Socioeconomic Factors Influencing Crop Diversification Among Smallholder Farmers in Bergville, South Africa
Abstract
:1. Introduction
Theoretical Framework for the Study
2. Materials and Methods
2.1. Description of the Study Area
2.2. Sampling Procedure and Sample Size
2.3. Data Collection and Analysis
2.3.1. Baseline Survey
2.3.2. Statistical Analysis
2.4. Model Specification
2.4.1. Inferential Statistics
2.4.2. Multivariate Probit Model (MVP)
2.5. Ethical Consideration
3. Results
3.1. Socio-Economic Attributes of the Smallholder Farmers
3.2. Farming Practices Utilized by Smallholder Farmers in the Study Area
Crop Cultivation Patterns Among Smallholder Farmers in the Study Area
3.3. Smallholder Farmers’ Socio-Economic Determinants of Crop Diversification
3.4. Socio-Economic Factors Influencing Crop Diversification Among Smallholder Farmers
3.5. Smallholder Farmers’ Knowledge Level on Crop Diversification Benefits
3.6. Smallholder Farmers’ Training Attendance, Understanding, and Knowledge Utilization
4. Discussion
4.1. Socio-Economic Attributes of the Smallholder Farmers in the Study Area
4.1.1. Gender and Age Dynamics in Smallholder Cropping Systems
4.1.2. Household Size, Marital Status, and Their Implications for Agricultural Practices
4.1.3. Education Levels Among Smallholder Farmers
4.1.4. Socioeconomic Constraints and Crop Diversification Among Smallholder Farmers
4.1.5. Farming Experience, Land Ownership, and Their Implications for Crop Diversification
4.1.6. Impact of Land Size, Seed Availability, and Market Access on Crop Diversification
4.2. Farming Practices Utilized by Smallholder Farmers in the Region
Crop Cultivation Patterns Among Smallholder Farmers in the Study Area
4.3. Socio-Economic Determinants of Crop Diversification Extent Among Smallholder Farmers
4.4. Socio-Economic Factors Influencing Crop Diversification Among Smallholder Farmers
4.5. Smallholder Farmers’ Knowledge Level on Crop Diversification Benefits
4.6. Smallholder Farmers’ Training Attendance, Understanding, and Knowledge Utilization
5. Conclusions, Recommendations, and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, S.; Rue, C. The role of smallholder farms in a changing world. In The Role of Smallholder Farms in Food and Nutrition Security; Springer: Cham, Switzerland, 2020; pp. 13–28. [Google Scholar]
- Dixon, J.; Garrity, D.; Boffa, J.; Williams, T.O.; Amede, T.; Auricht, C.; Lott, R.; Mburathi, G. Farming systems and food security in Africa. In Priorities for Science and Policy Under Global Change; Dixon, J., Garrity, D.P., Boffa, J.-M., Williams, T.O., Amede, T., Auricht, C., Lott, R., Mburathi, G., Eds.; Routledge: New York, NY, USA, 2020. [Google Scholar]
- Kapari, M.; Hlophe-Ginindza, S.; Nhamo, L.; Mpandeli, S. Contribution of smallholder farmers to food security and opportunities for resilient farming systems. Front. Sustain. Food Syst. 2023, 7, 1149854. [Google Scholar] [CrossRef]
- Touch, V.; Tan, D.K.; Cook, B.R.; Li Liu, D.; Cross, R.; Tran, T.A.; Utomo, A.; Yous, S.; Grunbuhel, C.; Cowie, A. Smallholder farmers’ challenges and opportunities: Implications for agricultural production, environment and food security. J. Environ. Manag. 2024, 370, 122536. [Google Scholar] [CrossRef] [PubMed]
- Antwi-Agyei, P.; Stringer, L.C. Improving the effectiveness of agricultural extension services in supporting farmers to adapt to climate change: Insights from northeastern Ghana. Clim. Risk Manag. 2021, 32, 100304. [Google Scholar] [CrossRef]
- Mutengwa, C.S.; Mnkeni, P.; Kondwakwenda, A. Climate-smart agriculture and food security in southern Africa: A review of the vulnerability of smallholder agriculture and food security to climate change. Sustainability 2023, 15, 2882. [Google Scholar] [CrossRef]
- Antonelli, C.; Coromaldi, M.; Pallante, G. Crop and income diversification for rural adaptation: Insights from Ugandan panel data. Ecol. Econ. 2022, 195, 107390. [Google Scholar] [CrossRef]
- Barman, A.; Saha, P.; Patel, S.; Bera, A. Crop diversification an effective strategy for sustainable agriculture development. Sustain. Crop Prod. Recent Adv. 2022. [Google Scholar] [CrossRef]
- Zou, Y.; Liu, Z.; Chen, Y.; Wang, Y.; Feng, S. Crop rotation and diversification in China: Enhancing sustainable agriculture and resilience. Agriculture 2024, 14, 1465. [Google Scholar] [CrossRef]
- Rayns, F.; Conroy, J.; Smith, B. Using legumes as a source of fertility in protected cropping systems. In TRUE-Project Case Studies E-book: Facilitating Home-Grown Legumes as the Foundation of Sustainable Food- and Feed-Systems; The James Hutton Institute: Dundee, UK, 2021; pp. 52–54. [Google Scholar]
- Mihrete, T.B.; Mihretu, F.B. Crop Diversification for Ensuring Sustainable Agriculture, Risk Management and Food Security. Glob. Chall. 2025, 9, 2400267. [Google Scholar] [CrossRef]
- Garamu, T.; Tashome, T. Crop Diversification and Specialization: Drivers, Impacts on Climate Change Mitigation and Food Security of Small Holder Farmers in Ethiopia. Glob. Res. Environ. Sustain. 2023, 1, 37–46. [Google Scholar]
- Tsumbu, J. Assessing the Economic Viability of Climate-Resilient Crop Varieties for Smallholder Farmers in Sub-Saharan Africa. J. Dimens. Manag. Public Sect. 2024, 5, 1–12. [Google Scholar] [CrossRef]
- Shikwambana, S.; Malaza, N.; Ncube, B. Enhancing the resilience and adaptive capacity of smallholder farmers to drought in the Limpopo Province, South Africa. Conservation 2022, 2, 435–449. [Google Scholar] [CrossRef]
- Rivera-Padilla, A. Crop choice, trade costs, and agricultural productivity. J. Dev. Econ. 2020, 146, 102517. [Google Scholar] [CrossRef]
- Fujimoto, T.; Suzuki, A. Different strategies of crop diversification between poor and non-poor farmers: Concepts and evidence from Tanzania. Ecol. Econ. 2025, 227, 108369. [Google Scholar] [CrossRef]
- Acevedo, M.; Pixley, K.; Zinyengere, N.; Meng, S.; Tufan, H.; Cichy, K.; Bizikova, L.; Isaacs, K.; Ghezzi-Kopel, K.; Porciello, J. A scoping review of adoption of climate-resilient crops by small-scale producers in low-and middle-income countries. Nat. Plants 2020, 6, 1231–1241. [Google Scholar] [CrossRef]
- Bernzen, A.; Sohns, F.; Jia, Y.; Braun, B. Crop diversification as a household livelihood strategy under environmental stress. Factors contributing to the adoption of crop diversification in shrimp cultivation and agricultural crop farming zones of coastal Bangladesh. Land Use Policy 2023, 132, 106796. [Google Scholar] [CrossRef]
- Zenda, M.; Rudolph, M. A systematic review of agroecology strategies for adapting to climate change impacts on smallholder crop farmers’ livelihoods in South Africa. Climate 2024, 12, 33. [Google Scholar] [CrossRef]
- Addicott, J.E. The Precision Farming Revolution: Global Drivers of Local Agricultural Methods; Palgrave Macmillan: Singapore, 2020. [Google Scholar]
- Shaffril, H.A.M.; Samah, A.A.; Samsuddin, S.F.; Ahmad, N.; Tangang, F.; Sidique, S.F.A.; Rahman, H.A.; Burhan, N.A.S.; Shah, J.A.; Khalid, N.A. Diversification of agriculture practices as a response to climate change impacts among farmers in low-income countries: A systematic literature review. Clim. Serv. 2024, 35, 100508. [Google Scholar]
- Makate, C.; Wang, R.; Makate, M.; Mango, N. Crop diversification and livelihoods of smallholder farmers in Zimbabwe: Adaptive management for environmental change. SpringerPlus 2016, 5, 1135. [Google Scholar] [CrossRef]
- Kemboi, E.; Muendo, K.; Kiprotich, C. Crop diversification analysis amongst smallholder farmers in Kenya (empirical evidence from Kamariny ward, Elgeyo Marakwet County). Cogent Food Agric. 2020, 6, 1834669. [Google Scholar] [CrossRef]
- Tacconi, F.; Waha, K.; Ojeda, J.J.; Leith, P. Drivers and constraints of on-farm diversity. A review. Agron. Sustain. Dev. 2022, 42, 2. [Google Scholar] [CrossRef]
- Duale, M.M. Challenges and Opportunities of Livelihood Diversification in Ethiopia: A Review Article. Int. J. Agric. Econ 2024, 9, 134–147. [Google Scholar] [CrossRef]
- Sharma, G.; Shrestha, S.; Kunwar, S.; Tseng, T.-M. Crop diversification for improved weed management: A review. Agriculture 2021, 11, 461. [Google Scholar] [CrossRef]
- Vilakazi, B.S.; Zengeni, R.; Mafongoya, P. Indigenous strategies used by selected farming communities in KwaZulu Natal, South Africa, to manage soil, water, and climate extremes and to make weather predictions. Land Degrad. Dev. 2019, 30, 1999–2008. [Google Scholar] [CrossRef]
- Sithole, N.J.; Magwaza, L.S. Long-term changes of soil chemical characteristics and maize yield in no-till conservation agriculture in a semi-arid environment of South Africa. Soil Tillage Res. 2019, 194, 104317. [Google Scholar] [CrossRef]
- Kamaruddeen, A.M. Determinants of emerging technology adoption for safety among construction businesses. Acad. Strateg. Manag. J. 2022, 21, 1–20. [Google Scholar]
- Bless, C.; Higson-Smith, C.; Kagee, A. Fundamentals of Social Research Methods: An African Perspective; Juta and Company Ltd.: Cape Town, South Africa, 2006. [Google Scholar]
- Mulaudzi, A.I.; Olorunfemi, O.D.; Agholor, A.I. Social media utilization level among South African smallholder farmers: A case study of Mopani District, Limpopo Province. Cogent Soc. Sci. 2024, 10, 2356722. [Google Scholar] [CrossRef]
- Nyawo, P.H.; Olorunfemi, O.D. Perceived effectiveness of agricultural cooperatives by smallholder farmers: Evidence from a micro-level survey in north-eastern South Africa. Sustainability 2023, 15, 10354. [Google Scholar] [CrossRef]
- Mandal, R.; Bezbaruah, M. Diversification of cropping pattern: Its determinants and role in flood affected agriculture of Assam Plains. Indian J. Agric. Econ. 2013, 68, 169–181. [Google Scholar]
- Sichoongwe, K. Determinants and Extent of Crop Diversification among Smallholder Farmers in Southern Zambia. Master’s Thesis, Bunda College of Agriculture, University of Malawi, Zomba, Malawi, 2014. [Google Scholar]
- Douyon, A.; Worou, O.N.; Diama, A.; Badolo, F.; Denou, R.K.; Touré, S.; Sidibé, A.; Nebie, B.; Tabo, R. Impact of crop diversification on household food and nutrition security in southern and central Mali. Front. Sustain. Food Syst. 2022, 5, 751349. [Google Scholar] [CrossRef]
- Walker, N.; Schulze, R. An assessment of sustainable maize production under different management and climate scenarios for smallholder agro-ecosystems in KwaZulu-Natal, South Africa. Phys. Chem. Earth Parts A/B/C 2006, 31, 995–1002. [Google Scholar] [CrossRef]
- Kom, Z.; Nethengwe, N.; Mpandeli, N.; Chikoore, H. Determinants of small-scale farmers’ choice and adaptive strategies in response to climatic shocks in Vhembe District, South Africa. GeoJournal 2022, 87, 677–700. [Google Scholar] [CrossRef]
- Sithole, A.; Olorunfemi, O.D. The Adoption of Sustainable Farming Practices by Smallholder Crop Farmers: Micro-Level Evidence from North-Eastern South Africa. Agriculture 2024, 14, 2370. [Google Scholar] [CrossRef]
- Glazebrook, T.; Noll, S.; Opoku, E. Gender matters: Climate change, gender bias, and women’s farming in the global South and North. Agriculture 2020, 10, 267. [Google Scholar] [CrossRef]
- Geza, W.; Ngidi, M.; Ojo, T.; Adetoro, A.A.; Slotow, R.; Mabhaudhi, T. Youth participation in agriculture: A scoping review. Sustainability 2021, 13, 9120. [Google Scholar] [CrossRef]
- Sisha, T.A. Household level food insecurity assessment: Evidence from panel data, Ethiopia. Sci. Afr. 2020, 7, e00262. [Google Scholar] [CrossRef]
- Gebre, G.G.; Isoda, H.; Amekawa, Y.; Nomura, H. Gender differences in the adoption of agricultural technology: The case of improved maize varieties in southern Ethiopia. Women’s Stud. Int. Forum 2019, 76, 102264. [Google Scholar] [CrossRef]
- Kaliba, A.R.; Mazvimavi, K.; Gregory, T.L.; Mgonja, F.M.; Mgonja, M. Factors affecting adoption of improved sorghum varieties in Tanzania under information and capital constraints. Agric. Food Econ. 2018, 6, 1–21. [Google Scholar] [CrossRef]
- Umar, S.; Musa, M.; Kamsang, L. Determinants of adoption of improved maize varieties among resource-poor households in Kano and Katsina States, Nigeria. J. Agric. Ext. 2014, 18, 196–205. [Google Scholar] [CrossRef]
- Atube, F.; Malinga, G.M.; Nyeko, M.; Okello, D.M.; Alarakol, S.P.; Okello-Uma, I. Determinants of smallholder farmers’ adaptation strategies to the effects of climate change: Evidence from northern Uganda. Agric. Food Secur. 2021, 10, 1–14. [Google Scholar] [CrossRef]
- Adjimoti, G.O.; Kwadzo, G.T.-M. Crop diversification and household food security status: Evidence from rural Benin. Agric. Food Secur. 2018, 7, 1–12. [Google Scholar] [CrossRef]
- Samim, S.A.; Deng, X.; Li, Z. Climate-smart agricultural practices-determinants and impact on crop production. New insights from Afghanistan. Mitig. Adapt. Strateg. Glob. Change 2024, 29, 1–31. [Google Scholar] [CrossRef]
- Balana, B.B.; Oyeyemi, M.A. Agricultural credit constraints in smallholder farming in developing countries: Evidence from Nigeria. World Dev. Sustain. 2022, 1, 100012. [Google Scholar] [CrossRef]
- Bjornlund, H.; van Rooyen, A.; Stirzaker, R. Profitability and productivity barriers and opportunities in small-scale irrigation schemes. Int. J. Water Resour. Dev. 2017, 33, 690–704. [Google Scholar] [CrossRef]
- You, L.; Ringler, C.; Wood-Sichra, U.; Robertson, R.; Wood, S.; Zhu, T.; Nelson, G.; Guo, Z.; Sun, Y. What is the irrigation potential for Africa? A combined biophysical and socioeconomic approach. Food Policy 2011, 36, 770–782. [Google Scholar] [CrossRef]
- Vernooy, R. Does crop diversification lead to climate-related resilience? Improving the theory through insights on practice. Agroecol. Sustain. Food Syst. 2022, 46, 877–901. [Google Scholar] [CrossRef]
- Zakaria, H. The drivers of women farmers’ participation in cash crop production: The case of women smallholder farmers in Northern Ghana. J. Agric. Educ. Ext. 2017, 23, 141–158. [Google Scholar] [CrossRef]
- Michler, J.D.; Josephson, A.L. To specialize or diversify: Agricultural diversity and poverty dynamics in Ethiopia. World Dev. 2017, 89, 214–226. [Google Scholar] [CrossRef]
- Hlatshwayo, S.I.; Ngidi, M.; Ojo, T.; Modi, A.T.; Mabhaudhi, T.; Slotow, R. A typology of the level of market participation among smallholder farmers in South Africa: Limpopo and Mpumalanga Provinces. Sustainability 2021, 13, 7699. [Google Scholar] [CrossRef]
- Li, C.; Hoffland, E.; Kuyper, T.W.; Yu, Y.; Zhang, C.; Li, H.; Zhang, F.; van der Werf, W. Syndromes of production in intercropping impact yield gains. Nat. Plants 2020, 6, 653–660. [Google Scholar] [CrossRef]
- Stratton, A.E.; Comin, J.J.; Siddique, I.; Zak, D.R.; Filipini, L.D.; Lucas, R.R.; Blesh, J. Assessing cover crop and intercrop performance along a farm management gradient. Agric. Ecosyst. Environ. 2022, 332, 107925. [Google Scholar] [CrossRef]
- Mazzafera, P.; Favarin, J.L.; Andrade, S.A.L.d. Intercropping systems in sustainable agriculture. Frontiers 2021, 5, 634361. [Google Scholar]
- Gitari, H.I.; Nyawade, S.O.; Kamau, S.; Karanja, N.N.; Gachene, C.K.; Raza, M.A.; Maitra, S.; Schulte-Geldermann, E. Revisiting intercropping indices with respect to potato-legume intercropping systems. Field Crops Res. 2020, 258, 107957. [Google Scholar] [CrossRef]
- Nyamayevu, D.; Nyagumbo, I.; Chiduwa, M.; Liang, W.; Li, R. Understanding crop diversification among smallholder farmers: Socioeconomic insights from central Malawi. Sustainability 2024, 16, 9078. [Google Scholar] [CrossRef]
- Ojiewo, C.; Keatinge, D.J.; Hughes, J.; Tenkouano, A.; Nair, R.; Varshney, R.; Siambi, M.; Monyo, E.; Ganga-Rao, N.; Silim, S. The role of vegetables and legumes in assuring food, nutrition, and income security for vulnerable groups in Sub-Saharan Africa. World Med. Health Policy 2015, 7, 187–210. [Google Scholar] [CrossRef]
- Mkhize, X.; Oldewage-Theron, W.; Napier, C.; Duffy, K.; Mthembu, B.E. Introducing grain legumes for crop diversification and sustainable food production systems amongst urban small-holder farmers: A food and nutrition security project in KwaZulu-Natal, South Africa. Agroecol. Sustain. Food Syst. 2022, 46, 791–814. [Google Scholar] [CrossRef]
- Mengistu, D.D.; Degaga, D.T.; Tsehay, A.S. Analyzing the contribution of crop diversification in improving household food security among wheat dominated rural households in Sinana District, Bale Zone, Ethiopia. Agric. Food Secur. 2021, 10, 1–15. [Google Scholar] [CrossRef]
- Khan, I.; Lei, H.; Shah, I.A.; Ali, I.; Khan, I.; Muhammad, I.; Huo, X.; Javed, T. Farm households’ risk perception, attitude and adaptation strategies in dealing with climate change: Promise and perils from rural Pakistan. Land Use Policy 2020, 91, 104395. [Google Scholar] [CrossRef]
- Inoni, O.E.; Gani, B.S.; Sabo, E. Drivers of crop diversification: Evidence from smallholder farmers in Delta State Nigeria. Acta Univ. Agric. Et Silvic. Mendel. Brun. 2021, 69, 59–70. [Google Scholar] [CrossRef]
- Harrison, S.; Spasojevic, M.J.; Li, D. Climate and plant community diversity in space and time. Proc. Natl. Acad. Sci. USA 2020, 117, 4464–4470. [Google Scholar] [CrossRef]
- Lemma, T.; Sharma, M. Motivations for women’s participation in urban agriculture: A multivariate probit model analysis. Int. J. Agric. Sustain. 2024, 22, 2379893. [Google Scholar] [CrossRef]
- Mortensen, D.A.; Smith, R.G. Confronting barriers to cropping system diversification. Front. Sustain. Food Syst. 2020, 4, 564197. [Google Scholar] [CrossRef]
- Lema, C.F.; Kadigi, M.; Kayunze, K.A. Farmers’ Awareness of and Attitude towards Diversified Legumes Production in Singida Region, Tanzania. Eur. J. Agric. Food Sci. 2024, 6, 11–18. [Google Scholar] [CrossRef]
- Marie, M.; Yirga, F.; Haile, M.; Tquabo, F. Farmers’ choices and factors affecting adoption of climate change adaptation strategies: Evidence from northwestern Ethiopia. Heliyon 2020, 6, e03867. [Google Scholar] [CrossRef] [PubMed]
- Wonde, K.M.; Tsehay, A.S.; Lemma, S.E. Training at farmers training centers and its impact on crop productivity and households’ income in Ethiopia: A propensity score matching (PSM) analysis. Heliyon 2022, 8, e09837. [Google Scholar] [CrossRef]
- Mbesa, B.; Makindara, J.; Kadigi, M.; Majubwa, R.; Madege, R. Effect of training on knowledge, attitude, and practice on the use of hermetic storage technologies among smallholder farmers in Tanzania. Afr. J. Empir. Res. 2024, 5, 881–893. [Google Scholar] [CrossRef]
Variables | Description | Variable Type |
---|---|---|
Age | 1 = ≤25, 2 = 26–50, 3 = 51 years and above | Categorical |
Gender | 1 = male, 0 if otherwise | |
Marital status | 1 = unmarried, 2 = Married, 3 =Divorced, 4 = Widow (er) | Categorical |
Education | 1 = no formal schooling, 2 = primary school, 3 = secondary school, 4 = tertiary school | Categorical |
Household size | Number of members in the household | Continuous |
Farming experience | 1 = 1–10 yrs, 2 = 11–20 yrs, 3 = 21–30 yrs, 4 = 31 and above years | Categorical |
Farm size | 1 = ≤2 ha, 2 = 3–5 ha, 6 and above hectares | Categorical |
Source of seeds | 1 = own production, 2 = supermarkets, 3 = other | Categorical |
Market access | 1 = yes, if a farmer has market access, 0 if otherwise | Categorical |
Advantages of diversifying crops | 1 = perceived advantages of crop diversification, 0 if otherwise | Categorical |
Sources of water for irrigation | 1 = irrigation, 2 = rainfed, 3 = both | Categorical |
Socio-Economic Variables | Frequency (%) |
---|---|
Age (Years) | |
≤25 | 9 (5.6) |
26–50 | 82 (50.3) |
51 and above | 70 (44.1) |
Gender | |
Female | 129 (80.1) |
Male | 32 (19,9) |
Marital Status | |
Unmarried | 85 (52.8) |
Married | 59 (36.6) |
Divorced | 1 (0.6) |
Widow (er) | 16(9.9) |
Education | |
No formal schooling | 33 (20.5) |
Primary school | 40 (24.8) |
Secondary school | 79 (49.1) |
Tertiary school | 9 (5.6) |
Household Size | |
1–5 people | 52 (32.2) |
6–10 people | 81 (50.3) |
11 and above | 28 (17.3) |
* Source of income | |
Temporal employment | 25 (15.5) |
Welfare grant | 113 (70.2) |
Remittances | 34 (21,1) |
Crop sales—irrigated | 45 (28) |
Crop sales—rainfed | 21(13) |
Livestock sales | 26 (16.1) |
Other | 17 (10.6) |
Source of food | |
Own production | 50 (31.1) |
Purchased | 110 (68.3) |
Food aid | 1 (0.6) |
Socio-Economic Variables | Frequency (%) |
---|---|
Years of farming experience | |
1–10 yrs | 137 (85.1) |
11–20 yrs | 14 (8.7) |
21–30 yrs | 6 (3.7) |
31 and above | 4 (2.5) |
Farm size (hectares) | |
≤2 | 150 (93.2) |
3–5 ha | 10 (6.2) |
6 and above | 1 (0.6) |
Sources of water for irrigation | |
Irrigation | 14 (8.7) |
Rainfall | 41 (25,5) |
Both | 106 (65.8) |
Sources of seeds | |
Own production | 35 (21.7) |
Supermarkets | 115 (71.4) |
Other | 11 (6.8) |
How easy to get seeds? | |
Very easy | 80 (49.7) |
Easy | 65 (40.4) |
Not easy | 16 (9.9) |
Market access | |
Yes | 32 (19.9) |
No | 129 (80.1) |
Characteristics | Coeff. | Std.Err | T-Value | p > t | VIF | Tolerance |
---|---|---|---|---|---|---|
Age | 0.060 | 0.104 | 0.58 | 0.562 | 2.02 | 0.494553 |
Gender | −0.161 | 0.284 | −0.57 | 0.570 | 1.04 | 0.963210 |
Marital status | 0.189 | 0.148 | 1.28 | 0.203 | 1.46 | 0.683164 |
Education | 0.437 | 0.177 | 2.46 | 0.015 ** | 1.94 | 0.515743 |
Household size | 0.079 | 0.032 | 2.49 | 0.014 ** | 1.25 | 0.799583 |
Farming experience | 0.076 | 0.095 | 0.79 | 0.428 | 1.09 | 0.920088 |
Farm size | 0.269 | 0.291 | 0.93 | 0.356 | 1.06 | 0.947418 |
Source of seeds | 0.366 | 0.231 | 1.59 | 0.114 | 1.13 | 0.882091 |
Market access | 1.335 | 0.297 | 4.50 | 0.000 *** | 1.13 | 0.881867 |
Advantages of diversifying crops | 1.616 | 0.279 | 5.79 | 0.000 *** | 1.09 | 0.915646 |
Sources of water for irrigation | 0.226 | 0.178 | 1.27 | 0.206 | 1.07 | 0.935039 |
Constant | −0.883 | |||||
F | 8.95 | |||||
Prob > F | 0.000 | |||||
R-squared | 0.398 | |||||
Adj R-squared | 0.354 | |||||
Mean VIF | 1.30 |
Characteristics | Vegetables | Legumes | Cereals | |||
---|---|---|---|---|---|---|
Coeff. | Std.Err | Coeff. | Std.Err | Coeff. | Std.Err | |
Age | −0.416 *** | 0.155 | 0.107 | 0.085 | 0.140 | 0.083 |
Gender | −0.362 | 0.413 | −0.117 | 0.270 | 0.311 | 0.259 |
Marital status | 0.754 *** | 0.307 | 0.026 | 0.138 | 0.299 ** | 0.141 |
Household size | −0.043 | 0.052 | 0.031 | 0.028 | −0.020 | 0.030 |
Farming experience | 0.204 | 0.183 | 0.219 ** | 0.102 | 0.190 ** | 0.093 |
Farm size | −0.856 *** | 0.345 | 0.670 * | 0.422 | 0.275 | 0.230 |
Source of seeds | 0.273 | 0.324 | −0.030 | 0.216 | 0.134 | 0.199 |
Market access | 4.926 | 151.764 | 0.414 | 0.277 | −0.160 | 0.264 |
Advantages of diversifying crops | 1.039 *** | 0.370 | 0.748 *** | 0.283 | −0.009 | 0.254 |
Sources of water for irrigation | 0.871 *** | 0.287 | 0.002 | 0.172 | −0.188 | 0.170 |
Constant | −0.308 | 1.110627 | −2.454 | 0.873 | −1.408 | 0.760 |
N | 161 | |||||
Wald chi2(30) | 62.65 | |||||
Log-likelihood | −208.631 | |||||
Prob > chi2 | 0.000 |
Tested Knowledge on Crop Diversification Benefits | Frequency (%) | Frequency (%) |
---|---|---|
Yes | No | |
a. Did you know that crop diversification alleviates food insecurity by improving yields? | 82 (50.9) | 79 (49.1) |
b. Did you know that crop diversification ensures production stability through providing insurance (you can still rely on the other crop if one fails)? | 91 (56.5) | 70 (43.5) |
c. Did you know that crop diversification increases farmers’ economic returns (income)? | 95 (59.0) | 66 (41.0) |
d. Did you know that crop diversification reduces the risks associated with agricultural production (reduces pests and suppresses weeds and disease pressure)? | 61 (37.9) | 100 (62.1) |
e. Did you know that crop diversification improves crop water-use efficiency? | 84 (52.2) | 77 (47.8) |
f. Did you know that crop diversification improves soil fertility? | 89 (55.3) | 72 (44.7) |
g. Did you know that crop diversification increases the resilience of farming systems? | 65 (40.4) | 96 (59.6) |
Statement | Frequency (%) Yes | Frequency (%) No |
---|---|---|
a. Attended all training sessions that are held by the Farmers Support Group/Department of Agriculture’s extension officers. | 80 (49.7) | 81 (50.3) |
b. Fully understand the information provided in the training sessions. | 88 (54.7) | 73 (45.3) |
c. Put into practice all the advice given in the training. | 93 (57.8) | 68 (42.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilakazi, B.; Odindo, A.O.; Phophi, M.M.; Mafongoya, P.L. Socioeconomic Factors Influencing Crop Diversification Among Smallholder Farmers in Bergville, South Africa. Agriculture 2025, 15, 914. https://doi.org/10.3390/agriculture15090914
Vilakazi B, Odindo AO, Phophi MM, Mafongoya PL. Socioeconomic Factors Influencing Crop Diversification Among Smallholder Farmers in Bergville, South Africa. Agriculture. 2025; 15(9):914. https://doi.org/10.3390/agriculture15090914
Chicago/Turabian StyleVilakazi, Busisiwe, Alfred O. Odindo, Mutondwa M. Phophi, and Paramu L. Mafongoya. 2025. "Socioeconomic Factors Influencing Crop Diversification Among Smallholder Farmers in Bergville, South Africa" Agriculture 15, no. 9: 914. https://doi.org/10.3390/agriculture15090914
APA StyleVilakazi, B., Odindo, A. O., Phophi, M. M., & Mafongoya, P. L. (2025). Socioeconomic Factors Influencing Crop Diversification Among Smallholder Farmers in Bergville, South Africa. Agriculture, 15(9), 914. https://doi.org/10.3390/agriculture15090914