Influence of Land Use and Land Cover on Hydraulic and Physical Soil Properties at the Cerrado Agricultural Frontier
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Soil Sampling Design
2.3. Measuring Methods
2.4. Pedotransfer Model
2.4.1. Adjustment of Soil Water retention Curve
2.4.2. Development of Pedotransfer Functions
2.5. Data Analysis
3. Results
3.1. Soil Physical and Hydraulic Properties
3.2. Pedotransfer Functions
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Oliveira, S.N.; de Carvalho Júnior, O.A.; Gomes, R.A.T.; Guimarães, R.F.; McManus, C.M. Landscape-fragmentation change due to recent agricultural expansion in the Brazilian Savanna, Western Bahia, Brazil. Reg. Environ. Chang. 2017, 17, 411–423. [Google Scholar] [CrossRef]
- Nunes de Oliveira, S.; Abílio de Carvalho Júnior, O.; Trancoso Gomes, R.A.; Fontes Guimarães, R.; McManus, C.M. Deforestation analysis in protected areas and scenario simulation for structural corridors in the agricultural frontier of Western Bahia, Brazil. Land Use Policy 2017, 61, 40–52. [Google Scholar] [CrossRef]
- Brannstrom, C.; Jepson, W.; Filippi, A.M.; Redo, D.; Xu, Z.; Ganesh, S. Land change in the Brazilian Savanna (Cerrado), 1986-2002: Comparative analysis and implications for land-use policy. Land Use Policy 2008. [Google Scholar] [CrossRef]
- Batistella, M.; Valladares, G.S. Farming expansion and land degradation in Western Bahia, Brazil. Biota Neotrop. 2009. [Google Scholar] [CrossRef]
- Spera, S.A.; Galford, G.L.; Coe, M.T.; Macedo, M.N.; Mustard, J.F. Land-use change affects water recycling in Brazil’s last agricultural frontier. Global Chang. Biol. 2016, 22, 3405–3413. [Google Scholar] [CrossRef] [PubMed]
- Filho, A.C.; Costa, K. A Expansão da Soja no Cerrado—Caminhos Para a Ocupação Territorial, Uso do Solo e Produção Sustentável; Technical Report; AGROICONE: São Paulo, Brazil, 2016. [Google Scholar]
- Sano, E.E.; dos Santos, C.C.M.; da Silva, E.M.; Chaves, J.M. Fronteira agrícola do oeste baiano: Considerações sobre os aspectos temporais e ambientais. Geociencias 2011, 30, 479–489. [Google Scholar]
- AIBA. Anuário Agropecuário do Oeste da Bahia Safra 2014/2015; AIBA: Barreiras, Brazil, 2015; p. 64. [Google Scholar]
- Batistella, M.; Guimarães, M.; de Miranda, E.E.; Vieira, H.R.; Valladares, G.S.; Mangabeira, J.A.d.C.; de Assis, M.C. Monitoramento da expansão agropecuária na reião Oeste da Bahia. Embr. Monit. Satél. 2002, 20, 41. [Google Scholar]
- AIBA. Anuário Agropecuário do Oeste da Bahia Safra 2016/2017; AIBA: Barreiras, Brazil, 2017; p. 53. [Google Scholar]
- Elsenbeer, H.; Newton, B.E.; Dunne, T.; De Moraes, J.M. Soil hydraulic conductivities of latosols under pasture, forest and teak in Rondonia, Brazil. Hydrol. Process. 1999. [Google Scholar] [CrossRef]
- Muller, M.M.L.; Guimarães, M.D.F.; Desjardins, T.; Martins, P.F.D.S. Degradação de pastagens na Região Amazônica: Propriedades físicas do solo e crescimento de raízes. Pesquisa Agropec. Bras. 2001, 36, 1409–1418. [Google Scholar] [CrossRef]
- Scheffler, R.; Neill, C.; Krusche, A.V.; Elsenbeer, H. Soil hydraulic response to land-use change associated with the recent soybean expansion at the Amazon agricultural frontier. Agric. Ecosyst. Environ. 2011, 144, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Deforestation and land-use effects on soil degradation and rehabilitation in western Nigeria 1. Soil physical and hydrological properties. Land Degrad. Dev. 1996, 7, 19–45. [Google Scholar] [CrossRef]
- De Moraes, J.F.; Volkoff, B.; Cerri, C.C.; Bernoux, M. Soil properties under Amazon forest and changes due to pasture installation in Rondônia, Brazil. Geoderma 1996, 70, 63–81. [Google Scholar] [CrossRef]
- Zimmermann, B.; Elsenbeer, H.; De Moraes, J.M. The influence of land-use changes on soil hydraulic properties: Implications for runoff generation. For. Ecol. Manag. 2006, 222, 29–38. [Google Scholar] [CrossRef]
- Horel, Á.; Tóth, E.; Gelybó, G.; Kása, I.; Bakacsi, Z.; Farkas, C. Effects of Land Use and Management on Soil Hydraulic Properties. Open Geosci. 2015, 7. [Google Scholar] [CrossRef] [Green Version]
- De Almeida, V.P.; Alves, M.C.; Da Silva, E.C.; De Oliveira, S.A. Rotação de culturas e propriedades físicas e químicas em latossolo vermelho de cerrado sob preparo convencional e semeadura direta em adoção. Rev. Bras. Cienc. Solo 2008, 32, 1227–1237. [Google Scholar] [CrossRef]
- De Faria, A.F.G.; dos Santos, A.C.; dos Santos, T.M.; Batistella Filho, F. Influência do manejo do solo nas propriedades químicas e físicas em topossequência na bacia do rio Araguaia, Estado do Tocantins. Rev. Bras. Cienc. Solo 2010, 34, 517–524. [Google Scholar] [CrossRef] [Green Version]
- Filizola, H.F.; Fontana, A.; Donagemma, G.K.; de Souza, M.D.; Bortolon, E.S.O.; Bortolon, L. Qualidade física de solos influenciada pelo uso e manejo na região de Guaraí-TO. Bol. Pesquisa Desenvol. 2017, 72, 35. [Google Scholar]
- Bonetti, J.d.A.; Paulino, H.B.; de Souza, E.D.; Carneiro, M.A.C.; Caetano, J.O. Soil physical and biological properties in an integrated crop-livestock system in the Brazilian Cerrado. Pesquisa Agropec. Bras. 2018, 53, 1239–1247. [Google Scholar] [CrossRef]
- Nóbrega, R.L.B.; Guzha, A.C.; Torres, G.N.; Kovacs, K.; Lamparter, G.; Amorim, R.S.S.; Couto, E.; Gerold, G. Effects of conversion of native cerrado vegetation to pasture on soil hydro-physical properties, evapotranspiration and streamflow on the Amazonian agricultural frontier. PLoS ONE 2017, 12, e0179414. [Google Scholar] [CrossRef] [PubMed]
- Anache, J.A.; Flanagan, D.C.; Srivastava, A.; Wendland, E.C. Land use and climate change impacts on runoff and soil erosion at the hillslope scale in the Brazilian Cerrado. Sci. Total Environ. 2018, 622–623, 140–151. [Google Scholar] [CrossRef]
- Hunke, P.; Mueller, E.N.; Schröder, B.; Zeilhofer, P. The Brazilian Cerrado: assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology 2015, 8, 1154–1180. [Google Scholar] [CrossRef]
- Dias, L.C.P.; Macedo, M.N.; Costa, M.H.; Coe, M.T.; Neill, C. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazil. J. Hydrol. Reg. Stud. 2015, 4, 108–122. [Google Scholar] [CrossRef] [Green Version]
- Moreira, V.S.; Candido, A.; Roberti, D.R.; Webler, G.; Diaz, M.B.; Gon, G.; Gonçalves, D.; Pousa, R.; Degrazia, A. Influence of Soil Properties in Different Management Systems: Estimating Soybean Water Changes in the Agro-IBIS Model. Earth Interact. 2018, 22. [Google Scholar] [CrossRef]
- Przeździecki, K.; Zawadzki, J.; Cieszewski, C.; Bettinger, P. Georgia and South Carolina using the triangle method. Silva Fennica 2017, 51, 1–19. [Google Scholar]
- Wang, J.; Chagnon, F.J.F.; Williams, E.R.; Betts, A.K.; Renno, N.O.; Machado, L.A.T.; Bisht, G.; Knox, R.; Bras, R.L. Impact of deforestation in the Amazon basin on cloud climatology. Proc. Natl. Acad. Sci. USA 2009, 106, 3670–3674. [Google Scholar] [CrossRef] [Green Version]
- Malhado, A.C.M.; Pires, G.F.; Costa, M.H. Cerrado conservation is essential to protect the Amazon rainforest. Ambio 2010, 39, 580–584. [Google Scholar] [CrossRef]
- Coe, M.T.; Marthews, T.R.; Costa, M.H.; Galbraith, D.R.; Greenglass, N.L.; Imbuzeiro, H.M.; Levine, N.M.; Malhi, Y.; Moorcroft, P.R.; Muza, M.N.; et al. Deforestation and climate feedbacks threaten the ecological integrity of south-southeastern Amazonia. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2013, 368, 20120155. [Google Scholar] [CrossRef]
- Pires, G.F.; Costa, M.H. Deforestation causes different subregional effects on the Amazon bioclimatic equilibrium. Geophys. Res. Lett. 2013, 40, 3618–3623. [Google Scholar] [CrossRef] [Green Version]
- IBGE. Manual Técnico da Vegetação Brasileira (Manuais Técnicos em Geociências n. 1); Fundação Instituto Brasileiro de Geografia e Estatística (IBGE): Rio de Janeiro, RJ, Brazil, 1992.
- Dos Santos, H.G.; Jacomine, P.K.T.; dos Anjos, L.H.C.; de Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; de Almedia, J.A.; de Araujo Filho, J.C.; de Oliveria, J.B.; Cunha, T.J.F. Brazilian Soil Classification System, 5th re ed.; EMBRAPA Solos: Brasília, DF, Brazil, 2018. [Google Scholar]
- Youngs, E. Hydraulic Conductivity of Saturated Soils. In Soil Analysis: Physical Methods; Marcel Dekker Inc.: New York, NY, USA, 1991; pp. 161–207. [Google Scholar]
- Ruiz, H.A. Incremento da exatidão da análise granulométrica do solo por meio da coleta da suspensão (silte + argila). Rev. Bras. Cien. Solo 2005, 29, 297–300. [Google Scholar] [CrossRef]
- Richards, L.A.; Fireman, M. Pressure-plate apparatus for measuring moisture sorption and transmission by soils. Soil Sci. 1943, 56, 395–404. [Google Scholar] [CrossRef]
- ClassenL, M.E.C.; Barreto, W.D.O.; Paula, J.L.D.; Duarte, M.N. Manual de Métodos de Análise de Solo; EMBRAPA; Centro Nacional de Pesquisa de Solos: Rio de Janeiro, Brazil, 1997; Volume 2, pp. 7–9. [Google Scholar]
- Campbell, G.S.; Norman, J.M. An Introduction to Environmental Biophysics, 2nd ed.; Springer: New York, NY, USA, 1998; Volume 6, p. 474. [Google Scholar]
- Clapp, R.B.; Hornberger, G.M. Empirical equations for some soil hydraulic properties. Water Resour. Res. 1978, 14, 601–604. [Google Scholar] [CrossRef]
- Moldrup, P.; Olesen, T.; Komatsu, T.; Schjønning, P.; Rolston, D. Tortuosity, Diffusivity, and Permeability in the Soil Liquid and Gaseous Phases. Soil Sci. Soc. Am. J. 2001, 65, 613. [Google Scholar] [CrossRef]
- Van Looy, K.; Bouma, J.; Herbst, M.; Koestel, J.; Minasny, B.; Mishra, U.; Montzka, C.; Nemes, A.; Pachepsky, Y.A.; Padarian, J.; et al. Pedotransfer Functions in Earth System Science: Challenges and Perspectives. Rev. Geophys. 2017, 55, 1199–1256. [Google Scholar] [CrossRef] [Green Version]
- Pittaki-Chrysodonta, Z.; Moldrup, P.; Knadel, M.; Iversen, B.V.; Hermansen, C.; Greve, M.H.; de Jonge, L.W. Predicting the Campbell Soil Water Retention Function: Comparing Visible–Near-Infrared Spectroscopy with Classical Pedotransfer Function. Vadose Zone J. 2018, 17. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Wilk, M.B.; Shapiro, S.S. An Analysis of Variance Test for Normality. Biometrika 1965, 52, 591–611. [Google Scholar]
- Jacomine, P.K.T.; Cavalcanti, A.C.; Ribeiro, M.R.; Montenegro, J.O.; Burgos, N.; Filho, T.F.R.d.M.; Formiga, R.A. Levantamento exploratório - Reconhecimento de solos da margem esquerda do Rio São Francisco da Bahia. Bol. Técnico EMBRAPA Rec. 1976, 38, 1–439. [Google Scholar]
- Cunha, T.J.F.; Macedo, J.R.; Ribeiro, L.P.; Palmieri, F.; de Freitas, P.L.; Aguiar, A.d.C. Impacto do manejo convencional sobre propriedades físicas e substâncias húmicas de solos sob cerrado. Ciênc. Rural 2001. [Google Scholar] [CrossRef]
- Fontana, A.; de Oliveira, A.P. Levantamento e caracterização de solos frágeis no Município de Luís Eduardo Magalhães, BA. In Solos Frágeis: Caracterização, Manejo e Sustentabilidade; de Castor, S.S., Hernani, L.C., Eds.; EMBRAPA Solos: Brasília, DF, Brazil, 2015; Chapter 3. [Google Scholar]
- Fontana, A.; Teixeira, W.G.; Balieiro, F.d.C.; de Moura, T.P.A.; de Menezes, A.R.; Santana, C.I. Características e atributos de Latossolos sob diferentes usos na região Oeste do Estado da Bahia. Pesquisa Agropec. Bras. 2016. [Google Scholar] [CrossRef]
- Giarola, N.F.B.; Silva, A.P.; Tormena, C.; Souza, L.S.; Ribeiro, L.P. Similaridades entre o caráter coeso dos solos e o comportamento hardsetting: Estudo de caso. Revista Bras. Ciênc. Solo 2001, 25, 239–247. [Google Scholar] [CrossRef]
- Giarola, N.F.B.; Silva, A.P.D. Conceitos sobre solos coesos e hardsetting. Sci. Agric. 2002, 59, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Stone, L.F.; Silveira, P.M. Efeitos do sistema de preparo e da rotação de culturas na porosidade e densidade do solo. Rev. Bras. Ciênc. Solo 2001, 25, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Santos, G.G.; Marchão, R.L.; da Silva, E.M.; da Silveira, P.M.; Becquer, T. Qualidade física do solo sob sistemas de integração lavoura-pecuária. Pesquisa Agropec. Bras. 2011, 46, 1339–1348. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, N.F.; Nobre, F.; de Carvalho, R.C.; Filho, F.R.C.; Teixeira, M.B.; Joaquim, J. Características físico-hídricas de um latossolo sob diffrentes sistemas de manejo. Rev. Bras. Agric. Irrigada 2014, 8, 375–390. [Google Scholar]
LULCC | b | ||||||||
---|---|---|---|---|---|---|---|---|---|
CDO | 0.71 | −4.18 | 1.36 | 16.29 | 2.53 | 0.4813 | 0.1274 | 0.0848 | 0.0425 |
FOR | 0.87 | −5.10 | 1.35 | 14.47 | 2.52 | 0.4619 | 0.1789 | 0.1109 | 0.0680 |
IRR | 1.46 | −4.26 | 1.57 | 3.01 | 2.61 | 0.3991 | 0.1494 | 0.0858 | 0.0636 |
PAST | 1.80 | −5.00 | 1.61 | 5.10 | 2.58 | 0.3762 | 0.1663 | 0.1052 | 0.0611 |
RAG | 1.20 | −5.30 | 1.52 | 6.22 | 2.59 | 0.4108 | 0.1719 | 0.1177 | 0.0542 |
Pedotransfer Function—PTF | Validation | ||||
---|---|---|---|---|---|
y | Equation | R2 | F | p-Value | r |
IRR—Irrigated Agriculture | |||||
3.5824 − 1.2283 − 7.7754 | 0.59 | 8.60 | 0.005 | 0.84 | |
b | −3.7421 − 1.6219 | 0.17 | 2.71 | 0.123 | −0.69 |
−0.8328 + 3.2159 | 0.06 | 1.95 | 0.186 | −0.008 | |
0.86625 − 0.01727 − 0.21859 − 0.85690 | 0.08 | 0.31 | 0.816 | 0.29 | |
0.5624 − 0.1561 − 0.5720 | 0.11 | 0.67 | 0.528 | 0.20 | |
CDO—Cerrado formations | |||||
1.6879 − 0.5922 − 3.6247 | 0.63 | 10.91 | 0.002 | 0.55 | |
b | −6.204 + 3.530 | 0.16 | 2.71 | 0.122 | 0.36 |
1.7913 − 1.2343 | 0.16 | 3.58 | 0.081 | −0.15 | |
0.46082 − 0.18014 | 0.27 | 5.09 | 0.041 | 0.80 | |
0.24049 − 0.10555 | 0.18 | 3.08 | 0.101 | 0.68 | |
PAST—Pasture | |||||
4.4995 − 1.5082 − 5.1395 | 0.51 | 6.33 | 0.013 | 0.93 | |
b | −12.938 + 6.370 + 12.937 | 0.59 | 8.53 | 0.05 | 0.24 |
4.4227 + 1.5955 − 2.7828 | 0.50 | 7.96 | 0.006 | 0.58 | |
0.59324 − 0.14310 + 0.18177 | 0.73 | 15.64 | 4.54 × 10−4 | 0.93 | |
0.17058 − 0.14580 | 0.56 | 16.47 | 0.001 | 0.45 | |
FOR—Forest Formations | |||||
2.5457 − 0.8746 − 5.3052 | 0.53 | 6.19 | 0.016 | 0.98 | |
b | −36.460 + 7.915 + 11.956 + 26.145 | 0.59 | 4.81 | 0.025 | 0.74 |
−0.6224 + 1.2973 + 2.7719 | 0.18 | 2.48 | 0.130 | −0.76 | |
1.42937 − 0.28125 − 0.46640 − 1.00496 | 0.53 | 3.67 | 0.051 | 0.79 | |
1.24529 − 0.21743 − 0.43746 − 0.99032 | 0.68 | 7.30 | 0.007 | 0.84 | |
RAG—Rainfed Agriculture | |||||
11.351 − 4.110 − 12.448 | 0.47 | 5.30 | 0.022 | 0.84 | |
b | −36.157 + 10.086 + 7.275 + 35.835 | 0.86 | 23.03 | 4.80 × 10−5 | 0.73 |
−0.1303 + 1.6849 | 0.21 | 4.82 | 0.047 | −0.28 | |
2.84267 − 0.26601 − 0.97267 −2.40257 | 0.80 | 14.60 | 37.5 × 10−5 | −0.33 | |
1.30028 − 0.20449 − 0.40620 − 1.12476 | 0.76 | 11.76 | 0.001 | 0.42 |
Depth | b | ||||||||
---|---|---|---|---|---|---|---|---|---|
0–5 | 1.46 a | −4.26 a | 1.574 a | 3.00 a | 2.612 a | 0.397 a | 0.169 a | 0.0858 a | 0.0840 a |
15–20 | 0.03 b | −4.16 a | 1.665 b | 3.07 a | 2.662 a | 0.374 a | 0.172 b | 0.0902 a | 0.0818 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dionizio, E.A.; Costa, M.H. Influence of Land Use and Land Cover on Hydraulic and Physical Soil Properties at the Cerrado Agricultural Frontier. Agriculture 2019, 9, 24. https://doi.org/10.3390/agriculture9010024
Dionizio EA, Costa MH. Influence of Land Use and Land Cover on Hydraulic and Physical Soil Properties at the Cerrado Agricultural Frontier. Agriculture. 2019; 9(1):24. https://doi.org/10.3390/agriculture9010024
Chicago/Turabian StyleDionizio, Emily Ane, and Marcos Heil Costa. 2019. "Influence of Land Use and Land Cover on Hydraulic and Physical Soil Properties at the Cerrado Agricultural Frontier" Agriculture 9, no. 1: 24. https://doi.org/10.3390/agriculture9010024
APA StyleDionizio, E. A., & Costa, M. H. (2019). Influence of Land Use and Land Cover on Hydraulic and Physical Soil Properties at the Cerrado Agricultural Frontier. Agriculture, 9(1), 24. https://doi.org/10.3390/agriculture9010024