Fall Detection Based on Data-Adaptive Gaussian Average Filtering Decomposition and Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Dataset
2.1.2. Computing Resources
2.2. Methods
2.2.1. Data-Adaptive Gaussian Average Filtering (DAGAF) Decomposition
2.2.2. Feature Extraction
2.2.3. Classifiers
2.2.4. Performance Metrics
2.2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Falls. Available online: https://www.who.int/news-room/fact-sheets/detail/falls (accessed on 24 September 2024).
- Montero-Odasso, M.; Van Der Velde, N.; Martin, F.C.; Petrovic, M.; Tan, M.P.; Ryg, J.; Aguilar-Navarro, S.; Alexander, N.B.; Becker, C.; Blain, H. World guidelines for falls prevention and management for older adults: A global initiative. Age Ageing 2022, 51, afac205. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Global Report on Falls Prevention in Older Age. Available online: https://www.who.int/publications/i/item/9789241563536 (accessed on 24 September 2024).
- Ganz, D.A.; Latham, N.K. Prevention of falls in community-dwelling older adults. N. Engl. J. Med. 2020, 382, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Mubashir, M.; Shao, L.; Seed, L. A survey on fall detection: Principles and approaches. Neurocomputing 2013, 100, 144–152. [Google Scholar] [CrossRef]
- Islam, M.M.; Tayan, O.; Islam, M.R.; Islam, M.S.; Nooruddin, S.; Kabir, M.N.; Islam, M.R. Deep learning based systems developed for fall detection: A review. IEEE Access 2020, 8, 166117–166137. [Google Scholar] [CrossRef]
- Usmani, S.; Saboor, A.; Haris, M.; Khan, M.A.; Park, H. Latest research trends in fall detection and prevention using machine learning: A systematic review. Sensors 2021, 21, 5134. [Google Scholar] [CrossRef]
- Principi, E.; Droghini, D.; Squartini, S.; Olivetti, P.; Piazza, F. Acoustic cues from the floor: A new approach for fall classification. Expert Syst. Appl. 2016, 60, 51–61. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, D.; Wang, Y.; Ma, J.; Wang, Y.; Li, S. RT-Fall: A real-time and contactless fall detection system with commodity WiFi devices. IEEE Trans. Mob. Comput. 2017, 16, 511–526. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, F.; Wu, C.; Wang, B.; Liu, K.R. DeFall: Environment-independent passive fall detection using WiFi. IEEE Internet Things J. 2021, 9, 8515–8530. [Google Scholar] [CrossRef]
- Frøvik, N.; Malekzai, B.A.; Øvsthus, K. Utilising LiDAR for fall detection. Healthc. Technol. Lett. 2021, 8, 11–17. [Google Scholar] [CrossRef]
- Piñeiro, M.; Araya, D.; Ruete, D.; Taramasco, C. Low-cost LIDAR-based monitoring system for fall detection. IEEE Access 2024, 12, 72051–72061. [Google Scholar] [CrossRef]
- Rezaei, A.; Mascheroni, A.; Stevens, M.C.; Argha, R.; Papandrea, M.; Puiatti, A.; Lovell, N.H. Unobtrusive human fall detection system using mmwave radar and data driven methods. IEEE Sens. J. 2023, 23, 7968–7976. [Google Scholar] [CrossRef]
- Qi, P.; Chiaro, D.; Piccialli, F. FL-FD: Federated learning-based fall detection with multimodal data fusion. Inf. Fusion 2023, 99, 101890. [Google Scholar] [CrossRef]
- Saleh, M.; Abbas, M.; Le Jeannès, R.B. FallAllD: An open dataset of human falls and activities of daily living for classical and deep learning applications. IEEE Sens. J. 2020, 21, 1849–1858. [Google Scholar] [CrossRef]
- Palmerini, L.; Bagalà, F.; Zanetti, A.; Klenk, J.; Becker, C.; Cappello, A. A wavelet-based approach to fall detection. Sensors 2015, 15, 11575–11586. [Google Scholar] [CrossRef] [PubMed]
- Tocco, F.; Solinas, R.; Velluzzi, F.; Massidda, M.; Mattana, D.V.; Fois, A.; Melis, L.; Bertetto, A.M.; Bonisoli, E.; Venturini, S. A mechatronic tool for revealing inverse relationships among heart’s stroke volume and head’s linear acceleration induced by moored boats rolling in elderly sailors with unchamged body sizes: A non-drug anti-hypertensive advantage? Int. J. Mech. Control 2024, 25, 133–142. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Erfianto, B.; Rizal, A.; Hadiyoso, S. Empirical mode decomposition and Hilbert spectrum for abnormality detection in normal and abnormal walking transitions. Int. J. Environ. Res. Public Health 2023, 20, 3879. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Silva, C.A.; García− Bermúdez, R.; Casilari, E. Features selection for fall detection systems based on machine learning and accelerometer signals. In Proceedings of the Advances in Computational Intelligence: 16th International Work-Conference on Artificial Neural Networks, IWANN 2021, Virtual Event, 16–18 June 2021; pp. 380–391. [Google Scholar]
- Šeketa, G.; Pavlaković, L.; Džaja, D.; Lacković, I.; Magjarević, R. Event-centered data segmentation in accelerometer-based fall detection algorithms. Sensors 2021, 21, 4335. [Google Scholar] [CrossRef]
- Santoyo-Ramón, J.A.; Casilari, E.; Cano-García, J.M. A study of one-class classification algorithms for wearable fall sensors. Biosensors 2021, 11, 284. [Google Scholar] [CrossRef]
- Liu, K.-C.; Hung, K.-H.; Hsieh, C.-Y.; Huang, H.-Y.; Chan, C.-T.; Tsao, Y. Deep-learning-based signal enhancement of low-resolution accelerometer for fall detection systems. IEEE Trans. Cogn. Dev. Syst. 2021, 14, 1270–1281. [Google Scholar] [CrossRef]
- Lin, Y.-D.; Tan, Y.K.; Tian, B. A novel approach for decomposition of biomedical signals in different applications based on data-adaptive Gaussian average filtering. Biomed. Signal Process. Control 2022, 71, 103104. [Google Scholar] [CrossRef]
- Saleh, M.; Abbas, M.; Le Jeannès, R.B. FallAllD: An Open Dataset of Human Falls and Activities of Daily Living for Classical and Deep Learning Applications. Available online: https://ieee-dataport.org/open-access/fallalld-comprehensive-dataset-human-falls-and-activities-daily-living (accessed on 24 September 2024).
- Özdemir, A.T. An analysis on sensor locations of the human body for wearable fall detection devices: Principles and practice. Sensors 2016, 16, 1161. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.-C.; Hsieh, C.-Y.; Huang, H.-Y.; Hsu, S.J.-P.; Chan, C.-T. An analysis of segmentation approaches and window sizes in wearable-based critical fall detection systems with machine learning models. IEEE Sens. J. 2020, 20, 3303–3313. [Google Scholar] [CrossRef]
- Liu, K.-C.; Lin, Y.-D. DAGAF. Available online: https://github.com/t22302856/DAGAF (accessed on 3 August 2024).
- Feng, Z.; Zhang, D.; Zuo, M.J. Adaptive mode decomposition methods and their applications in signal analysis for machinery fault diagnosis: A review with examples. IEEE Access 2017, 5, 24301–24331. [Google Scholar] [CrossRef]
- Harris, F.J. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 1978, 66, 51–83. [Google Scholar] [CrossRef]
- Cicone, A.; Liu, J.; Zhou, H. Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis. Appl. Comput. Harmon. Anal. 2016, 41, 384–411. [Google Scholar] [CrossRef]
- Rato, R.; Ortigueira, M.D.; Batista, A. On the HHT, its problems, and some solutions. Mech. Syst. Signal Process. 2008, 22, 1374–1394. [Google Scholar] [CrossRef]
- Hsieh, C.-Y.; Liu, K.-C.; Huang, C.-N.; Chu, W.-C.; Chan, C.-T. Novel hierarchical fall detection algorithm using a multiphase fall model. Sensors 2017, 17, 307. [Google Scholar] [CrossRef]
- Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 2021, 17, 168–192. [Google Scholar] [CrossRef]
Signals | SVM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
acc | sen | spe | pre | acc | sen | spe | pre | |||
raw | 95.80 | 90.78 | 97.82 | 94.35 | 92.53 | 94.51 | 91.02 | 95.92 | 89.95 | 90.48 |
88.69 | 76.83 | 93.45 | 82.49 | 79.56 | 87.47 | 78.96 | 90.88 | 77.67 | 78.31 | |
92.68 | 85.58 | 95.54 | 88.51 | 87.02 | 91.46 | 83.92 | 94.49 | 85.96 | 84.93 | |
90.65 | 82.98 | 93.73 | 84.17 | 83.57 | 90.72 | 84.16 | 93.35 | 83.57 | 83.86 | |
Res | 93.16 | 86.29 | 95.92 | 89.46 | 87.85 | 92.62 | 86.29 | 95.16 | 87.74 | 87.01 |
91.46 | 82.74 | 94.97 | 86.85 | 84.75 | 91.26 | 84.16 | 94.11 | 85.17 | 84.66 | |
92.28 | 86.76 | 94.49 | 86.35 | 86.55 | 92.01 | 86.05 | 94.40 | 86.05 | 86.05 | |
90.38 | 79.43 | 94.78 | 89.53 | 82.55 | 90.79 | 82.74 | 94.02 | 84.75 | 83.73 | |
95.46 | 90.07 | 97.63 | 93.84 | 91.92 | 94.51 | 88.89 | 96.58 | 90.95 | 89.91 | |
95.26 | 90.07 | 97.34 | 93.15 | 91.58 | 94.51 | 89.13 | 96.68 | 91.50 | 90.30 | |
94.99 | 88.65 | 97.53 | 93.52 | 91.02 | 94.24 | 88.65 | 96.39 | 91.02 | 89.82 | |
92.07 | 83.92 | 95.35 | 87.87 | 85.85 | 91.73 | 84.87 | 94.49 | 89.09 | 86.93 | |
95.46 | 90.07 | 97.63 | 93.84 | 91.92 | 94.11 | 89.60 | 95.92 | 89.81 | 89.70 | |
95.80 | 91.49 | 97.72 | 94.72 | 93.08 | 94.65 | 90.31 | 96.77 | 91.61 | 90.96 | |
96.21 | 91.02 | 98.29 | 95.53 | 93.22 | 95.39 | 91.73 | 96.87 | 92.16 | 91.94 | |
96.34 | 92.91 | 98.29 | 95.56 | 94.22 | 95.53 | 91.02 | 96.99 | 91.71 | 91.36 |
Feature | ADL | Fall | ||||||
---|---|---|---|---|---|---|---|---|
raw | comb 1 | raw + Res | comb 2 | raw | comb 1 | raw + Res | comb 2 | |
3504.29 ± 1042.75 | 3503.85 ± 1043.21 | 700.78 ± 2085.44 * | 3504.12 ± 1042.51 | 1948.93 ± 959.09 † | 1950.05 ± 957.52 † | 3899.96 ± 1918.00 *† | 1949.59 ± 960.26 † | |
−219.14 ± 1138.26 | −218.40 ± 1137.37 | −437.49 ± 2275.70 * | −219.14 ± 1138.36 | 59.93 ± 1347.92 † | 60.82 ± 1349.06 † | 120.77 ± 2697.32 † | 59.91 ± 1348.27 † | |
323.37 ± 893.38 | 323.27 ± 891.83 | 646.44 ± 1785.05 * | 323.22 ± 893.32 | −193.63 ± 1329.81 † | −193.98 ± 1329.18 † | −387.45 ± 2658.92 *† | −193.50 ± 1329.75 † | |
4269.45 ± 341.78 | 4200.36 ± 312.91 * | 8205.06 ± 205.63 * | 4151.02 ± 151.58 * | 4416.80 ± 202.35 † | 4213.22 ± 202.15 *† | 8233.10 ± 230.63 *† | 4222.65 ± 99.88 *† | |
1709.89 ± 869.67 | 1607.53 ± 861.58 * | 2977.65 ± 1783.87 * | 1565.76 ± 883.33 * | 2805.04 ± 651.61 † | 2643.61 ± 629.21 *† | 5097.20 ± 1314.20 *† | 2632.97 ± 665.63 *† | |
4036.98 ± 461.99 | 3989.90 ± 464.76 * | 7816.40 ± 720.46 * | 3940.04 ± 364.36 * | 3679.13 ± 560.79 † | 3516.78 ± 563.90 *† | 6869.80 ± 1088.86 *† | 3515.36 ± 544.05 *† | |
1353.28 ± 1145.44 | 1190.55 ± 1092.13 * | 1533.13 ± 1204.68 * | 910.87 ± 729.31 * | 2491.16 ± 788.09 † | 2229.85 ± 746.97 *† | 3957.79 ± 1256.71 *† | 2111.31 ± 658.33 *† | |
1005.24 ± 628.32 | 882.19 ± 587.25 * | 1318.10 ± 937.82 * | 770.77 ± 531.67 * | 2077.83 ± 627.27 † | 1848.58 ± 614.00 *† | 3167.59 ± 1208.14 *† | 1703.18 ± 618.32 *† | |
810.28 ± 514.33 | 660.27 ± 481.05 * | 1118.76 ± 825.78 * | 664.44 ± 461.63 * | 2045.12 ± 678.39 † | 1802.99 ± 632.38 *† | 3184.20 ± 1225.53 *† | 1742.81 ± 633.91 *† | |
1259.15 ± 1070.41 | 1095.81 ± 1029.02 * | 1385.21 ± 1216.81 * | 835.04 ± 740.38 * | 2103.03 ± 725.14 † | 1735.41 ± 702.96 *† | 2286.82 ± 782.81 *† | 1370.20 ± 468.99 * | |
804.21 ± 492.36 | 696.62 ± 465.68 * | 1033.86 ± 630.42 * | 621.29 ± 396.20 * | 2094.33 ± 534.76 † | 1850.64 ± 499.75 *† | 3042.34 ± 792.11 *† | 1665.32 ± 432.32 *† | |
1286.82 ± 1043.17 | 1134.79 ± 1006.16 * | 1478.81 ± 1196.52 * | 878.19 ± 718.55 * | 1936.37 ± 678.10 † | 1651.49 ± 663.08 *† | 2407.55 ± 828.55 *† | 1359.60 ± 448.53 *† | |
(3142.16 ± 5580.57) × 103 | (2609.02 ± 5171.44) × 103 * | (3800.37 ± 5999.48) × 103 * | (1361.08 ± 2415.73) × 103 * | (6825.47 ± 4240.33) × 103 † | (5528.90 ± 3717.09) × 103 *† | (17,239.72 ± 9937.40) × 103 *† | (4890.00 ± 2750.42) × 103 *† | |
(1404.93 ± 2008.09) × 103 | (1122.79 ± 1697.03) × 103 * | (2616.06 ± 4355.61) × 103 * | (876.49 ± 1354.46) × 103 * | (4709.92 ± 2800.99) × 103 † | (3793.34 ± 2461.39) × 103 *† | (11,489.80 ± 8806.44) × 103 *† | (3282.25 ± 2377.06) × 103 *† | |
(920.84 ± 1371.21) × 103 | (667.14 ± 1168.61) × 103 * | (1932.88 ± 3832.36) × 103 * | (654.38 ± 1113.51) × 103 * | (4641.64 ± 3008.49) × 103 † | (3649.73 ± 2513.84) × 103 *† | (11,637.50 ± 9060.17) × 103 *† | (3438.28 ± 2531.63) × 103 *† | |
(2730.16 ± 4692.12) × 103 | (2258.67 ± 4368.69) × 103 * | (3398.01 ± 6160.73) × 103 * | (1244.92 ± 2416.51) × 103 * | (4947.31 ± 3576.56) × 103 † | (3504.61 ± 3139.28) × 103 *† | (5840.89 ± 4349.90) × 103 *† | (2096.87 ± 1486.17) × 103 *† | |
(888.95 ± 1291.45) × 103 | (701.93 ± 1090.62) × 103 * | (1465.92 ± 1925.45) × 103 * | (542.82 ± 771.32) × 103 * | (4671.50 ± 2307.95) × 103 † | (3674.04 ± 1900.01) × 103 *† | (9881.77 ± 4651.09) × 103 *† | (2959.73 ± 1428.19) × 103 *† | |
(2743.08 ± 4598.80) × 103 | (2299.15 ± 4313.69) × 103 * | (3617.18 ± 6058.64) × 103 * | (1287.04 ± 2349.72) × 103 * | (4208.28 ± 3305.33) × 103 † | (3166.06 ± 3004.31) × 103 *† | (6476.22 ± 4666.46) × 103 *† | (2049.22 ± 1411.53) × 103 *† | |
9047.06 ± 5639.30 | 8557.67 ± 5374.96 * | 12,744.19 ± 6011.98 * | 7536.47 ± 4406.26 * | 12,221.09 ± 5692.71 † | 11,033.52 ± 5290.21 *† | 15,177.50 ± 6026.64 *† | 9340.90 ± 4308.40 *† | |
2831.59 ± 2968.11 | 2583.76 ± 2829.12 * | 3026.86 ± 3792.53 * | 2115.59 ± 2550.40 * | 9890.79 ± 6781.39 † | 9066.59 ± 6321.60 *† | 11,098.97 ± 7896.69 *† | 7228.08 ± 5337.65 *† | |
2793.95 ± 2248.62 | 2521.34 ± 2203.06 * | 3523.89 ± 2833.92 * | 2275.51 ± 1928.96 * | 8717.96 ± 7369.19 † | 8136.75 ± 6675.19 *† | 9452.84 ± 8361.46 *† | 6534.16 ± 5463.11 *† | |
10,340.01 ± 5842.69 | 9703.58 ± 5552.35 * | 14,352.34 ± 5802.07 * | 8547.32 ± 4562.59 * | 22,998.50 ± 7458.42 † | 20,639.10 ± 6975.41 *† | 27,101.05 ± 7485.76 *† | 17,059.38 ± 5690.31 *† | |
5484.36 ± 3858.98 | 5017.62 ± 3618.10 * | 7033.17 ± 4164.83 * | 4405.15 ± 3109.22 * | 20,024.90 ± 7858.64 † | 17,908.54 ± 7230.11 *† | 23,636.80 ± 8400.44 *† | 14,771.54 ± 5950.01 *† | |
9965.43 ± 5647.65 | 9378.83 ± 5367.82 * | 13,910.36 ± 5659.37 * | 8247.72 ± 4377.37 * | 18,456.92 ± 6439.53 † | 16,670.26 ± 6179.58 *† | 21,733.75 ± 6572.93 *† | 13,679.53 ± 5030.26 *† | |
381.84 ± 2415.20 | 569.49 ± 2295.26 | 3573.95 ± 3219.18 * | 1201.07 ± 2034.64 * | −6454.05 ± 4912.55 † | −5651.08 ± 4550.60 *† | −6421.52 ± 5833.33 † | −4546.28 ± 3824.39 *† | |
−3517.72 ± 3039.80 | −3211.51 ± 2893.10 * | −4162.69 ± 3696.03 * | −2692.58 ± 2454.99 * | −9086.35 ± 7007.68 † | −8393.14 ± 6355.89 *† | −9988.98 ± 8463.90 *† | −6465.27 ± 5418.55 *† | |
−2412.30 ± 3072.41 | −2104.12 ± 2895.14 * | −2510.63 ± 3661.93 | −1816.97 ± 2613.41 * | −10,726.19 ± 8518.68 † | −9598.53 ± 7598.53 *† | −12,439.80 ± 10185.63 *† | −8098.34 ± 6551.50 *† | |
1870.10 ± 1100.73 | 1917.83 ± 1115.63 | 5175.05 ± 1982.90 * | 2328.19 ± 1113.32 * | 1117.59 ± 668.78 † | 1176.69 ± 647.77 *† | 3535.62 ± 1463.73 *† | 1618.60 ± 726.18 *† | |
388.88 ± 616.35 | 433.36 ± 645.47 * | 1093.97 ± 1459.72 * | 504.67 ± 709.95 * | 214.17 ± 287.13 | 255.92 ± 319.72 * | 758.07 ± 939.51 * | 345.71 ± 465.32 * | |
1558.98 ± 1131.97 | 1609.05 ± 1156.71 | 4623.38 ± 2159.88 * | 2004.20 ± 1183.65 * | 477.28 ± 484.51 † | 487.23 ± 461.89 † | 1789.39 ± 1491.02 *† | 790.09 ± 690.67 *† | |
8665.22 ± 7357.40 | 7988.18 ± 6977.40 * | 9170.25 ± 7444.89 * | 6335.40 ± 5684.58 * | 18,675.13 ± 7402.31 † | 16,684.60 ± 7019.46 *† | 21,599.02 ± 7574.02 *† | 13,887.18 ± 5690.56 *† | |
6349.31 ± 4774.01 | 5795.27 ± 4613.56 * | 7189.56 ± 4973.51 * | 4808.17 ± 3916.64 * | 18,977.14 ± 8026.56 † | 17,459.73 ± 7952.71 *† | 21,087.95 ± 7951.05 *† | 13,693.35 ± 6403.44 *† | |
5206.25 ± 4397.04 | 4625.46 ± 4315.33 * | 6034.52 ± 4597.18 * | 4092.47 ± 3771.19 * | 19,444.15 ± 9267.60 † | 17,735.29 ± 8949.08 *† | 21,892.64 ± 9417.59 *† | 14,632.50 ± 7350.06 *† | |
8469.92 ± 6688.76 | 7785.75 ± 6423.03 * | 9177.29 ± 7523.98 * | 6219.13 ± 5460.71 * | 21,880.91 ± 7606.79 † | 19,462.42 ± 7194.53 *† | 23,565.43 ± 8009.41 *† | 15,440.77 ± 5971.52 *† | |
5095.48 ± 3936.14 | 4584.26 ± 3714.41 * | 5939.21 ± 4208.27 * | 3900.48 ± 3209.34 * | 19,810.73 ± 7867.74 † | 17,652.62 ± 7245.98 *† | 22,878.74 ± 8400.39 *† | 14,425.83 ± 5965.70 *† | |
8406.46 ± 6456.81 | 7769.78 ± 6194.49 * | 9286.98 ± 7331.84 * | 6243.52 ± 5257.74 * | 17,979.64 ± 6520.75 † | 16,183.03 ± 6301.68 *† | 19,944.36 ± 6891.24 *† | 12,889.45 ± 5216.05 *† | |
6.62 ± 6.10 | 7.54 ± 7.50 * | 5.63 ± 4.81 * | 6.87 ± 5.95 * | 7.89 ± 10.20 | 7.61 ± 10.50 *† | 4.07 ± 6.28 *† | 5.72 ± 8.43 *† | |
5.38 ± 6.56 | 5.95 ± 8.29 * | 4.56 ± 5.06 * | 5.66 ± 7.99 | 13.87 ± 14.08 † | 14.61 ± 17.11 † | 7.13 ± 8.65 *† | 10.60 ± 14.87 *† | |
5.37 ± 7.09 | 6.51 ± 10.31 * | 4.22 ± 4.02 * | 5.02 ± 6.93 * | 16.23 ± 16.28 † | 16.32 ± 17.65 *† | 7.41 ± 8.19 *† | 10.12 ± 11.02 *† | |
9.87 ± 11.68 | 11.15 ± 13.42 * | 8.09 ± 7.82 * | 10.17 ± 13.12 * | 37.50 ± 25.70 † | 45.43 ± 31.05 *† | 30.93 ± 22.85 *† | 38.13 ± 28.53 † | |
7.40 ± 9.43 | 8.31 ± 10.74 * | 5.57 ± 5.50 * | 7.25 ± 9.96 * | 24.71 ± 19.25 † | 24.10 ± 21.57 *† | 10.96 ± 11.68 *† | 16.45 ± 17.01 *† | |
8.29 ± 8.70 | 9.28 ± 10.69 * | 6.62 ± 6.11 * | 8.18 ± 8.58 * | 24.50 ± 21.29 † | 27.12 ± 23.86 *† | 15.24 ± 15.64 *† | 21.19 ± 20.35 *† | |
0.75 ± 1.02 | 0.75 ± 1.06 | 0.63 ± 0.92 * | 0.79 ± 1.02 * | 0.27 ± 1.36 † | 0.21 ± 1.28 *† | −0.03 ± 0.94 *† | 0.09 ± 1.09 *† | |
−0.18 ± 0.93 | −0.16 ± 0.94 * | −0.16 ± 0.85 * | −0.16 ± 0.97 * | 0.23 ± 2.14 † | 0.24 ± 2.07 † | 0.19 ± 1.38 † | 0.22 ± 1.67 † | |
−0.07 ± 0.99 | −0.10 ± 1.05 * | −0.05 ± 0.82 * | −0.05 ± 0.89 * | −0.23 ± 2.54 † | −0.16 ± 2.46 *† | −0.15 ± 1.49 *† | −0.19 ± 1.72 † | |
1.42 ± 1.37 | 1.38 ± 1.47 | 1.01 ± 1.17 * | 1.35 ± 1.35 | 4.55 ± 2.01 † | 5.01 ± 2.22 *† | 3.70 ± 2.00 *† | 4.27 ± 2.10 *† | |
1.24 ± 1.17 | 1.29 ± 1.28 * | 0.83 ± 1.00 * | 1.07 ± 1.27 * | 3.25 ± 1.68 † | 3.02 ± 1.78 *† | 1.62 ± 1.23 *† | 2.18 ± 1.52 *† | |
1.19 ± 1.21 | 1.17 ± 1.29 | 0.95 ± 1.00 * | 1.11 ± 1.14 | 3.14 ± 1.94 † | 3.15 ± 2.13 † | 1.77 ± 1.78 *† | 2.42 ± 1.97 *† | |
−0.03 ± 0.38 | −0.02 ± 0.39 * | −0.02 ± 0.41 * | −0.02 ± 0.41 * | 0.05 ± 0.44 † | 0.04 ± 0.49 *† | 0.04 ± 0.60 | 0.04 ± 0.55 † | |
−0.01 ± 0.37 | −0.02 ± 0.38 * | −0.04 ± 0.41 * | −0.03 ± 0.38 * | 0.00 ± 0.43 | 0.02 ± 0.49 * | −0.01 ± 0.59 | 0.01 ± 0.54 | |
0.07 ± 0.45 | 0.07 ± 0.46 | 0.05 ± 0.48 * | 0.05 ± 0.47 * | 0.05 ± 0.43 | 0.06 ± 0.46 | 0.03 ± 0.53 * | 0.04 ± 0.49 * | |
0.50 ± 0.26 | 0.46 ± 0.27 * | 0.41 ± 0.30 * | 0.43 ± 0.29 * | 0.76 ± 0.14 † | 0.72 ± 0.15 *† | 0.63 ± 0.18 *† | 0.67 ± 0.16 *† | |
0.93 ± 0.18 | 0.92 ± 0.18 * | 0.91 ± 0.21 * | 0.90 ± 0.21 * | 0.84 ± 0.15 † | 0.81 ± 0.19 *† | 0.73 ± 0.24 *† | 0.76 ± 0.22 *† | |
0.35 ± 0.35 | 0.30 ± 0.37 * | 0.23 ± 0.40 * | 0.24 ± 0.39 * | 0.46 ± 0.29 † | 0.36 ± 0.34 *† | 0.16 ± 0.39 *† | 0.24 ± 0.35 * |
Signals | Metrics | Segment for Analysis | ||||
---|---|---|---|---|---|---|
Whole | 1.5~3 s | 0.5~2.5 s | 0.5~3 s | 0~1.8 s | ||
raw | acc | 95.80 | 94.31 | 94.72 | 95.05 | 82.52 |
95.80 | 94.92 | 94.85 | 95.46 | 86.59 | ||
96.21 | 95.33 | 95.12 | 95.60 | 87.53 | ||
96.34 | 94.99 | 95.05 | 95.66 | 87.47 | ||
raw | sen | 90.78 | 88.42 | 89.60 | 89.83 | 52.01 |
91.49 | 89.60 | 89.83 | 90.31 | 65.01 | ||
91.02 | 90.07 | 89.83 | 90.31 | 68.79 | ||
92.91 | 90.07 | 89.95 | 90.38 | 65.48 | ||
raw | spe | 97.82 | 96.68 | 96.77 | 96.96 | 94.78 |
97.72 | 96.87 | 97.53 | 97.53 | 95.06 | ||
98.29 | 97.15 | 97.72 | 98.10 | 95.06 | ||
98.29 | 97.15 | 97.91 | 98.20 | 96.49 | ||
raw | pre | 94.35 | 91.44 | 91.77 | 92.27 | 80.00 |
94.72 | 92.03 | 93.53 | 94.06 | 84.19 | ||
95.53 | 92.54 | 93.98 | 94.97 | 84.84 | ||
95.56 | 92.67 | 94.37 | 95.21 | 88.14 | ||
raw | 92.53 | 89.90 | 90.67 | 91.03 | 63.04 | |
93.08 | 90.80 | 91.64 | 92.15 | 73.37 | ||
93.32 | 91.28 | 91.86 | 92.58 | 75.98 | ||
94.22 | 91.35 | 92.11 | 92.73 | 75.14 |
Method | Signals | Classifier | Metrics | ||||
---|---|---|---|---|---|---|---|
acc | sen | spe | pre | ||||
Saleh et al. [15] | raw | SAE | 93.46 | N/A | N/A | N/A | N/A |
Šeketa et al. [22] | raw | SVM | N/A | N/A | N/A | N/A | 89.50 |
Ramón et al. [23] | raw | OC-NN | N/A | 92.90 | 90.62 | N/A | N/A |
Silva et al. [21] | raw | SVM | N/A | 88.57 | 95.54 | N/A | N/A |
Liu et al. [24] | enhanced triaxial acceleration | SVM | 95.60 | 90.31 | 97.72 | 94.09 | 92.16 |
Proposed | SVM | 95.80 | 91.49 | 97.72 | 94.72 | 93.08 | |
SVM | 96.21 | 91.02 | 98.29 | 95.53 | 93.22 | ||
SVM | 96.34 | 92.91 | 98.29 | 95.56 | 94.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-D.; Lu, C.-J.; Sun, M.-H.; Hung, J.-H. Fall Detection Based on Data-Adaptive Gaussian Average Filtering Decomposition and Machine Learning. Information 2024, 15, 606. https://doi.org/10.3390/info15100606
Lin Y-D, Lu C-J, Sun M-H, Hung J-H. Fall Detection Based on Data-Adaptive Gaussian Average Filtering Decomposition and Machine Learning. Information. 2024; 15(10):606. https://doi.org/10.3390/info15100606
Chicago/Turabian StyleLin, Yue-Der, Chi-Jen Lu, Ming-Hsuan Sun, and Ju-Hsuan Hung. 2024. "Fall Detection Based on Data-Adaptive Gaussian Average Filtering Decomposition and Machine Learning" Information 15, no. 10: 606. https://doi.org/10.3390/info15100606
APA StyleLin, Y. -D., Lu, C. -J., Sun, M. -H., & Hung, J. -H. (2024). Fall Detection Based on Data-Adaptive Gaussian Average Filtering Decomposition and Machine Learning. Information, 15(10), 606. https://doi.org/10.3390/info15100606