Previous Issue
Volume 15, September
 
 

J. Funct. Biomater., Volume 15, Issue 10 (October 2024) – 8 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 2903 KiB  
Article
Evaluating the Effects of BSA-Coated Gold Nanorods on Cell Migration Potential and Inflammatory Mediators in Human Dermal Fibroblasts
by Nouf N. Mahmoud, Ayat S. Hammad, Alaya S. Al Kaabi, Hend H. Alawi, Summaiya Khatoon and Maha Al-Asmakh
J. Funct. Biomater. 2024, 15(10), 284; https://doi.org/10.3390/jfb15100284 - 26 Sep 2024
Abstract
Albumin-coated gold nanoparticles display potential biomedical applications, including cancer research, infection treatment, and wound healing; however, elucidating their interaction with normal cells remains an area with limited exploration. In this study, gold nanorods (GNR) were prepared and coated with bovine serum albumin (BSA) [...] Read more.
Albumin-coated gold nanoparticles display potential biomedical applications, including cancer research, infection treatment, and wound healing; however, elucidating their interaction with normal cells remains an area with limited exploration. In this study, gold nanorods (GNR) were prepared and coated with bovine serum albumin (BSA) to produce GNR-BSA. The functionalized nanoparticles were characterized based on their optical absorption spectra, morphology, surface charge, and quantity of attached protein. The interaction between GNR-BSA and BSA with normal cells was investigated using human dermal fibroblasts. The cytotoxicity test indicated cell viability between ~63–95% for GNR-BSA over concentrations from 30.0 to 0.47 μg/mL and ~85–98% for BSA over concentrations from 4.0 to 0.0625 mg/mL. The impact of the GNR-BSA and BSA on cell migration potential and wound healing was assessed using scratch assay, and the modulation of cytokine release was explored by quantifying a panel of cytokines using Multiplex technology. The results indicated that GNR-BSA, at 10 μg/mL, delayed the cell migration and wound healing 24 h post-treatment compared to the BSA or the control group with an average wound closure percentage of 6% and 16% at 6 and 24 h post-treatment, respectively. Multiplex analysis revealed that while GNR-BSA reduced the release of the pro-inflammatory marker IL-12 from the activated fibroblasts 24 h post-treatment, they significantly reduced the release of IL-8 (p < 0.001), and CCL2 (p < 0.01), which are crucial for the inflammation response, cell adhesion, proliferation, migration, and angiogenesis. Although GNR-BSA exhibited relatively high cell viability towards human dermal fibroblasts and promising therapeutic applications, toxicity aspects related to cell motility and migration must be considered. Full article
(This article belongs to the Special Issue Novel Biomaterials for Tissue Engineering)
Show Figures

Figure 1

18 pages, 4236 KiB  
Article
Microfilm Coatings: A Biomaterial-Based Strategy for Modulating Femoral Deflection
by Ana Elisabeth Olivares-Hernandez, Miguel Angel Olivares-Robles, Juan Vicente Méndez-Méndez and Claudia Gutiérrez-Camacho
J. Funct. Biomater. 2024, 15(10), 283; https://doi.org/10.3390/jfb15100283 - 25 Sep 2024
Viewed by 204
Abstract
Wear on the surface of the femoral head increases the risk of hip and femur fractures. Biomechanical experiments conducted on the femur are based on its bending and torsional rigidities. Studies regarding the deflection of the femur bone when the femoral head is [...] Read more.
Wear on the surface of the femoral head increases the risk of hip and femur fractures. Biomechanical experiments conducted on the femur are based on its bending and torsional rigidities. Studies regarding the deflection of the femur bone when the femoral head is coated with microfilms composed of durable and compatible biomaterials are poor. This study aimed to investigate the effects of different biomaterial microfilm coatings over the femoral head on the deflection of the human femur. We utilized 2023 R1 finite element analysis (FEA) software to model the directional deformation on the femoral head and examine the femur’s deflection with varying microfilm thicknesses. The deflection of the femur bone was reported when the femoral head was uncoated and coated with titanium, stainless steel, and pure gold microfilms of different thicknesses (namely, 50, 75, and 100 μm). Our results show that the femur’s minimum and maximum deflection occurred for stainless steel and gold, respectively. The deformation of the femur was lower when the femoral head was coated with a 50-micrometer microfilm of stainless steel, compared to the deformation obtained with gold and titanium. When the thickness of the microfilm for each of the materials was increased, the deformation continued to decrease. The minimum deformation of the femur occurred for a thickness of 100 μm with stainless steel, followed by titanium and gold. The difference in the directional deformation of the femur between the materials was more significant when the coating was 100 μm, compared to the thicknesses of 50 and 75 μm. The findings of this study are expected to significantly contribute to the development of advanced medical techniques to enhance the quality of life for patients with femur bone-related issues. This information can be used to develop more resilient coatings that can withstand wear and tear. Full article
Show Figures

Figure 1

15 pages, 9118 KiB  
Article
Radioprotection Performance Evaluation of 3D-Printed and Conventional Heat-Cured Dental Resins for Radiotherapy Prostheses
by Jiangyu Wang, Mai Murase, Yuka I. Sumita, Ryoichi Notake, Masako Akiyama, Ryoichi Yoshimura and Noriyuki Wakabayashi
J. Funct. Biomater. 2024, 15(10), 282; https://doi.org/10.3390/jfb15100282 - 25 Sep 2024
Viewed by 177
Abstract
3D printing is increasingly used in dentistry, with biocompatible resins playing a key role. This study compared the radioprotective properties of a commonly used 3D-printed resin (Formlabs surgical guide resin) with traditional heat-cured resin and examined the relationship between material thickness and radiation [...] Read more.
3D printing is increasingly used in dentistry, with biocompatible resins playing a key role. This study compared the radioprotective properties of a commonly used 3D-printed resin (Formlabs surgical guide resin) with traditional heat-cured resin and examined the relationship between material thickness and radiation attenuation. The specimens consisted of 3D-printed and heat-cured resin specimens, each measuring 45 × 45 mm2, with five different thicknesses (6, 8, 10, 12, and 14 mm), totaling 100 samples. Both types of resin specimens underwent testing with 150 MU external beam radiation therapy (EBRT) and 400 cGy brachytherapy. Radiation experiments indicated that under EBRT conditions, there were no significant differences in radiation attenuation between the 3D-printed and heat-cured resins across all thickness groups. In brachytherapy, the attenuation of the 3D-printed resin was significantly lower than the heat-cured resin in the 6 mm and 8 mm groups. Specifically, attenuation rates were 48.0 ± 0.7 (3D-printed) vs. 45.2 ± 1.9 (heat-cured) in the 6 mm group, and 39.6 ± 1.3 vs. 37.5 ± 1.1 in the 8 mm group. Both resins showed significant positive linear correlations between thickness and attenuation (p < 0.001) within 6–14 mm. Thus, 3D-printed resin shows promising radioprotective properties and is a viable alternative to traditional heat-cured resin. Full article
Show Figures

Figure 1

20 pages, 5061 KiB  
Article
Suspension-Sprayed Calcium Phosphate Coatings with Antibacterial Properties
by Maria Carolina Lanzino, Long-Quan R. V. Le, Anika Höppel, Andreas Killinger, Wolfgang Rheinheimer, Sofia Dembski, Ali Al-Ahmad, Hermann O. Mayr and Michael Seidenstuecker
J. Funct. Biomater. 2024, 15(10), 281; https://doi.org/10.3390/jfb15100281 - 25 Sep 2024
Viewed by 304
Abstract
Prosthesis loosening due to lack of osteointegration between an implant and surrounding bone tissue is one of the most common causes of implant failure. Further, bacterial contamination and biofilm formation onto implants represent a serious complication after surgery. The enhancement of osteointegration can [...] Read more.
Prosthesis loosening due to lack of osteointegration between an implant and surrounding bone tissue is one of the most common causes of implant failure. Further, bacterial contamination and biofilm formation onto implants represent a serious complication after surgery. The enhancement of osteointegration can be achieved by using bioconductive materials that promote biological responses in the body, stimulating bone growth and thus bonding to tissue. Through the incorporation of antibacterial substances in bioconductive, biodegradable calcium phosphate (CaP) coatings, faster osteointegration and bactericidal properties can be achieved. In this study, Cu-doped CaP supraparticles are spray-dried and suspension-sprayed CaP ceramic coatings with antibacterial properties are prepared using high-velocity suspension flame spraying (HVSFS). The objective was to increase the coatings’ porosity and investigate which Cu-doped supraparticles have the strongest antibacterial properties when introduced into the coating layers. Biocompatibility was tested on human Osteosarcoma cells MG63. A porosity of at least 13% was achieved and the supraparticles could be implemented, enhancing it up to 16%. The results showed that the addition of Cu-doped supraparticles did not significantly reduce the number of viable cells compared to the Cu-free sample, demonstrating good biocompatibility. The antimicrobial activity was assessed against the bacterial strains Escherichia coli and Staphylococcus aureus, with Safe Airborne Antibacterial testing showing a significant reduction in both Gram-positive and Gram-negative strains on the Cu-doped coatings. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

40 pages, 3649 KiB  
Review
Functional Scaffolds for Bone Tissue Regeneration: A Comprehensive Review of Materials, Methods, and Future Directions
by Emily Ann Todd, Nicholas A. Mirsky, Bruno Luís Graciliano Silva, Ankita Raja Shinde, Aris R. L. Arakelians, Vasudev Vivekanand Nayak, Rosemary Adriana Chiérici Marcantonio, Nikhil Gupta, Lukasz Witek and Paulo G. Coelho
J. Funct. Biomater. 2024, 15(10), 280; https://doi.org/10.3390/jfb15100280 - 25 Sep 2024
Viewed by 419
Abstract
Bone tissue regeneration is a rapidly evolving field aimed at the development of biocompatible materials and devices, such as scaffolds, to treat diseased and damaged osseous tissue. Functional scaffolds maintain structural integrity and provide mechanical support at the defect site during the healing [...] Read more.
Bone tissue regeneration is a rapidly evolving field aimed at the development of biocompatible materials and devices, such as scaffolds, to treat diseased and damaged osseous tissue. Functional scaffolds maintain structural integrity and provide mechanical support at the defect site during the healing process, while simultaneously enabling or improving regeneration through amplified cellular cues between the scaffold and native tissues. Ample research on functionalization has been conducted to improve scaffold–host tissue interaction, including fabrication techniques, biomaterial selection, scaffold surface modifications, integration of bioactive molecular additives, and post-processing modifications. Each of these methods plays a crucial role in enabling scaffolds to not only support but actively participate in the healing and regeneration process in bone and joint surgery. This review provides a state-of-the-art, comprehensive overview of the functionalization of scaffold-based strategies used in tissue engineering, specifically for bone regeneration. Critical issues and obstacles are highlighted, applications and advances are described, and future directions are identified. Full article
(This article belongs to the Special Issue Functional Scaffolds for Bone and Joint Surgery)
Show Figures

Figure 1

12 pages, 4769 KiB  
Article
Cyanoacrylate versus Collagen Membrane as a Sealing for Alveolar Ridge Preservation: A Randomized Clinical Trial
by Fabio Camacho-Alonso, Osmundo Gilbel-Del Águila, Paula Ferrer-Díaz, David Peñarrocha-Oltra, Yolanda Guerrero-Sánchez and Juan Carlos Bernabeu-Mira
J. Funct. Biomater. 2024, 15(10), 279; https://doi.org/10.3390/jfb15100279 - 24 Sep 2024
Viewed by 213
Abstract
This study involved a randomized clinical trial that included 140 patients. Alveolar ridge preservation was performed with xenografts. Sealing in the control group consisted of a collagen membrane versus cyanoacrylate in the test group. The dental implants were placed immediately after extraction. The [...] Read more.
This study involved a randomized clinical trial that included 140 patients. Alveolar ridge preservation was performed with xenografts. Sealing in the control group consisted of a collagen membrane versus cyanoacrylate in the test group. The dental implants were placed immediately after extraction. The variables were evaluated at 3, 12, and 18 months of follow-up. Pearson’s chi-squared test was used for qualitative variables and the Student t-test for related samples was used for quantitative variables. The change in buccolingual alveolar bone width was significantly greater in the CMX group than in the CX group after three months (p < 0.005). However, significance was not reached at the other follow-up timepoints (p > 0.005). CAL showed significantly greater values in the CMX group than in the CX group (p < 0.005), and MBL proved greater in the CMX group than in the CX group, with p < 0.001. Five membrane exposures were recorded in the CMX group. Cyanoacrylate as a sealing method for alveolar ridge preservation seems to afford better clinical and radiological results than collagen membrane. Full article
(This article belongs to the Special Issue Biomaterials and Biomechanics Modelling in Dental Implantology)
Show Figures

Figure 1

11 pages, 1648 KiB  
Article
Osseointegration of Dental Implants after Vacuum Plasma Surface Treatment In Vivo
by Se Hoon Kahm, Sang Hwa Lee, Youbong Lim, Hyun Jeong Jeon and Kyoung-In Yun
J. Funct. Biomater. 2024, 15(10), 278; https://doi.org/10.3390/jfb15100278 - 24 Sep 2024
Viewed by 358
Abstract
Previous studies have highlighted the need for post-treatment of implants due to surface aging. This study investigated the effect of vacuum plasma (VP) treatment on the osseointegration of sandblasted, large grit, acid-etched (SLA) implant surfaces. The hypothesis was that VP might enhance implant [...] Read more.
Previous studies have highlighted the need for post-treatment of implants due to surface aging. This study investigated the effect of vacuum plasma (VP) treatment on the osseointegration of sandblasted, large grit, acid-etched (SLA) implant surfaces. The hypothesis was that VP might enhance implant stability, measured by implant stability quotient (ISQ) and histological osseointegration through bone-to-implant contact (BIC) and bone area ratio (BA) in rabbit models. Eighteen implants were either untreated or treated with VP and installed into the femurs of six rabbits, which were sacrificed after four weeks. Histological analyses of BIC and BA, along with micro-CT analysis of bone volume and ISQ, were performed. The VP-treated group showed higher levels of BA, bone volume, and ISQ, but no statistically significant differences were observed between the control and experimental groups. Despite limitations, both groups achieved better osseointegration and regeneration, warranting further studies on plasma treatment effects over varying implantation periods. Full article
(This article belongs to the Special Issue Advances in Biomaterials for Reconstructive Dentistry)
Show Figures

Figure 1

10 pages, 1007 KiB  
Article
Core–Shell Microspheres with Encapsulated Gold Nanoparticle Carriers for Controlled Release of Anti-Cancer Drugs
by Lin Guo, Qilong Zhao and Min Wang
J. Funct. Biomater. 2024, 15(10), 277; https://doi.org/10.3390/jfb15100277 - 24 Sep 2024
Viewed by 323
Abstract
Cancer is one of the major threats to human health and lives. However, effective cancer treatments remain a great challenge in clinical medicine. As a common approach for cancer treatment, chemotherapy has saved the life of millions of people; however, patients who have [...] Read more.
Cancer is one of the major threats to human health and lives. However, effective cancer treatments remain a great challenge in clinical medicine. As a common approach for cancer treatment, chemotherapy has saved the life of millions of people; however, patients who have gone through chemotherapy often suffer from severe side effects owing to the inherent cytotoxicity of anti-cancer drugs. Stabilizing the blood concentration of an anti-cancer drug will reduce the occurrence or severity of side effects, and relies on using an appropriate drug delivery system (DDS) for achieving sustained or even on-demand drug delivery. However, this is still an unmet clinical challenge since the mainstay of anti-cancer drugs is small molecules, which tend to be diffused rapidly in the body, and conventional DDSs exhibit the burst release phenomenon. Here, we establish a class of DDSs based on biodegradable core–shell microspheres with encapsulated doxorubicin hydrochloride-loaded gold nanoparticles (DOX@Au@MSs), with the core–shell microspheres being made of poly(lactic-co-glycolic acid) in the current study. By harnessing the physical barrier of the biodegradable shell of core–shell microspheres, DOX@Au@MSs can provide a sustained release of the anti-cancer drug in the test duration (which is 21 days in the current study). Thanks to the photothermal properties of the encapsulated gold nanoparticle carriers, the core–shell biodegradable microspheres can be ruptured through remotely controlled near-infrared (NIR) light, thereby achieving an NIR-controlled triggered release of the anti-cancer drug. Furthermore, the route of the DOX-Au@MS-enabled controlled release of the anti-cancer drug can provide durable cancer cell ablation for the long period of 72 h. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop