Geospatial Analysis, Source Apportionment, and Ecological–Health Risks Assessment of Topsoil Heavy Metal(loid)s in a Typical Agricultural Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collecting and Testing
2.3. Pollution and Ecological Risk Assessment
2.3.1. Geo-Accumulation Index
2.3.2. Potential Ecological Risk Index
2.4. Positive Matrix Factorization Model
2.5. Human Health Risk Assessment
2.5.1. Human Health Risk Assessment Model
2.5.2. Monte Carlo Simulation
3. Results
3.1. General Characteristics of HMs in Topsoil
3.2. Contamination Risk Assessment
4. Discussion
4.1. Source Apportionment of HMs
4.2. Health Risks Assessment of HMs
4.2.1. Deterministic Health Risk Assessment by the HHR Model
4.2.2. Probabilistic Health Risk Assessment by Monte Carlo Simulation
4.3. Comparison with Similar Studies Worldwide
5. Conclusions
- (1)
- The mean concentration order of HMs was in the order of Zn > Cr > Ni > Pb > Cu > As > Cd > Hg, with only Cd exceeding its background values. Hg had the highest variability, and most HMs exhibited higher levels in the northeastern part of the study area.
- (2)
- The average contamination level of HMs was ranked as follows: Cd > Ni > Pb > Cu > Cr > Hg > Zn > As. Only 3.57%, 1.79%, and 0.60% of Cd, Hg, and Ni in the samples reached slight contamination, and the INI suggests an overall slight contamination (62.50% of samples were within 0–1). In addition, the HMs showed low ecological risk (mean value = 83.65; 99.40% samples considered as low risk).
- (3)
- Three sources (natural source, coal burning or waste disposal, and agricultural activities) contributed 48.2%, 24%, and 27.8% of HMs, respectively. Whereas the natural source mainly contributed As, Pb, Cu, Ni, and Zn. Cd and Hg were associated with coal burning or waste disposal. In addition, agricultural activities also provided various HMs, especially Cr, followed by Cu, Pb, and Ni.
- (4)
- Both the total non-carcinogenic and carcinogenic risks for adults were lower than unacceptable limits; children faced higher health risks, and nearly half of the samples (45.83%) showed a non-carcinogenic risk for children greater than 1. As and Cr contributed the most to non-carcinogenic and carcinogenic risks, respectively.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Agyeman, P.C.; John, K.; Kebonye, N.M.; Ofori, S.; Borůvka, L.; Vašát, R.; Kočárek, M. Ecological risk source distribution, uncertainty analysis, and application of geographically weighted regression cokriging for prediction of potentially toxic elements in agricultural soils. Process Saf. Environ. Prot. 2022, 164, 729–746. [Google Scholar] [CrossRef]
- Wan, M.; Qu, M.; Hu, W.; Li, W.; Zhang, C.; Cheng, H.; Huang, B. Estimation of soil pH using PXRF spectrometry and Vis-NIR spectroscopy for rapid environmental risk assessment of soil heavy metals. Process Saf. Environ. Prot. 2019, 132, 73–81. [Google Scholar] [CrossRef]
- Wei, M.; Pan, A.; Ma, R.; Wang, H. Distribution characteristics, source analysis and health risk assessment of heavy metals in farmland soil in Shiquan County, Shaanxi Province. Process Saf. Environ. Prot. 2023, 171, 225–237. [Google Scholar] [CrossRef]
- Chinnannan, K.; Somagattu, P.; Yammanuru, H.; Reddy, U.K.; Nimmakayala, P. Health risk assessment of heavy metals in soil and vegetables from major agricultural sites of Ohio and West Virginia. Biocatal. Agric. Biotechnol. 2024, 57, 103108. [Google Scholar] [CrossRef]
- Gao, S.; Dong, Y.; Jia, Q.; Wu, S.; Bai, J.; Cui, C.; Li, Y.; Zou, P.; An, M.; Du, X.; et al. Hazards of toxic metal(loid)s: Exploring the ecological and health risk in soil–crops systems with long-term sewage sludge application. Sci. Total Environ. 2024, 948, 174988. [Google Scholar] [CrossRef]
- Ou, S.-P.; Liao, X.-L.; Huang, Z.-T.; Hu, Y.-C.; Cai, Z.; Chen, Z.-F. Bioaccessibility and health risk assessment of hydrophobic organic pollutants in soils from four typical industrial contaminated sites in China. J. Environ. Sci. 2025, 147, 282–293. [Google Scholar] [CrossRef]
- Bermudez, G.M.A.; Moreno, M.; Invernizzi, R.; Plá, R.; Pignata, M.L. Heavy metal pollution in topsoils near a cement plant: The role of organic matter and distance to the source to predict total and HCl-extracted heavy metal concentrations. Chemosphere 2010, 78, 375–381. [Google Scholar] [CrossRef]
- Zhou, Q.; Yang, S.; Sun, L.; Ye, J.; Sun, Y.; Qin, Q.; Xue, Y. Evaluating the protective capacity of soil heavy metals regulation limits on human health: A critical analysis concerning risk assessment—Importance of localization. J. Environ. Manag. 2024, 361, 121197. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, Y.; Ruan, Z.; Wang, H.; Liu, D.; Zhao, M. Comprehensive characterization of volatile organic compounds in Chinese chemical industry park soils: Spatial variation, source identification, and health risk assessment. J. Environ. Sci. 2024, 155, 48–59. [Google Scholar] [CrossRef]
- Charzyński, P.; Plak, A.; Hanaka, A. Influence of the soil sealing on the geoaccumulation index of heavy metals and various pollution factors. Environ. Sci. Pollut. Res. 2017, 24, 4801–4811. [Google Scholar] [CrossRef]
- Liu, Z.; Du, Q.; Guan, Q.; Luo, H.; Shan, Y.; Shao, W. A Monte Carlo simulation-based health risk assessment of heavy metals in soils of an oasis agricultural region in northwest China. Sci. Total Environ. 2023, 857, 159543. [Google Scholar] [CrossRef]
- Mahvi, A.H.; Eslami, F.; Baghani, A.N.; Khanjani, N.; Yaghmaeian, K.; Mansoorian, H.J. Heavy metal pollution status in soil for different land activities by contamination indices and ecological risk assessment. Int. J. Environ. Sci. Technol. 2022, 19, 7599–7616. [Google Scholar] [CrossRef]
- Hou, D.; O’Connor, D.; Nathanail, P.; Tian, L.; Ma, Y. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review. Environ. Pollut. 2017, 231, 1188–1200. [Google Scholar] [CrossRef]
- Mi, Y.; Zhou, J.; Liu, M.; Liang, J.; Kou, L.; Xia, R.; Tian, R.; Zhou, J. Machine learning method for predicting cadmium concentrations in rice near an active copper smelter based on chemical mass balance. Chemosphere 2023, 319, 138028. [Google Scholar] [CrossRef]
- Saha, A.; Sen Gupta, B.; Patidar, S.; Hernández-Martínez, J.L.; Martín-Romero, F.; Meza-Figureueroa, D.; Martínez-Villegas, N. A comprehensive study of source apportionment, spatial distribution, and health risks assessment of heavy metal(loid)s in the surface soils of a semi-arid mining region in Matehuala, Mexico. Environ. Res. 2024, 260, 119619. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, B.; Gao, Z.; Wang, M.; Feng, J.; Xia, L.; Liu, J. Health risk assessment of soil heavy metals in a typical mining town in north China based on Monte Carlo simulation coupled with Positive matrix factorization model. Environ. Res. 2024, 251, 118696. [Google Scholar] [CrossRef]
- Lei, M.; Li, K.; Guo, G.; Ju, T. Source-specific health risks apportionment of soil potential toxicity elements combining multiple receptor models with Monte Carlo simulation. Sci. Total Environ. 2022, 817, 152899. [Google Scholar] [CrossRef]
- Yu, J.; Liu, X.; Yang, B.; Li, X.; Wang, P.; Yuan, B.; Wang, M.; Liang, T.; Shi, P.; Li, R.; et al. Major influencing factors identification and probabilistic health risk assessment of soil potentially toxic elements pollution in coal and metal mines across China: A systematic review. Ecotoxicol. Environ. Saf. 2024, 274, 116231. [Google Scholar] [CrossRef]
- Liu, Z.; Zheng, T.; Chen, Q.; Chen, X.; Xie, Y.; Wang, Y.; Ren, M.; Gao, Z.-Q.; Lin, B.; Feng, X. Identification and health risk evaluation of soil contaminated by polycyclic aromatic hydrocarbons at shale gas extraction sites based on positive matrix factorization. Chemosphere 2024, 356, 141962. [Google Scholar] [CrossRef]
- USEPA. Exposure Factors Handbook: 2011 Edition; National Center for Environmental Assessment: Washington, DC, USA, 2011.
- Zhang, X.; Liu, H.; Li, X.; Zhang, Z.; Chen, Z.; Ren, D.; Zhang, S. Ecological and health risk assessments of heavy metals and their accumulation in a peanut-soil system. Environ. Res. 2024, 252, 118946. [Google Scholar] [CrossRef]
- Cai, L.-M.; Quan, K.; Wen, H.-H.; Luo, J.; Wang, S.; Chen, L.-G.; Song, H.; Wang, A. A comprehensive approach for quantifying source-specific ecological and health risks of potentially toxic elements in agricultural soil. Environ. Res. 2024, 263, 120163. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, P.; Wang, M.; Liu, J.; Gong, L.; Xia, S. Spatial distribution, source identification, and risk assessment of heavy metals in riparian soils of the tibetan plateau. Environ. Res. 2023, 237, 116977. [Google Scholar] [CrossRef]
- Chart-Asa, C.; Gibson, J.M. Health impact assessment of traffic-related air pollution at the urban project scale: Influence of variability and uncertainty. Sci. Total Environ. 2015, 506–507, 409–421. [Google Scholar] [CrossRef]
- Kettler, S.; Kennedy, M.; McNamara, C.; Oberdörfer, R.; O’Mahony, C.; Schnabel, J.; Smith, B.; Sprong, C.; Faludi, R.; Tennant, D. Assessing and reporting uncertainties in dietary exposure analysis. Food Chem. Toxicol. 2015, 82, 79–95. [Google Scholar] [CrossRef]
- DZ/T 0295-2016; Specification of land Quality Geochemical Evaluation. Geological Publishing House: Beijing, China, 2016.
- Dong, Y.; Lu, H.; Lin, H. Comprehensive study on the spatial distribution of heavy metals and their environmental risks in high-sulfur coal gangue dumps in China. J. Environ. Sci. 2024, 136, 486–497. [Google Scholar] [CrossRef]
- Chen, J.; Wei, F.; Zheng, C.; Wu, Y.; Adriano, D.C. Background concentrations of elements in soils of China. Water Air Soil Pollut. 1991, 57–58, 699–712. [Google Scholar] [CrossRef]
- Hołtra, A.; Zamorska-Wojdyła, D. Application of individual and integrated pollution indices of trace elements to evaluate the noise barrier impact on the soil environment in Wrocław (Poland). Environ. Sci. Pollut. Res. 2023, 30, 26858–26873. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Wei, D.; Yang, S.; Zou, L.; Torres-Martínez, J.A.; Zheng, Y.; Hu, Q.; Zhang, Y. Appraisal of potential toxic elements pollution, sources apportionment, and health risks in groundwater from a coastal area of SE China. J. Environ. Manag. 2025, 377, 124691. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual (Part A); Office of Emergency and Remedial Response U.S. Environmental Protection Agency: Washington, DC, USA, 1989.
- Yao, R.; Zhang, Y.; Yan, Y.; Wu, X.; Uddin, M.G.; Wei, D.; Huang, X.; Tang, L. Natural background level, source apportionment and health risk assessment of potentially toxic elements in multi-layer aquifers of arid area in Northwest China. J. Hazard. Mater. 2024, 479, 135663. [Google Scholar] [CrossRef]
- Acosta, J.A.; Martínez-Martínez, S.; Faz, A.; Arocena, J. Accumulations of major and trace elements in particle size fractions of soils on eight different parent materials. Geoderma 2011, 161, 30–42. [Google Scholar] [CrossRef]
- Alloway, B.J. (Ed.) Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability, Environmental Pollution; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Peng, Y.; Yu, G.I. Assessment of heavy metal pollution on agricultural land in Chengdu city under different anthropogenic pressures based on APCS-MLR modelling. Ecol. Indic. 2024, 165, 112183. [Google Scholar] [CrossRef]
- Zhang, X.P.; Deng, W.; Yang, X.M. The background concentrations of 13 soil trace elements and their relationships to parent materials and vegetation in Xizang (Tibet), China. J. Asian Earth Sci. 2002, 21, 167–174. [Google Scholar] [CrossRef]
- Men, C.; Liu, R.; Xu, F.; Wang, Q.; Guo, L.; Shen, Z. Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Sci. Total Environ. 2018, 612, 138–147. [Google Scholar] [CrossRef]
- Xie, L.; Li, P.; Mu, D. Spatial distribution, source apportionment and potential ecological risk assessment of trace metals in surface soils in the upstream region of the Guanzhong basin, China. Environ. Res. 2023, 234, 116527. [Google Scholar] [CrossRef]
- He, Y.; Wang, W.; Chen, Y.; Hua, J.; Deng, C.; Li, H. Source-sink response analysis of heavy metals and soil pollution assessment in non-ferrous metal industrial agglomeration areas based on decision unit. Sci. Total Environ. 2024, 906, 167437. [Google Scholar] [CrossRef]
- Proshad, R.; Kormoker, T.; Abdullah Al, M.; Islam, M.S.; Khadka, S.; Idris, A.M. Receptor model-based source apportionment and ecological risk of metals in sediments of an urban river in Bangladesh. J. Hazard. Mater. 2022, 423, 127030. [Google Scholar] [CrossRef]
- Dhal, B.; Thatoi, H.N.; Das, N.N.; Pandey, B.D. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. J. Hazard. Mater. 2013, 250–251, 272–291. [Google Scholar] [CrossRef]
- Mizan, A.; Mamun, M.A.H.; Islam, M.S. Metal contamination in soil and vegetables around Savar tannery area, Dhaka, Bangladesh: A preliminary study for risk assessment. Heliyon 2023, 9, e13856. [Google Scholar] [CrossRef]
- Srinivasa Gowd, S.; Ramakrishna Reddy, M.; Govil, P.K. Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. J. Hazard. Mater. 2010, 174, 113–121. [Google Scholar] [CrossRef]
- De Souza, R.E.; Fontes, M.P.F.; Tucci, C.A.F.; Lima, H.N.; Da Silva Ferreira, M. Health risk assessment and quality reference values of potentially toxic elements in soils of the Southwestern Amazonas State—Brazil. Sci. Total Environ. 2024, 912, 168937. [Google Scholar] [CrossRef]
- Xie, Z.; Liu, W.; Chen, S.; Yao, R.; Yang, C.; Zhang, X.; Li, J.; Wang, Y.; Zhang, Y. Machine learning approaches to identify hydrochemical processes and predict drinking water quality for groundwater environment in a metropolis. J. Hydrol. Reg. Stud. 2025, 58, 102227. [Google Scholar] [CrossRef]
- Tyagi, N.; Upadhyay, M.K.; Majumdar, A.; Pathak, S.K.; Giri, B.; Jaiswal, M.K.; Srivastava, S. An assessment of various potentially toxic elements and associated health risks in agricultural soil along the middle Gangetic basin, India. Chemosphere 2022, 300, 134433. [Google Scholar] [CrossRef]
- Guan, Q.; Wang, F.; Xu, C.; Pan, N.; Lin, J.; Zhao, R.; Yang, Y.; Luo, H. Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China. Chemosphere 2018, 193, 189–197. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, Y.; Yao, R.; Wei, D.; Huang, X.; Luo, M.; Wei, C.; Chen, S.; Yang, C. Natural background levels, source apportionment and health risks of potentially toxic elements in groundwater of highly urbanized area. Sci. Total Environ. 2024, 935, 173276. [Google Scholar] [CrossRef]
- Inboonchuay, T.; Suddhiprakarn, A.; Kheoruenromne, I.; Anusontpornperm, S.; Gilkes, R.J. Amounts and associations of heavy metals in paddy soils of the khorat basin, Thailand. Geoderma Reg. 2016, 7, 120–131. [Google Scholar] [CrossRef]
- Tra, H.T.L.; Egashira, K. Status of heavy metals in agricultural soils of Vietnam. Soil Sci. Plant Nutr. 2001, 47, 419–422. [Google Scholar] [CrossRef]
- Wu, Z.; Li, H.; Lü, L.; Liang, G.; Wu, T.; Zhu, J. Distributions and risk assessment of heavy metals in solid waste in lead-zinc mining areas and across the soil, water body, sediment and agricultural product ecosystem in their surrounding areas. China Geol. 2024, 8, 92–106. [Google Scholar] [CrossRef]
- Dai, X.; Liang, J.; Shi, H.; Yan, T.; He, Z.; Li, L.; Hu, H. Health risk assessment of heavy metals based on source analysis and monte Carlo in the downstream basin of the Zishui. Environ. Res. 2024, 245, 117975. [Google Scholar] [CrossRef]
- Xiao, F.; Cui, X.; Zhao, Y.; Fu, J.; Yu, T.; Bu, D.; Zhang, Q. Concentration, spatial distribution, and source apportionment of heavy metals in agricultural soils from the Yarlung Zangbo river basin, Tibetan Plateau. Environ. Earth Sci. 2023, 82, 577. [Google Scholar] [CrossRef]
- Xia, F.; Zhao, Z.; Niu, X.; Wang, Z. Integrated pollution analysis, pollution area identification and source apportionment of heavy metal contamination in agricultural soil. J. Hazard. Mater. 2024, 465, 133215. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, K.; Imura, T.; Berndtsson, R. Distribution of heavy metals and related health risks through soil ingestion in rural areas of western Japan. Chemosphere 2022, 290, 133316. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, F.A.; Smith, S.R.; Alloway, B.J.; Carlton-Smith, C.; Chambers, B.J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 2003, 311, 205–219. [Google Scholar] [CrossRef]
- Ali, W.; Muhammad, S. Compositional data analysis of heavy metal contamination and eco-environmental risks in Himalayan agricultural soils, northern Pakistan. J. Geochem. Explor. 2023, 255, 107323. [Google Scholar] [CrossRef]
- Zhang, S.; Ye, H.; Zhang, A.; Ma, Y.; Liu, Q.; Shu, Q.; Cao, X. Pollution characteristics, sources, and health risk assessment of heavy metals in the surface soil of Lushan scenic area, Jiangxi province, China. Front. Environ. Sci. 2022, 10, 891092. [Google Scholar] [CrossRef]
- Wang, J.; Deng, Y.; Huang, Z.; Li, D.A.; Zhang, X. Identification of driving factors for heavy metals and polycyclic aromatic hydrocarbons pollution in agricultural soils using interpretable machine learning. Sci. Total Environ. 2025, 960, 178384. [Google Scholar] [CrossRef]
- HJ 25.3-2014; Technical Guidelines for Risk Assessment of Contaminated Sites. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2014. (In Chinese)
- Rahman, M.S.; Khan, M.D.H.; Jolly, Y.N.; Kabir, J.; Akter, S.; Salam, A. Assessing risk to human health for heavy metal contamination through street dust in the Southeast Asian Megacity: Dhaka, Bangladesh. Sci. Total Environ. 2019, 660, 1610–1622. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (US EPA). Soil Screening Guidance: Technical Background Document, 1996; Superfund US EPA: Slidell, LA, USA, 1996.
- United States Environmental Protection Agency (US EPA). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; OSWER 9355.4-24; Office of Solid Waste and Emergency Response: Washington, DC, USA, 2001.
- Zhou, H.; Yue, X.; Chen, Y.; Liu, Y. Source-specific probabilistic contamination risk and health risk assessment of soil heavy metals in a typical ancient mining area. Sci. Total Environ. 2024, 906, 167772. [Google Scholar] [CrossRef]
Parameters | Min | Median | Mean | Max | SD | CV | Background Level [28] |
---|---|---|---|---|---|---|---|
pH | 5.300 | 7.735 | 7.519 | 8.680 | 0.694 | 0.092 | 7.700 |
As | 2.102 | 10.825 | 10.92 | 22.299 | 3.709 | 0.340 | 16.200 |
Cd | 0.064 | 0.232 | 0.234 | 0.505 | 0.064 | 0.273 | 0.240 |
Cr | 38.368 | 63.932 | 62.963 | 82.097 | 8.657 | 0.137 | 76.400 |
Hg | 0.020 | 0.066 | 0.067 | 0.195 | 0.026 | 0.388 | 0.084 |
Pb | 6.192 | 27.868 | 26.604 | 41.567 | 6.492 | 0.244 | 29.800 |
Cu | 8.256 | 23.475 | 22.848 | 34.145 | 4.752 | 0.208 | 26.500 |
Ni | 7.526 | 34.794 | 33.151 | 55.589 | 8.579 | 0.259 | 35.900 |
Zn | 24.650 | 67.514 | 65.863 | 125.926 | 13.501 | 0.205 | 94.600 |
× | Group | Noncarcinogenic Risks | Carcinogenic Risks | ||||||
---|---|---|---|---|---|---|---|---|---|
Min | Mean | Max | >1 (%) | Min | Mean | Max | >10−4 (%) | ||
As | Children | 8.62 × 10−2 | 4.48 × 10−1 | 9.14 × 10−1 | 0.00 | 3.32 × 10−6 | 1.73 × 10−5 | 3.53 × 10−5 | 0.00 |
Adults | 1.25 × 10−2 | 6.52 × 10−2 | 1.33 × 10−1 | 0.00 | 1.94 × 10−6 | 1.01 × 10−5 | 2.06 × 10−5 | 0.00 | |
Cd | Children | 1.03 × 10−3 | 3.75 × 10−3 | 8.09 × 10−3 | 0.00 | 4.14 × 10−7 | 1.51 × 10−6 | 3.27 × 10−6 | 0.00 |
Adults | 2.20 × 10−4 | 8.03 × 10−4 | 1.73 × 10−3 | 0.00 | 2.44 × 10−7 | 8.94 × 10−7 | 1.93 × 10−6 | 0.00 | |
Cr | Children | 2.16 × 10−1 | 3.55 × 10−1 | 4.62 × 10−1 | 0.00 | 2.62 × 10−5 | 4.3 × 10−5 | 5.6 × 10−5 | 0.00 |
Adults | 4.87 × 10−2 | 7.99 × 10−2 | 1.04 × 10−1 | 0.00 | 2.22 × 10−5 | 3.65 × 10−5 | 4.76 × 10−5 | 0.00 | |
Hg | Children | 8.96 × 10−4 | 3.00 × 10−3 | 8.73 × 10−3 | 0.00 | - | - | - | - |
Adults | 1.53 × 10−4 | 5.11 × 10−4 | 1.49 × 10−3 | 0.00 | - | - | - | - | |
Pb | Children | 2.60 × 10−2 | 1.12 × 10−1 | 1.75 × 10−1 | 0.00 | 7.61 × 10−8 | 3.27 × 10−7 | 5.11 × 10−7 | 0.00 |
Adults | 3.98 × 10−3 | 1.71 × 10−2 | 2.67 × 10−2 | 0.00 | 6.84 × 10−8 | 2.94 × 10−7 | 4.59 × 10−7 | 0.00 | |
Cu | Children | 2.56 × 10−3 | 7.07 × 10−3 | 1.06 × 10−2 | 0.00 | - | - | - | - |
Adults | 3.77 × 10−4 | 1.04 × 10−3 | 1.56 × 10−3 | 0.00 | - | - | - | - | |
Ni | Children | 4.70 × 10−3 | 2.07 × 10−2 | 3.47 × 10−2 | 0.00 | - | - | - | - |
Adults | 7.09 × 10−4 | 3.12 × 10−3 | 5.24 × 10−3 | 0.00 | - | - | - | - | |
Zn | Children | 1.03 × 10−3 | 2.75 × 10−3 | 5.26 × 10−3 | 0.00 | - | - | - | - |
Adults | 1.56 × 10−4 | 4.17 × 10−4 | 7.97 × 10−4 | 0.00 | - | - | - | - | |
THI or TCR | Children | 0.38 | 0.95 | 1.53 | 45.83% | 3.44 × 10−5 | 6.21 × 10−5 | 8.89 × 10−5 | 0.00 |
Adults | 0.08 | 0.17 | 0.26 | 0.00 | 2.81 × 10−5 | 4.78 × 10−5 | 6.53 × 10−5 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, D.; Yang, S.; Li, H.; Luo, M.; Wang, Y.; Wang, Y.; Zhang, Y.; Wang, B. Geospatial Analysis, Source Apportionment, and Ecological–Health Risks Assessment of Topsoil Heavy Metal(loid)s in a Typical Agricultural Area. Agriculture 2025, 15, 913. https://doi.org/10.3390/agriculture15090913
Wei D, Yang S, Li H, Luo M, Wang Y, Wang Y, Zhang Y, Wang B. Geospatial Analysis, Source Apportionment, and Ecological–Health Risks Assessment of Topsoil Heavy Metal(loid)s in a Typical Agricultural Area. Agriculture. 2025; 15(9):913. https://doi.org/10.3390/agriculture15090913
Chicago/Turabian StyleWei, Denghui, Shiming Yang, Haidong Li, Ming Luo, Ying Wang, Yangshuang Wang, Yunhui Zhang, and Bin Wang. 2025. "Geospatial Analysis, Source Apportionment, and Ecological–Health Risks Assessment of Topsoil Heavy Metal(loid)s in a Typical Agricultural Area" Agriculture 15, no. 9: 913. https://doi.org/10.3390/agriculture15090913
APA StyleWei, D., Yang, S., Li, H., Luo, M., Wang, Y., Wang, Y., Zhang, Y., & Wang, B. (2025). Geospatial Analysis, Source Apportionment, and Ecological–Health Risks Assessment of Topsoil Heavy Metal(loid)s in a Typical Agricultural Area. Agriculture, 15(9), 913. https://doi.org/10.3390/agriculture15090913