inputs | Value | Unit |
Tractor | 3.96 | kg |
Diesel | 39.90 | kg |
Tillage | 13.49 | kg |
Water | 2.40 | m3 |
N (organic fertiliser) | 35.00 | kg |
P2O5 (organic fertiliser) | 35.00 | kg |
K2O (organic fertiliser) | 70.00 | kg |
Pesticides | 32.00 | kg |
Steel | 51.39 | kg |
High-density polyethylene | 5.62 | kg |
Outputs | Value | Unit |
Grapes | 6.50 | t |
Air emissions | ||
CO2 (iLUC) | 37.88 | kg |
CO2 (dLUC) | −1246 | kg |
N2O | 1.43 | kg |
NO2 | 1.40 | kg |
NH3 | 8.50 | kg |
Copper | 17.67 | mg |
Sulphur | 1.81 | kg |
Water emissions | ||
PO4−3 (groundwater) | 0.21 | kg |
PO4−3 (river) | 0.58 | kg |
NO3− | 14.80 | kg |
Copper | 1.89 | g |
Sulphur | 0.20 | kg |
Soil emissions | ||
Sulphur | 18.14 | kg |
Impact Category | FU1: 1 ha of Land | FU2: 1 kg Grapes | ||
---|---|---|---|---|
Value | Unit | Value | Unit | |
GW | 99.51 | kg CO2 eq | 15.31 | g CO2 eq |
SOD | 0.02 | kg CFC11 eq | 2.62 | mg CFC11 eq |
TA | 8.83 | kg SO2 eq | 1.36 | g SO2 eq |
FE | 0.74 | kg P eq | 0.11 | g P eq |
ME | 4.51 | kg N eq | 0.69 | g N eq |
HNCT | 1.00 | t 1,4-DCB | 0.15 | kg 1,4-DCB |
LU | 24.26 | m2 a crop eq | 37.32 | cm2 a crop eq |
WS | 315 | m3 | 48.4 | L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agraso-Otero, A.; Cancela, J.J.; Vilanova, M.; Ugarte Andreva, J.; Rebolledo-Leiva, R.; González-García, S. Assessing the Environmental Sustainability of Organic Wine Grape Production with Qualified Designation of Origin in La Rioja, Spain. Agriculture 2025, 15, 536. https://doi.org/10.3390/agriculture15050536
Agraso-Otero A, Cancela JJ, Vilanova M, Ugarte Andreva J, Rebolledo-Leiva R, González-García S. Assessing the Environmental Sustainability of Organic Wine Grape Production with Qualified Designation of Origin in La Rioja, Spain. Agriculture. 2025; 15(5):536. https://doi.org/10.3390/agriculture15050536
Chicago/Turabian StyleAgraso-Otero, Adrián, Javier J. Cancela, Mar Vilanova, Javier Ugarte Andreva, Ricardo Rebolledo-Leiva, and Sara González-García. 2025. "Assessing the Environmental Sustainability of Organic Wine Grape Production with Qualified Designation of Origin in La Rioja, Spain" Agriculture 15, no. 5: 536. https://doi.org/10.3390/agriculture15050536
APA StyleAgraso-Otero, A., Cancela, J. J., Vilanova, M., Ugarte Andreva, J., Rebolledo-Leiva, R., & González-García, S. (2025). Assessing the Environmental Sustainability of Organic Wine Grape Production with Qualified Designation of Origin in La Rioja, Spain. Agriculture, 15(5), 536. https://doi.org/10.3390/agriculture15050536