MSDP-Net: A YOLOv5-Based Safflower Corolla Object Detection and Spatial Positioning Network
Abstract
:1. Introduction
- (1)
- We propose and optimize a YOLO v5m-based object detection model to improve the detection accuracy of safflower corollas in complex field environments, thereby addressing challenges such as densely planted safflowers, small corollas, and occlusion.
- (2)
- We also introduce a dynamic viewpoint adjustment technique, which adjusts the perspective during image acquisition to reduce the occlusion of safflower corollas by plant branches and leaves, thereby enhancing the reliability of object detection and the accuracy of spatial positioning.
- (3)
- The MSDP-Net algorithm and dynamic viewpoint adjustment method are integrated into our self-developed safflower corolla harvesting robot system. Laboratory and field tests validate the effectiveness, stability, and efficiency of the proposed methods in real-world applications.
2. Materials and Methods
2.1. Safflower Corolla Color Analysis
2.2. Dataset Construction
2.3. Safflower Corolla Object Detection
2.4. Safflower Corolla Spatial Positioning
3. Experiments
3.1. Experimental Environment and Parameter Settings
3.2. Performance Comparison Before and After Optimization
3.3. Spatial Positioning Performance Testing
3.4. Harvesting Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Ge, Y.; Sun, C.; Zeng, H.; Liu, N. Picking Path Planning Method of Dual Rollers Type Safflower Picking Robot Based on Improved Ant Colony Algorithm. Processes 2022, 10, 1213. [Google Scholar] [CrossRef]
- Guo, H.; Luo, D.; Gao, G.; Wu, T.; Diao, H. Design and experiment of a safflower picking robot based on a parallel manipulator. Eng. Agric. 2022, 42, e20210129. [Google Scholar] [CrossRef]
- Xing, Z.; Zhang, Z.; Shi, R.; Guo, Q.; Zeng, C. Filament-necking localization method via combining improved PSO with rotated rectangle algorithm for safflower-picking robots. Comput. Electron. Agric. 2023, 215, 108464. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, R.; Xing, Z.; Guo, Q.; Zeng, C. Improved Faster Region-Based Convolutional Neural Networks (R-CNN) Model Based on Split Attention for the Detection of Safflower Filaments in Natural Environments. Agronomy 2023, 13, 2596. [Google Scholar] [CrossRef]
- de Oliveira Neto, S.S.; Zeffa, D.M.; Freiria, G.H.; Zoz, T.; da Silva, C.J.; Zanotto, M.D.; Sobrinho, R.L.; Alamri, S.A.; Okla, M.K.; AbdElgawad, H. Adaptability and Stability of Safflower Genotypes for Oil Production. Plants 2022, 11, 708. [Google Scholar] [CrossRef]
- Guo, H.; Qiu, Z.; Gao, G.; Wu, T.; Chen, H.; Wang, X. Safflower Picking Trajectory Planning Strategy Based on an Ant Colony Genetic Fusion Algorithm. Agriculture 2024, 14, 622. [Google Scholar] [CrossRef]
- Thorp, K.R.; Dierig, D.A. Color image segmentation approach to monitor flowering in lesquerella. Ind. Crops Prod. 2011, 34, 1150–1159. [Google Scholar] [CrossRef]
- Li, C.; Song, Z.; Wang, Y.; Zhang, Y. Research on bud counting of cut lily flowers based on machine vision. Multimed. Tools Appl. 2023, 82, 2709–2730. [Google Scholar] [CrossRef]
- Guru, D.S.; Kumar, Y.H.S.; Manjunath, S. Textural features in flower classification. Math. Comput. Model. 2011, 54, 1030–1036. [Google Scholar] [CrossRef]
- Peng, X.; Jia, H.; Lang, C. Modified dragonfly algorithm based multilevel thresholding method for color images segmentation. Math. Biosci. Eng. 2019, 16, 6467–6511. [Google Scholar] [CrossRef]
- Hocevar, M.; Sirok, B.; Godesa, T.; Stopar, M. Flowering estimation in apple orchards by image analysis. Precis. Agric. 2014, 15, 466–478. [Google Scholar] [CrossRef]
- Williams, H.; Nejati, M.; Hussein, S.; Penhall, N.; Lim, J.Y.; Jones, M.H.; Bell, J.; Ahn, H.S.; Bradley, S.; Schaare, P.; et al. Autonomous pollination of individual kiwifruit flowers: Toward a robotic kiwifruit pollinator. J. Field Robot. 2020, 37, 246–262. [Google Scholar] [CrossRef]
- Dias, P.A.; Tabb, A.; Medeiros, H. Apple flower detection using deep convolutional networks. Comput. Ind. 2018, 99, 17–28. [Google Scholar] [CrossRef]
- Farjon, G.; Krikeb, O.; Bar Hiller, A.; Alchanatis, V. Detection and counting of flowers on apple trees for better chemical thinning decisions. Precis. Agric. 2020, 21, 503–521. [Google Scholar] [CrossRef]
- Gogul, I.; Kumar, V.S. Flower species recognition system using convolution neural networks and transfer learning. In Proceedings of the 2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN), Chennai, India, 16–18 March 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Zhao, C.J.; Wen, C.W.; Lin, S.; Guo, W.Z.; Long, J.H. Tomato florescence recognition and detection method based on cascaded neural network. Trans. Chin. Soc. Agric. Eng. 2020, 36, 143–152. [Google Scholar] [CrossRef]
- Xia, H.M.; Zhao, K.D.; Jiang, L.H.; Liu, Y.J.; Zhen, W.B. Flower bud detection model for hydroponic Chinese kale based on the fusion of attention mechanism and multi-scale feature. Trans. Chin. Soc. Agric. Eng. 2021, 37, 161–168. [Google Scholar] [CrossRef]
- Tian, M.; Chen, H.; Wang, Q. Detection and Recognition of Flower Image Based on SSD network in Video Stream. J. Phys. Conf. Ser. 2019, 1237, 032045. [Google Scholar] [CrossRef]
- Zhao, W.; Wu, D.; Zheng, X. Detection of Chrysanthemums Inflorescence Based on Improved CR-YOLOv5s Algorithm. Sensors 2023, 23, 4234. [Google Scholar] [CrossRef]
- Liu, J.; Yang, S.; Tian, L.; Guo, W.; Zhou, B.; Jia, J.; Ling, H. Multi-Component Fusion Network for Small Object Detection in Remote Sensing Images. IEEE Access 2019, 7, 128339–128352. [Google Scholar] [CrossRef]
- Nhat-Duy, N.; Tien Van, D.; Thanh Duc, N.; Duy-Dinh, L. An Evaluation of Deep Learning Methods for Small Object Detection. J. Electr. Comput. Eng. 2020, 2020, 3189691. [Google Scholar] [CrossRef]
- Renau-Morata, B.; Nebauer, S.G.; Garcia-Carpintero, V.; Canizares, J.; Gomez Minguet, E.; de los Mozos, M.; Molina, R.V. Flower induction and development in saffron: Timing and hormone signalling pathways. Ind. Crops Prod. 2021, 164, 113370. [Google Scholar] [CrossRef]
- Bi, Q.; Wang, M.; Huang, Y.; Lai, M.; Liu, Z.; Bi, X. Ship Collision Avoidance Navigation Signal Recognition via Vision Sensing and Machine Forecasting. IEEE Trans. Intell. Transp. Syst. 2023, 24, 11743–11755. [Google Scholar] [CrossRef]
- Mathew, M.P.; Mahesh, T.Y. Leaf-based disease detection in bell pepper plant using YOLO v5. Signal Image Video Process. 2022, 16, 841–847. [Google Scholar] [CrossRef]
- Wang, Z.; Jin, L.; Wang, S.; Xu, H. Apple stem/calyx real-time recognition using YOLO-v5 algorithm for fruit automatic loading system. Postharvest Biol. Technol. 2022, 185, 111808. [Google Scholar] [CrossRef]
- Ma, H.; Huang, W.; Dong, Y.; Liu, L.; Guo, A. Using UAV-Based Hyperspectral Imagery to Detect Winter Wheat Fusarium Head Blight. Remote Sens. 2021, 13, 3024. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.-Y.; So Kweon, I. CBAM: Convolutional Block Attention Module. arXiv 2018, arXiv:1807.06521. [Google Scholar]
- Yang, B.; Gao, Z.; Gao, Y.; Zhu, Y. Rapid Detection and Counting of Wheat Ears in the Field Using YOLOv4 with Attention Module. Agronomy 2021, 11, 1202. [Google Scholar] [CrossRef]
- Wang, Q.; Cheng, M.; Huang, S.; Cai, Z.; Zhang, J.; Yuan, H. A deep learning approach incorporating YOLO v5 and attention mechanisms for field real-time detection of the invasive weed Solanum rostratum Dunal seedlings. Comput. Electron. Agric. 2022, 199, 107194. [Google Scholar] [CrossRef]
- Chen, Z.; Li, X.; Wang, L.; Shi, Y.; Sun, Z.; Sun, W. An Object Detection and Localization Method Based on Improved YOLOv5 for the Teleoperated Robot. Appl. Sci. 2022, 12, 11441. [Google Scholar] [CrossRef]
- Li, Y. A calibration method of computer vision system based on dual attention mechanism. Image Vis. Comput. 2020, 103, 104039. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Xu, P.; Shi, R.; Xing, Z.; Li, J. WED-YOLO: A Detection Model for Safflower Under Complex Unstructured Environment. Agriculture 2025, 15, 205. [Google Scholar] [CrossRef]
- Chen, B.; Ding, F.; Ma, B.; Liu, X.; Ning, S. Research on the Detection Method of Safflower Filaments in Natural Environment Based on Improved YOLOv5s. IEEE Access 2024, 12, 126244–126257. [Google Scholar] [CrossRef]
Positive Class | Negative Class | |
---|---|---|
Detected | TP | FP |
Not detected | NP | TN |
Weighted Score | YOLOv5-Lite | YOLOv5s | YOLOv5n | YOLOv5m | YOLOv5l | YOLOv5x |
---|---|---|---|---|---|---|
Pw | 0.200 | 0.422 | 0.562 | 0.629 | 0.425 | 0.453 |
Left_Cam | Right_Cam | |
---|---|---|
Intrinsic matrix | ||
Distortion coefficients | k1 = −0.0496 | k1 = −0.0539 |
k2 = 0.0226 | k2 = 0.0328 | |
p1 = −0.0000 | p1 = −0.0000 | |
p2 = −0.0013 | p2 = −0.0013 | |
k3 = −0.0103 | k3 = −0.0103 |
Model | Precision (%) | Recall (%) | mAP (%) | FPS | Model Size (MB) |
---|---|---|---|---|---|
YOLO v5m | 90.22 | 89.81 | 91.23 | 127 | 83.16 |
C-YOLO v5m | 95.20 | 94.11 | 96.73 | 127 | 83.72 |
Positioning Method | Number of Corollas | Number of Successful Localizations | Number of Failed Localizations | Localization Success Rate |
---|---|---|---|---|
Fixed angle | 161 | 136 | 25 | 84.47 |
Dynamic angle | 161 | 151 | 10 | 93.79 |
Experiments | Successful Harvests | Missed Harvests | Incorrect Harvests | Harvest Success Rate |
---|---|---|---|---|
500 | 451 | 49 | 0 | 90.20 |
Model | Precision (%) | Recall (%) | mAP (%) | FPS | Model Size (MB) |
---|---|---|---|---|---|
Faster R-CNN | 82.60 | 78.81 | 81.23 | 21 | 92.16 |
YOLO v3 | 89.22 | 86.49 | 89.10 | 57 | 102.31 |
YOLO v4 | 89.67 | 83.21 | 89.55 | 53 | 95.67 |
YOLO v6 | 91.31 | 90.36 | 91.10 | 69 | 87.79 |
YOLO v7 | 91.77 | 90.65 | 92.33 | 88 | 91.10 |
MSDP-Net | 95.20 | 94.11 | 96.73 | 127 | 83.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Chen, H.; Wu, T. MSDP-Net: A YOLOv5-Based Safflower Corolla Object Detection and Spatial Positioning Network. Agriculture 2025, 15, 855. https://doi.org/10.3390/agriculture15080855
Guo H, Chen H, Wu T. MSDP-Net: A YOLOv5-Based Safflower Corolla Object Detection and Spatial Positioning Network. Agriculture. 2025; 15(8):855. https://doi.org/10.3390/agriculture15080855
Chicago/Turabian StyleGuo, Hui, Haiyang Chen, and Tianlun Wu. 2025. "MSDP-Net: A YOLOv5-Based Safflower Corolla Object Detection and Spatial Positioning Network" Agriculture 15, no. 8: 855. https://doi.org/10.3390/agriculture15080855
APA StyleGuo, H., Chen, H., & Wu, T. (2025). MSDP-Net: A YOLOv5-Based Safflower Corolla Object Detection and Spatial Positioning Network. Agriculture, 15(8), 855. https://doi.org/10.3390/agriculture15080855