Microfilm Coatings: A Biomaterial-Based Strategy for Modulating Femoral Deflection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Acquisition
2.2. Model Creation and Mesh Generation
2.3. Boundary Conditions for Femur Simulation
2.4. Metal Coating Simulation
2.5. Deflection and Maximum Stress Formulae
2.6. Validation of the Finite Element Simulation
2.7. Linear Section of the Load–Displacement Curve
3. Results and Discussion
3.1. Coating Thickness of 50 µm
Material Coating | Vertical Deformation [mm] | Lateral Deformation [mm] | Decrease in Lateral Deformation % |
---|---|---|---|
Stainless Steel | 0.9062 | 0.9628 | 0.4344 |
Titanium | 0.9067 | 0.9648 | 0.2275 |
Pure Gold | 0.9069 | 0.9652 | 0.1758 |
No Coating | 0.9073 | 0.9669 | - |
3.2. Coating Thickness of 75 µm
Material Coating | Vertical Deformation [mm] | Lateral Deformation [mm] | Decrease in Lateral Deformation % |
---|---|---|---|
Stainless Steel | 0.9056 | 0.9611 | 0.6101 |
Titanium | 0.9065 | 0.9638 | 0.3309 |
Pure Gold | 0.9067 | 0.9644 | 0.2585 |
No Coating | 0.9073 | 0.9669 | - |
3.3. Coating Thickness of 100 μm
Material Coating | Vertical Deformation [mm] | Lateral Deformation [mm] | Decrease in Lateral Deformation % |
---|---|---|---|
Stainless Steel | 0.9051 | 0.9596 | 0.7653 |
Titanium | 0.9062 | 0.9629 | 0.4240 |
Pure Gold | 0.9065 | 0.9637 | 0.3309 |
No Coating | 0.9073 | 0.9669 | - |
4. Discussion
5. Conclusions
- New biomaterials: biocomposites such as hydroxyapatite or metal alloys could be used. Researchers can explore and discover new human tissue-compatible materials to reduce femoral head loading and prevent fractures.
- Health conditions: researchers should simulate different health conditions that may be potential risk factors and compromise bone continuity, such as obesity, osteopenia, or osteoporosis.
- Activities of daily living: researchers should analyze the femur under ambient conditions such as walking, running, and jumping.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papini, M.; Zdero, R.; Schemitsch, E.H.; Zalzal, P. The Biomechanics of Human Femurs in Axial and Torsional Loading: Comparison of Finite Element Analysis, Human Cadaveric Femurs, and Synthetic Femurs. J. Biomech. Eng. 2007, 129, 12. [Google Scholar] [CrossRef] [PubMed]
- Mosquera, M.T.; Maurel, D.L.; Pavón, S.; Arregui, A.; Moreno, C.; Vázquez, J. Incidencia y factores de riesgo de la fractura de fémur proximal por osteoporosis. Rev. Panam. De Salud Pública 1998, 3, 211–219. [Google Scholar] [CrossRef]
- Melton, L.J., III; Thamer, M.; Ray, N.F.; Chan, J.K.; Chesnut, C.H., III; Einhorn, T.A.; Johnston, C.C.; Raisz, L.G.; Silverman, S.L.; Siris, E.S. Fractures attributable to osteoporosis:b Report from the National Osteoporosis Foundation Journal of bone and mineral research. J. Bone Miner. Res. 1997, 12, 16–23. [Google Scholar] [CrossRef]
- Ardila, E.; Guzmán, M.; Cristancho, P.; Méndez, L.; Puig, Á.; Medina, F.; Salazar, A.; Uribe, O.; Velásquez, J.F.; Palacio, C.A.; et al. Características de las fracturas de cadera: A propósito del análisis de historias clínicas en tres hospitales universitarios colombianos. Rev. Metab. Óseo. Min. 2004, 2, 155–160. [Google Scholar]
- Finsen, V.; Benum, P. Past fractures indicate increased risk of hip fracture. Acta Orthop. Scand. 1986, 57, 337–339. [Google Scholar] [CrossRef] [PubMed]
- Nordin, B.E.; Peacock, M.; Aaron, J.; Crilly, R.G.; Heyburn, P.J.; Horsman, A.; Marshall, D. Osteoporosis and osteomalacia. Clin. Endocrinol. Metab. 1980, 9, 177–205. [Google Scholar] [CrossRef]
- Mazess, R.B. On ageing bone loss. Clin. Orthop. 1982, 165, 239–252. [Google Scholar] [CrossRef]
- Cummings, S.R. Are patients with hip fractures more osteoporotic? Am. J. Med. 1985, 78, 487–494. [Google Scholar] [CrossRef]
- Faulkner, K.G.; Cummings, S.R.; Black, D.; Palermo, L.; Gluer, C.C.; Genant, H.K. Simple measurement of femoral geometry predicts hip fracture: The study of osteoporotic fractures. J. Bone Miner. Res. 1993, 8, 1211–1217. [Google Scholar] [CrossRef]
- López-Gómez, J.J.; Castrillón, J.L.; de Luis Román, D.A. Influencia de la obesidad sobre el metabolismo óseo. Endocrinol. Y Nutr. 2016, 63, 551–559. [Google Scholar] [CrossRef]
- Rico-Rosillo, M.G.; Vega-Robledo, G.B. Hueso: Alteraciones relacionadas con obesidad. Rev. De La Fac. De Med. 2021, 64, 7–16. [Google Scholar] [CrossRef]
- Giner, M.; Montoya, M.J.; Miranda, C.; Vázquez, M.A.; Miranda, M.J.; Pérez-Cano, R. Influencia de la obesidad sobre la microarquitectura y las propiedades biomecánicas en pacientes con fractura de cadera. Rev. De Osteoporos. Y Metab. Miner. 2017, 9, 20–27. [Google Scholar] [CrossRef]
- Valles, J.F.J.; Malacara, M.; Mont Landerreche, G.G.; Suárez Ahedo, C.E.; Cárdenas Elizondo, J.L. Tratamiento quirúrgico de las fracturas de cadera. Acta Ortop. Mex. 2010, 24, 242–247. [Google Scholar]
- Riggs, B.L.; Melton, L.J. The worldwide problem of osteoporosis: Insights afforded by epidemiology. Bone 1995, 17, 505S–511S. [Google Scholar] [CrossRef]
- Rüedi, T.P.; Murphy, W.M. AO Principles of Fracture Management; Davos Platz [Switzerland]: Thieme; AO Pub: Stuttgart, Germany; New York, NY, USA, 2007. [Google Scholar]
- Rueda, G.; Tovar, J.L.; Hernández, S.; Quintero, D.; Beltrán, C.A. Características de las fracturas de fémur proximal. Repert. De Med. Y Cir. 2017, 26, 213–218. [Google Scholar] [CrossRef]
- Díaz Martínez, J.M.; López-Donaire, P.; Molina-Mercado, P.; Peláez-Panadero, M.; Torres-Aguilar, J.C.; Pancorbo-Hidalgo, P.L. Úlceras por presión en el postoperatorio de intervenciones quirúrgicas de cadera o de rodilla. Gerokomos 2009, 20, 84–91. [Google Scholar] [CrossRef]
- Mosquera, C.W.; Rueda, G.; Cabezas, C.A.; Tovar, J.L.; Rodríguez, H.A. Complicaciones postoperatorias tempranas en reemplazo primario de cadera por artrosis entre 2012–2016. Repert. De Med. Y Cirugía 2017, 26, 152–157. [Google Scholar] [CrossRef]
- Douketis, J.D.; Eikelboom, J.W.; Quinlan, D.J.; Willan, A.R.; Crowther, M.A. Short-duration prophylaxis against venous thromboembolism after total hip or knee replacement: A meta-analysis of prospective studies investigating symptomatic outcomes. Arch. Intern. Med. 2002, 162, 1465–1471. [Google Scholar] [CrossRef]
- Sauri-Arce, J.C.A.; Azcona-Cervera, R. Fracturas periprotésicas de cadera. Acta Ortopédica Mex. 2014, 28, 77–81. [Google Scholar]
- Berry, D.J. Epidemiology: Hip and knee. Orthop. Clin. N. Am. 1999, 30, 183–190. [Google Scholar] [CrossRef]
- Poelert, S.; Valstar, E.; Weinans, H.; Zadpoor, A.A. Patient-specific finite element modeling of bones. Proc. Inst. Mech. Eng. [H] 2013, 227, 464–478. [Google Scholar] [CrossRef] [PubMed]
- Lotz, J.C. Stress distributions within the proximal femur during gait and falls: Implications for osteoporotic fractures. Osteoporos. Int. 1995, 5, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Yang, P.; Xu, J.; Wei, Q.; Zhou, G.; He, W.; Zhang, Q. Finite Element analysis of different internal fixation methods for the treatment of Pauwels type III femoral neck fracture. Biomed. Farm. 2019, 112, 108658. [Google Scholar]
- Yadav, D.; Garg, R.K. Comparative Analysis of Mechanical Behavior of Femur Bone of Different Age and Sex Using FEA. En Advances in Mechanical Engineering and Technology: Proceedings of 6th International Conference on Advanced Production and Industrial Engineering (ICAPIE)-2021; Springer: Singapore, 2022; pp. 27–35. [Google Scholar]
- Layrolle, P. 1.16 Calcium Phosphate Coatings. In Comprehensive Biomaterials II; Elsevier: Amsterdam, The Netherlands, 2017; pp. 360–367. [Google Scholar] [CrossRef]
- Werner, B.C.; Evans, C.L.; Carothers, J.T.; Browne, J.A. Primary total knee arthroplasty in super-obese patients: Dramatically higher postoperative complication rates even compared to revision surgery. J. Arthroplast. 2015, 30, 849–853. [Google Scholar] [CrossRef] [PubMed]
- Pierre, C.; Bertrand, G.; Rey, C.; Benhamou, O.; Combes, C. Calcium phosphate coatings elaborated by the soaking process on titanium dental implants: Surface preparation, processing and physical–chemical characterization. Dent. Mater. 2019, 35, e25–e35. [Google Scholar] [CrossRef]
- León, B. Thin Calcium Phosphate Coatings for Medical Implants; Jansen, J., Ed.; Springer: New York, NY, USA, 2009; Volume 309. [Google Scholar]
- Bohara, S.; Suthakorn, J. Surface coating of orthopedic implant to enhance the osseointegration and reduction of antibacterial colonization: A review. Biomater. Res. 2022, 26, 26. [Google Scholar] [CrossRef]
- Vogel, D.; Wehmeyer, M.; Kebbach, M.; Heyer, H.; Bader, R. Stress and strain distribution in femoral heads for hip resurfacing arthroplasty with different materials: A finite element analysis. J. Mech. Behav. Biomed. Mater. 2021, 113, 104115. [Google Scholar] [CrossRef] [PubMed]
- Filip, N.; Radu, I.; Veliceasa, B.; Filip, C.; Pertea, M.; Clim, A.; Pinzau, A.C.; Drochioi, I.C.; Hilitanu, R.L.; Serban, I.L. Biomaterials in Orthopedic Devices: Current Issues and Future Perspectives. Coatings 2022, 12, 1544. [Google Scholar] [CrossRef]
- Gazelakis, E.; Judge, R.B.; Palamara, J.E. The biomechanical profile of an osseointegrated rectangular block implant: A pilot in vivo experimental study. Clin. Oral Implant Res. 2021, 32, 1274–1287. [Google Scholar] [CrossRef]
- Fada, R.; Shahgholi, M.; Azimi, R.; Babadi, N.F. Estimation of Porosity Effect on Mechanical Properties in Calcium Phosphate Cement Reinforced by Strontium Nitrate Nanoparticles: Fabrication and FEM Analysis. Arab. J. Sci. Eng. 2024, 49, 1815–1825. [Google Scholar] [CrossRef]
- Auciello, O.; Renou, S.; Kang, K.; Tasat, D.; Olmedo, D. A Biocompatible Ultrananocrystalline Diamond (UNCD) Coating for a New Generation of Dental Implants. Nanomaterials 2022, 12, 782. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Isaza, E.; García, L.; Salazar, E. Determination of Mechanic Resistance of Osseous Element through Finite Element Modeling. In Proceedings of the 2013 COMSOL Conference, Boston, MA, USA, 9–11 October 2013; Available online: https://grabcad.com/library/femur--1 (accessed on 22 September 2024).
- Horberg, J.V.; Bailey, J.R.; Mikesell, T.A.; Graham, R.D.; Allan, D.G. Assessing the weight-bearing surface in dysplastic acetabulae: The sourcil index. Arthroplast. Today 2021, 11, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, R.; Bakhtiari-Nejad, F.; Goudarzi, T. Vibrational Analysis of Human Femur Bone. In Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Quebec City, QC, Canada, 26–29 August 2018; Volume 8: 30th Conference on Mechanical Vibration and Noise. V008T10A045. [Google Scholar] [CrossRef]
- Manral, A.R.; Gariya, N.; Nithin Kumar, K.C. Material optimization for femur bone implants based on vibration analysis. Mater. Today Proc. 2020, 28, 2393–2399. [Google Scholar] [CrossRef]
- Hossain, N.; Mobarak, M.H.; Islam, M.A.; Hossain, A.; Al Mahmud, M.Z.; Rayhan, M.T.; Chowdhury, M.A. Recent development of dental implant materials, synthesis process, and failure—A review. Results Chem. 2023, 6, 101136. [Google Scholar] [CrossRef]
- Resnik, M.; Benčina, M.; Levičnik, E.; Rawat, N.; Iglič, A.; Junkar, I. Strategies for improving antimicrobial properties of stainless steel. Materials 2020, 13, 2944. [Google Scholar] [CrossRef]
- Feltz, K.P.; MacFadden, L.N.; Gieg, S.D.; Lough, C.P.; Bezold, W.A.; Skelley, N.W. Mechanical properties of 3D-printed orthopedic one-third tubular plates and cortical screws. J. 3D Print. Med. 2022, 6, 129–145. [Google Scholar] [CrossRef]
- Høl, P.J.; Mølster, A.; Gjerdet, N.R. Should the galvanic combination of titanium and stainless steel surgical implants be avoided? Injury 2008, 39, 161–169. [Google Scholar] [CrossRef]
- Bharadwaj, A. An overview on biomaterials and its applications in medical science. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; p. 012178. [Google Scholar]
- Al-Shalawi, F.D.; Mohamed Ariff, A.H.; Jung, D.W.; Mohd Ariffin MK, A.; Seng Kim, C.L.; Brabazon, D.; Al-Osaimi, M.O. Biomaterials as implants in the orthopedic field for regenerative medicine: Metal versus synthetic polymers. Polymers 2023, 15, 2601. [Google Scholar] [CrossRef]
- Mozafari, M.; Bordbar-Khiabani, A.; Yarmand, B. Emerging magnesium-based biomaterials for orthopedic implantation. Emerg. Mater. Res. 2020, 8, 305–319. [Google Scholar]
- Ansys Library. Engineering Data. Section Analysis Systems: Static Structural. Available online: https://www.ansys.com/products/materials/materials-data-for-simulation (accessed on 22 September 2024).
- Pérez-Cano, F.D.; Jiménez-Pérez, J.R.; Molina-Viedma, A.J.; López-Alba, E.; Luque-Luque, A.; Delgado-Martínez, A.; Díaz-Garrido, F.A.; Jiménez-Delgado, J.J. Human femur fracture by mechanical compression: Towards the repeatability of bone fracture acquisition. Comput. Biol. Med. 2023, 164, 107249. [Google Scholar] [CrossRef]
- Amini, M.; Reisinger, A.; Hirtler, L.; Pahr, D. Which experimental procedures influence the apparent proximal femoral stiffness? A parametric study. BMC Musculoskelet. Disord. 2021, 22, 815. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Naota, S.; Shigeaki, M.; Fujio, H.; Yoshishiko, T.; Akio, I. Biomechanical study of the resurfacing hip arthroplasty: Finite element analysis of the femoral component. J. Arthroplast. 2000, 15, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M. Finite element analysis of the resurfaced femoral head. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2006, 220, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; New, A.M.; Taylor, M. Bone remodelling inside a cemented resurfaced femoral head. Clin. Biomech. 2006, 21, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.R.; Jennings, J.M.; Dennis, D.A. Morbid obesity and total knee arthroplasty: A growing problem. JAAOS-J. Am. Acad. Orthop. Surg. 2017, 25, 188–194. [Google Scholar] [CrossRef]
- Sözen, T.; Özışık, L.; Başaran, N.Ç. An overview and management of osteoporosis. Eur. J. Rheumatol. 2017, 4, 46–56. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Orthotropic Elasticity | Value | Unit | |
---|---|---|---|
Young’s Modulus | X direction | 19,400 | MPa |
Y direction | 12,600 | MPa | |
Z direction | 12,600 | MPa | |
Poisson Ratio | XY | 0.39 | |
YZ | 0.3 | ||
XZ | 0.9 | ||
Shear Modulus | XY | 5700 | MPa |
YZ | 4850 | MPa | |
XZ | 5700 | MPa | |
Orthotropic Stress Limits | |||
Tensile | X direction | 135 | MPa |
Y direction | 50 | MPa | |
Z direction | 50 | MPa | |
Compressive | X direction | −250 | MPa |
Y direction | −50 | MPa | |
Z direction | −50 | MPa | |
Shear | XY | 65 | MPa |
YZ | 65 | MPa | |
XZ | 65 | MPa |
Mechanical Properties | Symbol | Value |
---|---|---|
Density | ||
Length | ||
Load 1 |
Gold | Symbol |
Elasticity Modulus | 7.576 × 1010 Pa |
Poisson Ratio | 0.42 |
Density | 19,300 kg m−3 |
Thickness | |
Titanium | Symbol |
Elasticity Modulus | 9.6 × 1010 Pa |
Poisson Ratio | 0.36 |
Density | 4620 kg m−3 |
Thickness | |
Stainless Steel | Symbol |
Elasticity Modulus | 2 × 1011 Pa |
Poisson Ratio | 0.3 |
Density | 7850 kg m−3 |
Thickness |
Load [N] | Simulation [mm] | Experimental Range [mm] [48] |
---|---|---|
777 | 0.9073 | 0.9 |
1000 | 1.1678 | 0.9–1.5 |
1500 | 1.7517 | 1.3–1.9 |
2000 | 2.3356 | 1.5–2.3 |
2500 | 2.9195 | 1.6–3.2 |
Load [N] | Simulation Value [mm] | Experimental Range [mm] [48] |
---|---|---|
777 | 0.9669 | 1.0 |
1000 | 1.2443 | 0.45–1.6 |
1500 | 1.8666 | 1.1–2.0 |
2000 | 2.4888 | 1.6–2.4 |
2500 | 3.1110 | 1.7–2.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivares-Hernandez, A.E.; Olivares-Robles, M.A.; Méndez-Méndez, J.V.; Gutiérrez-Camacho, C. Microfilm Coatings: A Biomaterial-Based Strategy for Modulating Femoral Deflection. J. Funct. Biomater. 2024, 15, 283. https://doi.org/10.3390/jfb15100283
Olivares-Hernandez AE, Olivares-Robles MA, Méndez-Méndez JV, Gutiérrez-Camacho C. Microfilm Coatings: A Biomaterial-Based Strategy for Modulating Femoral Deflection. Journal of Functional Biomaterials. 2024; 15(10):283. https://doi.org/10.3390/jfb15100283
Chicago/Turabian StyleOlivares-Hernandez, Ana Elisabeth, Miguel Angel Olivares-Robles, Juan Vicente Méndez-Méndez, and Claudia Gutiérrez-Camacho. 2024. "Microfilm Coatings: A Biomaterial-Based Strategy for Modulating Femoral Deflection" Journal of Functional Biomaterials 15, no. 10: 283. https://doi.org/10.3390/jfb15100283
APA StyleOlivares-Hernandez, A. E., Olivares-Robles, M. A., Méndez-Méndez, J. V., & Gutiérrez-Camacho, C. (2024). Microfilm Coatings: A Biomaterial-Based Strategy for Modulating Femoral Deflection. Journal of Functional Biomaterials, 15(10), 283. https://doi.org/10.3390/jfb15100283