Fracture Resistance of Posterior Milled Nanoceramic Crowns after Thermomechanical Aging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Size Calculation
2.2. Preparation of Reference and Test Die Models
2.3. Digitization of Stone Dies, Milling, and Luting of Crown Specimens
2.4. Thermomechanical Aging and Load-to-Failure Testing
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spitznagel, F.A.; Scholz, K.J.; Vach, K.; Gierthmuehlen, P.C. Monolithic Polymer-Infiltrated Ceramic Network CAD/CAM Single Crowns: Three-Year Mid-Term Results of a Prospective Clinical Study. Int. J. Prosthodont. 2020, 33, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Ferruzzi, F.; Ferrairo, B.M.; Piras, F.F.; Borges, A.F.S.; Rubo, J.H. Fatigue survival and damage modes of lithium disilicate and resin nanoceramic crowns. J. Appl. Oral Sci. 2019, 27, e20180297. [Google Scholar] [CrossRef] [PubMed]
- Baig, M.R.; Akbar, A.A.; Embaireeg, M. Effect of Finish Line Design on the Fit Accuracy of CAD/CAM Monolithic Polymer-Infiltrated Ceramic-Network Fixed Dental Prostheses: An In Vitro Study. Polymers 2021, 13, 4311. [Google Scholar] [CrossRef]
- Fernandez-Villar, S.; Cano-Batalla, J.; Cabratosa-Termes, J.; Canto-Naves, O.; Arregui, M. Fracture Resistance of Two Different Composite Resin CAD/CAM Crowns Bonded to Titanium Abutments. Int. J. Prosthodont. 2020, 33, 648–655. [Google Scholar] [CrossRef]
- Awada, A.; Nathanson, D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J. Prosthet. Dent. 2015, 114, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Marchesi, G.; Camurri Piloni, A.; Nicolin, V.; Turco, G.; Di Lenarda, R. Chairside CAD/CAM Materials: Current Trends of Clinical Uses. Biology 2021, 10, 1170. [Google Scholar] [CrossRef]
- Naumova, E.A.; Schneider, S.; Arnold, W.H.; Piwowarczyk, A. Wear Behavior of Ceramic CAD/CAM Crowns and Natural Antagonists. Materials 2017, 10, 244. [Google Scholar] [CrossRef]
- An, S.J.; Lee, H.; Ahn, J.S.; Lee, J.H.; Lee, H.H.; Choi, Y.S. Influence of thermo-mechanical aging on fracture resistance and wear of digitally standardized chairside computer-aided-designed/computer-assisted-manufactured restorations. J. Dent. 2023, 130, 104450. [Google Scholar] [CrossRef]
- de Mendonca, A.F.; Shahmoradi, M.; de Gouvêa, C.V.D.; De Souza, G.M.; Ellakwa, A. Microstructural and Mechanical Characterization of CAD/CAM Materials for Monolithic Dental Restorations. J. Prosthodont. 2019, 28, e587–e594. [Google Scholar] [CrossRef]
- Rizzatto, L.V.; Meneghetti, D.; Di Domênico, M.; Facenda, J.C.; Weber, K.R.; Corazza, P.H.; Borba, M. Effect of the type of resin cement on the fracture resistance of chairside CAD-CAM materials after aging. J. Adv. Prosthodont. 2023, 15, 136–144. [Google Scholar] [CrossRef]
- Beyabanaki, E.; Ashtiani, R.E.; Feyzi, M.; Zandinejad, A. Evaluation of Microshear Bond Strength of Four Different CAD-CAM Polymer-Infiltrated Ceramic Materials after Thermocycling. J. Prosthodont. 2022, 31, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Suksuphan, P.; Krajangta, N.; Didron, P.P.; Wasanapiarnpong, T.; Rakmanee, T. Marginal adaptation and fracture resistance of milled and 3D-printed CAD/CAM hybrid dental crown materials with various occlusal thicknesses. J. Prosthodont. Res. 2024, 68, 326–333. [Google Scholar] [CrossRef]
- Al Amri, M.D.; Labban, N.; Alhijji, S.; Alamri, H.; Iskandar, M.; Platt, J.A. In Vitro Evaluation of Translucency and Color Stability of CAD/CAM Polymer-Infiltrated Ceramic Materials after Accelerated Aging. J. Prosthodont. 2021, 30, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Komine, F.; Honda, J.; Kusaba, K.; Kubochi, K.; Takata, H.; Fujisawa, M. Clinical outcomes of single crown restorations fabricated with resin-based CAD/CAM materials. J. Oral Sci. 2020, 62, 353–355. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.; Ender, A.; Egli, G.; Özcan, M.; Mehl, A. Fracture load of CAD/CAM-fabricated and 3D-printed composite crowns as a function of material thickness. Clin. Oral Investig. 2019, 23, 2777–2784. [Google Scholar] [CrossRef]
- Chen, C.; Trindade, F.Z.; de Jager, N.; Kleverlaan, C.J.; Feilzer, A.J. The fracture resistance of a CAD/CAM Resin Nano Ceramic (RNC) and a CAD ceramic at different thicknesses. Dent. Mater. 2014, 30, 954–962. [Google Scholar] [CrossRef]
- Chen, S.E.; Park, A.C.; Wang, J.; Knoernschild, K.L.; Campbell, S.; Yang, B. Fracture Resistance of Various Thickness e.max CAD Lithium Disilicate Crowns Cemented on Different Supporting Substrates: An In Vitro Study. J. Prosthodont. 2019, 28, 997–1004. [Google Scholar] [CrossRef]
- Jurado, C.A.; Pinedo, F.; Trevino, D.A.C.; Williams, Q.; Marquez-Conde, A.; Irie, M.; Tsujimoto, A. CAD/CAM lithium disilicate ceramic crowns: Effect of occlusal thickness on fracture resistance and fractographic analysis. Dent. Mater. J. 2022, 41, 705–709. [Google Scholar] [CrossRef] [PubMed]
- Nawafleh, N.A.; Hatamleh, M.M.; Öchsner, A.; Mack, F. Fracture load and survival of anatomically representative monolithic lithium disilicate crowns with reduced tooth preparation and ceramic thickness. J. Adv. Prosthodont. 2017, 9, 416–422. [Google Scholar] [CrossRef]
- Baig, M.R.; Tan, K.B.; Nicholls, J.I. Evaluation of the marginal fit of a zirconia ceramic computer-aided machined (CAM) crown system. J. Prosthet. Dent. 2010, 104, 216–227. [Google Scholar] [CrossRef]
- Sadeqi, H.A.; Baig, M.R.; Al-Shammari, M. Evaluation of Marginal/Internal Fit and Fracture Load of Monolithic Zirconia and Zirconia Lithium Silicate (ZLS) CAD/CAM Crown Systems. Materials 2021, 14, 6346. [Google Scholar] [CrossRef] [PubMed]
- Güleç, C.; Sarıkaya, I. The influence of aging on the fracture load of milled monolithic crowns. BMC Oral Health 2022, 22, 516. [Google Scholar] [CrossRef] [PubMed]
- Comba, A.; Baldi, A.; Carossa, M.; Michelotto Tempesta, R.; Garino, E.; Llubani, X.; Rozzi, D.; Mikonis, J.; Paolone, G.; Scotti, N. Post-Fatigue Fracture Resistance of Lithium Disilicate and Polymer-Infiltrated Ceramic Network Indirect Restorations over Endodontically-Treated Molars with Different Preparation Designs: An In-Vitro Study. Polymers 2022, 14, 5084. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, V.F.; Sforza, C.; Zanotti, G.; Tartaglia, G.M. Maximal bite forces in healthy young adults as predicted by surface electromyography. J. Dent. 2004, 32, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Garoushi, S.; Säilynoja, E.; Vallittu, P.; Lassila, L. Fracture-behavior of CAD/CAM ceramic crowns before and after cyclic fatigue aging. Int. J. Prosthodont. 2023, 36, 649. [Google Scholar]
- Reda, R.; Zanza, A.; Galli, M.; De Biase, A.; Testarelli, L.; Di Nardo, D. Applications and Clinical Behavior of BioHPP in Prosthetic Dentistry: A Short Review. J. Compos. Sci. 2022, 6, 90. [Google Scholar] [CrossRef]
Material | Mean ± SD | Minimum | Maximum | Median | IQR |
---|---|---|---|---|---|
RNC—OT 0.5 mm | 1022 ± 253 | 644 | 1501 | 1014 | 386 |
RNC—OT 0.75 mm | 1332 ± 566 | 592 | 2184 | 1338 | 1091 |
LDS—OT 0.5 mm | 1145 ± 237 | 858 | 1621 | 1109 | 353 |
LDS—OT 0.75 mm | 1441 ± 306 | 569 | 2100 | 1131 | 216 |
Variables of Interest | Type III Sum of Squares | Df | Mean Square | F | p |
---|---|---|---|---|---|
Material LDS RNC | 134,212.23 | 1 | 134,212.23 | 1.01 | 0.323 |
Occlusal thickness (OT) 0.5 mm 0.75 mm | 918,393.03 | 1 | 918,393.03 | 6.88 | 0.013 |
Material × Occlusal thickness (OT) | 600.63 | 1 | 600.63 | 0.01 | 0.947 |
Material | Type I | Type II | Type III | Type IV |
---|---|---|---|---|
RNC | 0 | 8 | 6 | 6 |
LDS | 0 | 4 | 5 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alnajjar, F.A.; Alloughani, A.J.; Alhajj, M.N.; Baig, M.R. Fracture Resistance of Posterior Milled Nanoceramic Crowns after Thermomechanical Aging. J. Funct. Biomater. 2024, 15, 171. https://doi.org/10.3390/jfb15070171
Alnajjar FA, Alloughani AJ, Alhajj MN, Baig MR. Fracture Resistance of Posterior Milled Nanoceramic Crowns after Thermomechanical Aging. Journal of Functional Biomaterials. 2024; 15(7):171. https://doi.org/10.3390/jfb15070171
Chicago/Turabian StyleAlnajjar, Fajer Abdulaziz, Arwa Jamal Alloughani, Mohammed Nasser Alhajj, and Mirza Rustum Baig. 2024. "Fracture Resistance of Posterior Milled Nanoceramic Crowns after Thermomechanical Aging" Journal of Functional Biomaterials 15, no. 7: 171. https://doi.org/10.3390/jfb15070171
APA StyleAlnajjar, F. A., Alloughani, A. J., Alhajj, M. N., & Baig, M. R. (2024). Fracture Resistance of Posterior Milled Nanoceramic Crowns after Thermomechanical Aging. Journal of Functional Biomaterials, 15(7), 171. https://doi.org/10.3390/jfb15070171