Biosolarization and Chemical Disinfection as Strategies to Enhance Asparagus Yield and Quality in a Decline-Affected Plantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Experimental Design, Treatments, and Plant Sampling
2.3. Climatic Conditions
2.4. Harvest
2.5. Quality of Spears
2.6. Statistical Analysis
3. Results
3.1. Yield
3.2. Quality
3.3. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADS | Asparagus decline syndrome |
References
- Corpas-Hervias, C.; Melero-Vara, J.M.; Molinero-Ruiz, M.L.; Zurera-Muñoz, C.; Basallote-Ureba, M.J. Characterization of Isolates of Fusarium Spp. Obtained from Asparagus in Spain. Plant Dis. 2007, 90, 1441–1451. [Google Scholar] [CrossRef]
- Ito, T.; Ochiai, T.; Fukuda, T.; Ashizawa, H.; Kanno, A.; Kameya, T.; Sonoda, T. Potential of interspecific hybrids in the genus asparagus. Acta Hortic. 2008, 776, 279–284. [Google Scholar] [CrossRef]
- López-Moreno, F.J.; Navarro-León, E.; Atero-Calvo, S.; de la Lastra, E.; Ruiz, J.M.; Soriano, T. Evaluation of the Effects of Asparagus Decline Syndrome on Yield and Quality Parameters over Three Years in Western Europe. Horticulturae 2025, 11, 159. [Google Scholar] [CrossRef]
- López-Moreno, F.J.; Navarro-León, E.; Soriano, T.; Ruiz, J.M. Physiological Characterization of Asparagus Decline Syndrome. Plant Soil 2025, 1–12. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/es/#data/QCL/visualize (accessed on 20 November 2024).
- Observatorio de Precios y Mercados. Consejería de Agricultura, Pesca, Agua y Desarrollo Rural. Junta de Andalucía. Available online: https://www.juntadeandalucia.es/agriculturaypesca/observatorio/servlet/FrontController?action=Static&url=buscador.jsp&ec=default&search_param=esparrago (accessed on 20 November 2024).
- Elmer, W.H. Fusarium Diseases of Asparagus. In Proceedings of the Fusarium. Paul E. Nelson Memorial Symposium; Summerell, B.A., Leslie, J.F., Backhouse, D., Bryden, W.L., Burgess, L.W., Eds.; American Phytopathological Society Press: St. Paul, MN, USA, 2001; pp. 248–262. [Google Scholar]
- Motoki, S.; Ozawa, T.; Komatsu, K.; Tsukada, M.; Hattori, T.; Komura, T.; Oka, J. Allelopathy in Asparagus 1: Reduction of the Allelopathic Effect on Asparagus by the Flowable Agent in Activated Carbon. Acta Hortic. 2002, 589, 381–386. [Google Scholar] [CrossRef]
- Rubio-Pérez, E.; Molinero-Ruiz, M.L.; Melero-Vara, J.M.; Basallote-Ureba, M.J. Selection of Potential Antagonists against Asparagus Crown and Root Rot Caused by Fusarium Spp. Commun. Agric. Appl. Biol. Sci. 2008, 73, 203–206. [Google Scholar]
- Borrego-Benjumea, A.; Basallote-Ureba, M.J.; Melero-Vara, J.M. Eficacia de Enmiendas Orgánicas, Temperatura de Suelo y Cultivares En El Control de La Podredumbre de Raíces y Cuello de Espárrago. In Proceedings of the Resúmenes del XV Congreso de la Sociedad Española de Fitopatología, Vitoria-Gasteiz, Spain, 27 September 2010; p. 383. [Google Scholar]
- Kathe, L.; Krämer, R.; Budahn, H.; Pillen, K.; Rabenstein, F.; Nothnagel, T. Development of a Bioassay to Assess Resistance to Fusarium oxysporum (Schlecht.) in Asparagus (Asparagus officinalis L.). J. Phytopathol. 2019, 167, 558–566. [Google Scholar] [CrossRef]
- Bonanomi, G.; Antignani, V.; Pane, C.; Scala, F. Suppression of Soilborne Fungal Diseases with Organic Amendments. J. Plant Pathol. 2007, 89, 311–324. [Google Scholar]
- dos Santos, C.A.; Abboud, A.C.d.S.; Do Carmo, M.G.F. Biofumigation with Species of the Brassicaceae Family: A Review. Cienc. Rural 2021, 51, e20200440. [Google Scholar] [CrossRef]
- Zhao, R.; Suo, X.; Meng, X.; Wang, Y.; Dai, P.; Hu, T.; Cao, K.; Wang, S.; Li, B. Global Analysis of MicroRNA-like RNAs Reveals Differential Regulation of Pathogenicity and Development in Fusarium Oxysporum HS2 Causing Apple Replant Disease. J. Fungi 2024, 10, 883. [Google Scholar] [CrossRef]
- Fravel, D.; Olivain, C.; Alabouvette, C. Fusarium oxysporum and Its Biocontrol. New Phytol. 2003, 157, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Borrego-Benjumea, A.; Basallote-Ureba, M.J.; Abbasi, P.A.; Lazarovits, G.; Melero-Vara, J.M. Effects of Incubation Temperature on the Organic Amendment-Mediated Control of Fusarium Wilt of Tomato. Ann. Appl. Biol. 2014, 164, 453–463. [Google Scholar] [CrossRef]
- Djalali Farahani-Kofoet, R.; Häfner, F.; Feller, C. Effect of Organic and Mineral Soil Additives on Asparagus Growth and Productivity in Replant Soils. Agronomy 2023, 13, 1464. [Google Scholar] [CrossRef]
- Ngouajio, M.; Counts, J.W.; Clark, D. Effect of Compost and Brassica Cover Crops on Soil Microbial Biomass and Asparagus Performance. Acta Hortic. 2014, 1018, 175–180. [Google Scholar] [CrossRef]
- Castillo-Díaz, F.J.; Belmonte-Ureña, L.J.; Camacho-Ferre, F.; Marquina, J.C.T. Biodisinfection as a Profitable Fertilization Method for Horticultural Crops in the Framework of the Circular Economy. Agronomy 2022, 12, 521. [Google Scholar] [CrossRef]
- Zhu, F.; Xiao, J.; Zhang, Y.; Wei, L.; Liang, Z. Dazomet Application Suppressed Watermelon Wilt by the Altered Soil Microbial Community. Sci. Rep. 2020, 10, 21668. [Google Scholar] [CrossRef]
- Drost, D. Asparagus Breeding: Future Research Needs for Sustainable Production. Front. Plant Sci. 2023, 14, 1148312. [Google Scholar] [CrossRef]
- Morrison, W.R.; Linderman, S.; Hausbeck, M.K.; Werling, B.P.; Szendrei, Z. Disease and Insect Pests of Asparagus. Extension Bulletin E3219; Michigan State University: East Lansing, MI, USA, 2014. [Google Scholar]
- Drost, D.T. Asparagus. Physiol. Veg. Crops 2020, 19, 457–479. [Google Scholar] [CrossRef]
- Borrego-Benjumea, A.I.; Melero-Vara, J.M.; Basallote-Ureba, M.J. Organic Amendments Conditions on the Control of Fusarium Crown and Root Rot of Asparagus Caused by Three Fusarium Spp. Span. J. Agric. Res. 2015, 13, e1009. [Google Scholar] [CrossRef]
- Murariu, O.C.; Tallarita, A.V.; Stoleru, V.; De Sio, F.; Rapacciuolo, M.; Sandei, L.; Caruso, G. Yield and Quality of Asparagus Spears as Affected by Crop Method and Product Type. Acta Hortic. 2025, 1, 113–120. [Google Scholar] [CrossRef]
- de la Lastra, E.; Marín-Guirao, J.I.; López-Moreno, F.J.; Soriano, T.; de Cara-García, M.; Capote, N. Potential Inoculum Sources of Fusarium Species Involved in Asparagus Decline Syndrome and Evaluation of Soil Disinfestation Methods by QPCR Protocols. Pest. Manag. Sci. 2021, 77, 4749–4757. [Google Scholar] [CrossRef] [PubMed]
- Reid, T.C.; Hausbeck, M.K.; Kizilkaya, K. Use of Fungicides and Biological Controls in the Suppression of Fusarium Crown and Root Rot of Asparagus under Greenhouse and Growth Chamber Conditions. Plant Dis. 2002, 86, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, T.; Motoki, S. Asparagus Stem Emergence and Growth as Influenced by Temperature and Rainfall in a One-Year Production System. J. Hortic. Sci. Biotechnol. 2024, 99, 375–384. [Google Scholar] [CrossRef]
- Maskova, L.; Simmons, R.W.; Deeks, L.K.; De Baets, S.; Drost, D.T. Impacts of Long-Term Application of Best Management Practices on Yields and Root Carbohydrate Content in Asparagus (Asparagus Officinalis) (UK). SSRN Electron. J. 2023, 147, 126828. [Google Scholar] [CrossRef]
- Russo, G.; Caruso, G.; Villari, G.; Borrelli, C. Effects of Crop Method and Harvest Seasons on Yield and Quality of Green Asparagus under Tunnel in Southern Italy. Adv. Hortic. Sci. [Riv. Dell’ortoflorofrutticoltura Ital.] 2012, 26, 51–58. [Google Scholar] [CrossRef]
- Heeb, A.; Lundegårdh, B.; Savage, G.; Ericsson, T. Impact of Organic and Inorganic Fertilizers on Yield, Taste, and Nutritional Quality of Tomatoes. J. Plant Nutr. Soil Sci. 2006, 169, 535–541. [Google Scholar] [CrossRef]
- Cebolla, V.; Serrano, F. Enhanced Efficacy of Soil Disinfestation Treatments with 1.3-Dichloropropene and Chloropicrin under Low Temperature Conditions for Strawberry Mother Plants. Acta Hortic. 2009, 842, 977–980. [Google Scholar] [CrossRef]
- Guerrero, M.d.M.; Lacasa, C.M.; Martínez, V.; Monserrat, A.; López-Pérez, J.A.; Ortega, R.; Nieto, J.C.; Miralles, I.; Larregla, S. Influence of Season and Organic Amendment on the Effectiveness of Different Biosolarization Treatments against Fusarium oxysporum f. Sp. Lactucae. Agronomy 2023, 13, 1498. [Google Scholar] [CrossRef]
- López-Moreno, F.J.; Atero-Calvo, S.; Navarro-León, E.; Blasco, B.; Soriano, T.; Ruiz, J.M. Evaluation of Physiological and Quality Parameters of Green Asparagus Spears Subjected to Three Treatments against the Decline Syndrome. Agronomy 2021, 11, 937. [Google Scholar] [CrossRef]
- Fallovo, C.; Rouphael, Y.; Rea, E.; Battistelli, A.; Colla, G. Nutrient Solution Concentration and Growing Season Affect Yield and Quality of Lactuca sativa L. Var. Acephala in Floating Raft Culture. J. Sci. Food Agric. 2009, 89, 1682–1689. [Google Scholar] [CrossRef]
- Retta, M.A.; Verlinden, B.; Verboven, P.; Nicolai, B. Texture-Microstructure Relationship of Leafy Vegetables during Postharvest Storage. Acta Hortic. 2019, 1256, 169–177. [Google Scholar] [CrossRef]
- Krzesinski, W.; Knaflewski, M.; Stachowiak, J.; Gasecka, M. Sugar Content in Spears versus Asparagus Yielding. Veg. Crops Res. Bull. 2007, 67, 127–136. [Google Scholar] [CrossRef]
Commercial Yield (Kg/ha) | Non-Commercial Yield (%) | Total Spear Number Per Plot | ||
---|---|---|---|---|
2019 | T1 | 164.99 | 12 | 50.25 |
T2 | 160.73 | 14 | 55.50 | |
T3 | 117.43 | 14 | 52.50 | |
T4 | 145.46 | 11 | 46.25 | |
p-value | NS | NS | NS | |
2020 | T1 | 872.90 | 2 | 303.20 |
T2 | 990.85 | 1 | 344.17 | |
T3 | 914.06 | 2 | 317.50 | |
T4 | 866.79 | 1 | 301.08 | |
p-value | NS | NS | NS | |
2021 | T1 | 2987.80 b | 5 | 1041.05 b |
T2 | 3609.81 a | 5 | 1257.77 a | |
T3 | 3362.38 ab | 5 | 1171.56 ab | |
T4 | 3097.45 b | 5 | 1079.25 b | |
p-value | * | NS | * | |
Multivariant analysis | ||||
Treatment (T) | * | NS | * | |
Year (Y) | *** | *** | *** | |
T × Y | * | NS | * |
Weight (g) | Intermediate Diameter (mm) | Hardness (g/cm2) | Unit Volume (dm3) | °Brix | Juiciness (%) | ||
---|---|---|---|---|---|---|---|
2019 | T1 | 8.64 b | 5.86 c | - | 20.30 c | 5.83 b | - |
T2 | 25.58 a | 12.61 a | - | 23.09 ab | 5.70 c | - | |
T3 | 19.90 a | 10.62 b | - | 21.07 bc | 5.70 c | - | |
T4 | 23.30 a | 11.44 ab | - | 23.92 a | 6.20 a | - | |
p-value | *** | *** | - | * | *** | - | |
2020 | T1 | 19.70 | 10.48 | 445.72 | 66.38 | 4.69 | 12.71 |
T2 | 23.25 | 12.61 | 422.99 | 75.31 | 4.71 | 13.58 | |
T3 | 19.90 | 10.62 | 426.49 | 61.49 | 4.76 | 12.31 | |
T4 | 23.30 | 11.44 | 433.54 | 70.29 | 4.85 | 11.39 | |
p-value | NS | NS | NS | NS | NS | NS | |
2021 | T1 | 18.69 | 9.40 | 468.31 a | 47.97 b | 5.42 a | 13.14 ab |
T2 | 19.60 | 10.58 | 450.77 a | 53.36 ab | 5.40 a | 12.36 b | |
T3 | 17.79 | 9.27 | 418.48 b | 46.39 b | 5.15 b | 14.32 a | |
T4 | 20.53 | 11.54 | 418.31 b | 58.26 a | 5.21 b | 13.05 ab | |
p-value | NS | NS | ** | * | *** | * | |
Multivariant analysis | |||||||
Treatment (T) | *** | *** | ** | ** | * | NS | |
Year (Y) | NS | * | NS | *** | *** | NS | |
T × Y | *** | ** | NS | NS | ** | * |
Weight | Diameter | Hardness | Volume | °Brix | Juiciness | Commercial Yield | Non-Commercial Yield | |
---|---|---|---|---|---|---|---|---|
Weight | 1.00 | 0.80 *** | −0.10 | 0.37 * | −0.17 | −0.23 | −0.16 | −0.12 |
Diameter | 0.80 *** | 1.00 | −0.08 | 0.41 ** | −0.18 | −0.41 * | −0.22 | −0.14 |
Hardness | −0.1 | −0.07 | 1.00 | −0.06 | 0.35 * | −0.06 | −0.01 | 0.09 |
Volume | 0.37 * | 0.41 ** | −0.06 | 1.00 | −0.81 *** | −0.31 | 0.49 *** | −0.86 *** |
°Brix | −0.17 | −0.18 | 0.35 * | −0.81 *** | 1.00 | −0.03 | −0.32 * | 0.90 *** |
Juiciness | −0.23 | −0.41 * | −0.06 | −0.31 | −0.04 | 1.00 | 0.21 | 0.17 |
Commercial Yield | −0.16 | −0.23 | −0.01 | 0.49 *** | −0.32 * | 0.21 | 1.00 | −0.39 ** |
Non-Commercial Yield | −0.12 | −0.14 | 0.09 | −0.86 *** | 0.90 *** | 0.17 | −0.39 ** | 1.00 |
Direct Effect | Indirect Effect | Total Effect | |
---|---|---|---|
Weight | −0.18 | 0.10 | −0.08 |
Diameter | −0.1 | 0.00 | −0.10 |
Hardness | −0.08 | 0.25 | 0.17 |
Volume | 1.14 | −0.96 | 0.18 |
°Brix | 0.91 | −0.92 | −0.01 |
Juiciness | 0.40 | −0.29 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Moreno, F.J.; Navarro-León, E.; Ruiz, J.M.; Soriano, T. Biosolarization and Chemical Disinfection as Strategies to Enhance Asparagus Yield and Quality in a Decline-Affected Plantation. Agriculture 2025, 15, 915. https://doi.org/10.3390/agriculture15090915
López-Moreno FJ, Navarro-León E, Ruiz JM, Soriano T. Biosolarization and Chemical Disinfection as Strategies to Enhance Asparagus Yield and Quality in a Decline-Affected Plantation. Agriculture. 2025; 15(9):915. https://doi.org/10.3390/agriculture15090915
Chicago/Turabian StyleLópez-Moreno, Francisco Javier, Eloy Navarro-León, Juan Manuel Ruiz, and Teresa Soriano. 2025. "Biosolarization and Chemical Disinfection as Strategies to Enhance Asparagus Yield and Quality in a Decline-Affected Plantation" Agriculture 15, no. 9: 915. https://doi.org/10.3390/agriculture15090915
APA StyleLópez-Moreno, F. J., Navarro-León, E., Ruiz, J. M., & Soriano, T. (2025). Biosolarization and Chemical Disinfection as Strategies to Enhance Asparagus Yield and Quality in a Decline-Affected Plantation. Agriculture, 15(9), 915. https://doi.org/10.3390/agriculture15090915