Advances in Synthetic Polymer Membranes for Guided Bone Regeneration in Dental Implants: A Scoping Review
Abstract
:1. Introduction
- Biocompatibility: no damage to surrounding tissue or the healing process.
- Cell occlusion: prevents the invasion of non-osteogenic cells into the bone defect.
- Easy handling: it cannot be too rigid without losing the function of space maintenance.
- Bioactivation properties promote wound healing and tissue integration.
1.1. Rankin
1.2. Polymeric Membranes
2. Materials and Methods
2.1. Search and Data Mining Strategy
2.2. Inclusion and Exclusion Criteria
3. Results
3.1. Search Strategy Results
3.2. Summary of the Main Findings of the Search Strategy
4. Discussion
4.1. Main Findings
4.2. Comparison of Resorbable and Non-Resorbable Membranes
4.2.1. Biocompatibility and Mechanisms of Action
4.2.2. Mechanical Resistance and Clinical Management
4.3. Impact of Technological Advances
4.3.1. Modern Synthetic Membranes
4.3.2. Special Treatments and Bioactive Properties
4.4. Complications and Risk Factors
- Class I: Small membrane exposure (<3 mm) without purulent exudate.
- Class II: Considerable membrane exposure (>3 mm) without purulent exudate.
- Class III: Exposure of the membrane with purulent exudate.
- Class IV: Abscess formation without exposure of the membrane.
4.5. Clinical Applications and Results
4.5.1. Efficacy in Different Clinical Scenarios
4.5.2. Subgroups and Customized Strategies
4.6. Limitations of the Study and Future Perspectives
Limitations of the Review
5. Conclusions
6. Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Toledano-Osorio, M.; Toledano, M.; Manzano-Moreno, F.J.; Vallecillo, C.; Vallecillo-Rivas, M.; Rodriguez-Archilla, A.; Osorio, R. Alveolar bone ridge augmentation using polymeric membranes: A systematic review and meta-analysis. Polymers 2021, 13, 1172. [Google Scholar] [CrossRef] [PubMed]
- Toledano, M.; Toledano-Osorio, M.; Osorio, R.; Carrasco-Carmona, Á.; Gutiérrez-Pérez, J.L.; Gutiérrez-Corrales, A.; Serrera-Figallo, M.A.; D-Lynch, C.; Torres Lagares, D. Doxycycline and zinc-loaded silica-nanofibrous polymers as biomaterials for bone regeneration. Polymers 2020, 12, 1201. [Google Scholar] [CrossRef]
- Fernández, E.; González, H.; Castro, Á.; Lisboa, D. Osteology: Relevance of medical concepts in the dental field. J. Clin. Periodontol. 2015, 8, 83–92. [Google Scholar]
- Quirino, L.C.; de Azambuja Carvalho, P.H.; Neto, R.T.A.; Comachio, C.A.; Monteiro, N.G.; Ervolino-Silva, A.C.; Okamoto, R.; Pereira-Filho, V.A. Polydioxanone Membrane Compared with Collagen Membrane for Bone Regeneration. Polymers 2023, 15, 868. [Google Scholar] [CrossRef]
- Caballé-Serrano, J.; Munar-Frau, A.; Delgado, L.; Pérez, R.; Hernández-Alfaro, F. Physicochemical characterization of barrier membranes for bone regeneration. J. Mech. Behav. Biomed. Mater. 2019, 97, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.H.; Li, Y.F. A bi-layered asymmetric membrane loaded with demineralized dentin matrix for guided bone regeneration. J. Mech. Behav. Biomed. Mater. 2024, 149, 106230. [Google Scholar] [CrossRef] [PubMed]
- Takayama, T.; Imamura, K.; Yamano, S. Growth Factor Delivery Using a Collagen Membrane for Bone Tissue Regeneration. Biomolecules 2023, 13, 809. [Google Scholar] [CrossRef]
- Ren, Y.; Fan, L.; Alkildani, S.; Liu, L.; Emmert, S.; Najman, S.; Rimashevskiy, D.; Schnettler, R.; Jung, O.; Xiong, X.; et al. Barrier Membranes for Guided Bone Regeneration (GBR): A Focus on Recent Advances in Collagen Membranes. Int. J. Mol. Sci. 2022, 23, 14987. [Google Scholar] [CrossRef]
- Hartlev, J.; Erik Nørholt, S.; Spin-Neto, R.; Kraft, D.; Schou, S.; Isidor, F. Histology of augmented autogenous bone covered by a platelet-rich fibrin membrane or deproteinized bovine bone mineral and a collagen membrane: A pilot randomized controlled trial. Clin. Oral Implant. Res. 2020, 31, 694–704. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, C.; Shi, H.; Luo, X.; Sun, H.; Wang, Q.; Zhang, D. Advances in Barrier Membranes for Guided Bone Regeneration Techniques. Front. Bioeng. Biotechnol. 2022, 10, 921576. [Google Scholar] [CrossRef]
- Adamuz-Jiménez, A.; Manzano-Moreno, F.J.; Vallecillo, C. Regeneration Membranes Loaded with Non-Antibiotic Anti-2 Microbials: A Review. Polymers 2024, 16, 95. [Google Scholar] [CrossRef] [PubMed]
- Alavi, S.E.; Gholami, M.; Shahmabadi, H.E.; Reher, P. Resorbable GBR Scaffolds in Oral and Maxillofacial Tissue Engineering: Design, Fabrication, and Applications. J. Clin. Med. 2023, 12, 6962. [Google Scholar] [CrossRef]
- Alqahtani, A.M. Guided Tissue and Bone Regeneration Membranes: A Review of Biomaterials and Techniques for Periodontal Treatments. Polymers 2023, 15, 3355. [Google Scholar] [CrossRef] [PubMed]
- Toledano, M.; Gutierrez-Pérez, J.L.; Gutierrez-Corrales, A.; Serrera-Figallo, M.A.; Toledano-Osorio, M.; Rosales-Leal, J.I.; Aguilar, M.; Osorio, R.; Torres-Lagares, D. Novel non-resorbable polymeric-nanostructured scaffolds for guided bone regeneration. Clin. Oral Investig. 2020, 24, 2037–2049. [Google Scholar] [CrossRef]
- Windisch, P.; Orban, K.; Salvi, G.E.; Sculean, A.; Molnar, B. Vertical-guided bone regeneration with a titanium-reinforced d-PTFE membrane utilizing a novel split-thickness flap design: A prospective case series. Clin. Oral Investig. 2021, 25, 2969–2980. [Google Scholar] [CrossRef]
- Palkovics, D.; Bolya-Orosz, F.; Pinter, C.; Molnar, B.; Windisch, P. Reconstruction of vertical alveolar ridge deficiencies utilizing a high-density polytetrafluoroethylene membrane/clinical impact of flap dehiscence on treatment outcomes: Case series. BMC Oral Health 2022, 22, 490. [Google Scholar] [CrossRef]
- Kusirisin, T.; Suwanprateeb, J.; Buranawat, B. Polycaprolactone versus collagen membrane and 1-year clinical outcomes: A randomized controlled trial. Clin. Implant. Dent. Relat. Res. 2023, 25, 330–342. [Google Scholar] [CrossRef]
- Cucchi, A.; Bettini, S.; Ghensi, P.; Fiorino, A.; Corinaldesi, G. Vertical ridge augmentation with Ti-reinforced dense polytetrafluoroethylene (d-PTFE) membranes or Ti-meshes and collagen membranes: 3-year results of a randomized clinical trial. Clin. Implant. Dent. Relat. Res. 2023, 25, 352–369. [Google Scholar] [CrossRef] [PubMed]
- Arbab, H.; Greenwell, H.; Hill, M.; Morton, D.; Vidal, R.; Shumway, B.; Allan, N.D. Ridge preservation comparing a nonresorbable ptfe membrane to a resorbable collagen membrane: A clinical and histologic study in humans. Implant Dent. 2016, 25, 128–134. [Google Scholar] [CrossRef]
- Deepika, M.; Priyanka, G.J.; Pavan, B.; Bhairavi, K.; Diksha, R.A.; Aishwarya, R. Evaluation of PRF and PLA-PGA Membrane Along with Hydroxyapatite Crystal Collagen Fibers Bone Graft in the Treatment of Infrabony Defects. J. Contemp. Dent. Pract. 2023, 24, 442–448. [Google Scholar]
- Maiorana, C.; Fontana, F.; Polo MR dal Pieroni, S.; Ferrantino, L.; Poli, P.P.; Simion, M. Dense Polytetrafluoroethylene Membrane versus Titanium Mesh in Vertical Ridge Augmentation: Clinical and Histological Results of a Split-mouth Prospective Study. J. Contemp. Dent. Pract. 2021, 22, 465–472. [Google Scholar] [PubMed]
- Shido, R.; Ohba, S.; Tominaga, R.; Sumita, Y.; Asahina, I. A Prospective Study of the Assessment of the Efficacy of a Biodegradable Poly(l-lactic acid/ε-caprolactone) Membrane for Guided Bone Regeneration. J. Clin. Med. 2023, 12, 5994. [Google Scholar] [CrossRef]
- Arunjaroensuk, S.; Panmekiate, S.; Pimkhaokham, A. The Stability of Augmented Bone Between Two Different Membranes Used for Guided Bone Regeneration Simultaneous with Dental Implant Placement in the Esthetic Zone. Int. J. Oral Maxillofac. Implant. 2018, 33, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Ogata, K.; Ohba, S.; Sumita, Y.; Ashahina, I. Safety and feasibility assessment of biodegradable poly (L-lactic acid/ε-caprolactone) membrane for guided bone regeneration: A case series of first-in-human pilot study. J. Dent. Sci. 2022, 17, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jin, Q.; Xu, H.; Zhang, S.; Wang, W.; Zhao, B. Effect of Polylactic Acid Membrane on Guided Bone Regeneration in Anterior Maxillary Implantation. Med. Sci. Monit. 2023, 29, e938566. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, Z.; Yun, J.; Liu, R.; Li, J.; Chen, Y.; Cai, H.; Jiang, H.B.; Lee, E.-S.; Han, J.; et al. Effect of Different Membranes on Vertical Bone Regeneration: A Systematic Review and Network Meta-Analysis. BioMed Res. Int. 2022, 2022, 7742687. [Google Scholar] [CrossRef]
- Mizraji, G.; Davidzohn, A.; Gursoy, M.; Gursoy, U.K.; Shapira, L.; Wilensky, A. Membrane barriers forguided bone regeneration: An overview of available biomaterials. Periodontol. 2000 2023, 93, 56–76. [Google Scholar] [CrossRef]
- Toledano-Osorio, M.; Vallecillo, C.; Vallecillo-Rivas, M.; Manzano-Moreno, F.J.; Osorio, R. Antibiotic-Loaded Polymeric Barrier Membranes for Guided Bone/Tissue Regeneration: A Mini-Review. Polymers 2022, 12, 840. [Google Scholar] [CrossRef]
- He, M.; Jiang, H.; Wang, R.; Xie, Y.; Zhao, C. Fabrication of metronidazole loaded poly (ε-caprolactone)/zein core/shell nanofiber membranes via coaxial electrospinning for guided tissue regeneration. J. Colloid Interface Sci. 2017, 490, 270–278. [Google Scholar] [CrossRef]
- Alauddin, M.S.; Hayei, N.A.A.; Sabarudin, M.A.; Baharin, N.H.M. Barrier Membrane in Regenerative Therapy: A Narrative Review. Membranes 2022, 12, 444. [Google Scholar] [CrossRef]
- Cheng, C.F.; Wu, K.M.; Chen, Y.T.; Hung, S.L. Bacterial adhesion to antibiotic-loaded guided tissue regeneration membranes—A scanning electron microscopy study. J. Formos. Med. Assoc. 2015, 114, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Cucchi, A.; Vignudelli, E.; Fiorino, A.; Pellegrino, G.; Corinaldesi, G. Vertical ridge augmentation (VRA) with Ti-reinforced d-PTFE membranes or Ti meshes and collagen membranes: 1-year results of a randomized clinical trial. Clin. Oral Implant. Res. 2021, 32, 1–14. [Google Scholar] [CrossRef] [PubMed]
Membrane Type | Description | Trade Names | Biological Characteristics | Mechanical Characteristics | Special Treatment |
---|---|---|---|---|---|
e-PTFE | Non-resorbable membrane widely used since the 1990s; effectively maintains space for bone regeneration. | Gore-Tex® | High biocompatibility; effective barrier against soft tissue invasion. | High stiffness and structural integrity during regeneration. | No special treatment; requires careful handling due to infection risk if exposed [11,14,15]. |
d-PTFE | Variant of e-PTFE with reduced porosity, offering lower susceptibility to bacterial contamination. | Cytoplast® | Low risk of infection; effective graft protection even in case of exposure. | High density; stable and easy to retrieve. | No special treatment required; suitable for open healing [11,13,14]. |
PLA | Synthetic, resorbable membrane derived from lactic acid. | Epi-Guide® | Biodegradable, with adequate biocompatibility and low immunogenicity. | Moderate mechanical strength; may require reinforcement depending on clinical use. | No special treatment typically needed [12,13]. |
PGA | Resorbable membrane similar to PLA but with a faster degradation rate. | — | High biocompatibility; rapid degradation through hydrolysis. | Low stiffness; susceptible to deformation under load. | No special treatment required [12,13]. |
PLGA | Copolymer combining PLA and PGA, enabling tailored degradation kinetics. | Resolut Adapt® Guidor® | Good biocompatibility; adjustable degradation profile. | Balanced flexibility and strength; greater stability than PGA. | No special treatment required [12,13]. |
Membranes with SiO2 | Electrospun membranes incorporating silica nanoparticles to enhance osteoconduction. | — | Promote osteoconductivity and angiogenesis. | Improved mechanical strength and integration due to nanoparticles. | May be functionalized with zinc or antimicrobials (e.g., doxycycline) [13]. |
PCL | Synthetic, slowly resorbable polymer membrane. | Guidor® Cytoplast® | Biocompatible with good integration; very slow degradation rate. | High flexibility; good mechanical resistance. | Can be blended with chitosan or other additives to enhance properties [12,13]. |
Author | Type of Study | Membrane Used | Follow-Up Time | Number of Patients/ Surgical Areas | Results Obtained | Complications | ||
---|---|---|---|---|---|---|---|---|
Test Group (TG) | Control Group (CG) | Vertical (mm) | Horizontal (mm) | |||||
Windisch et al., 2021 [15] | Prospective study | d-PTFE reinforced with Ti | No | 9 months | 19 patients/ 24 surgical areas | TG in stages: 4.5 ± 2.2 Simultaneous TG: 3.2 ± 1.9 | TG in stages: 8.7 ± 2.3 Simultaneous TG: 6.5 ± 0. 5 | 1 membrane exposure |
Palkovics et al., 2022 [16] | Prospective study | d-PTFE not reinforced | No | 9 months | 8 patients/ 8 surgical areas | TG: 3.80 ± 0.54 | TG: 5.75 ± 0.87 | 4 membrane exposures |
Kusirisin et al., 2022 [17] | Randomized clinical trial | PCL bilayer | Collagen membrane | 12 months | 24 patients/ 24 surgical areas | - | TG: 0.62 ± 0.38 CG: 0.31 ± 0.19 | 24 unspecified biological complications |
Cucchi et al., 2023 [18] | Randomized clinical trial | d-PTFE reinforced with Ti | Titanium mesh coated with collagen membrane | 3 years | 40 patients/ 108 surgical areas | TG: 4.26 ± 0.58 CT: 4.42 ± 0.62 | - | They report three cases of complications in the test group (one exposure with infection, one abscess without exposure, and one exposure >3 mm without infection) and four cases in the control group (two exposures with infection, one abscess without exposure, and one exposure >3 mm without infection). |
Arbab et al., 2016 [19] | Randomized clinical trial | Unreinforced PTFE | Collagen membrane | 4 months | 24 patients/ 24 surgical areas | TG: −0.5 ± 1.6 CG: −1.2 ± 1.5 | TG: −2.2 ± 1.5 CG: −1.4 ± 1.2 | No |
Deepika et al., 2023 [20] | Randomized clinical trial | PLA-PGA (biomes) | L-PRF membrane | 6 months | 28 patients/ 28 surgical areas | TG: 3.88 ± 1.56 CG: 3.44 ± 1.21 | TG: 1.87 ± 1.57 CG: 2.46 ± 1.38 | No |
Maiorana et al., 2021 [21] | Prospective clinical trial | d-PTFE | Titanium Mesh (TM) | 8 months | 5 patients/ 10 surgical areas | TG: 4.2 ± 2.2 CG: 1.5 ± 1.6 | - | No in d-PTFE 1 Ti mesh exposure |
Shido et al., 2023 [22] | Prospective study | P(LA/CL) | Collagen membrane | 5 months (150 days) | 20 patients/ 20 surgical areas | - | TG: 4.83 ± 3.3 * CG: 4.27 ± 3.34 * | No |
Arunjaroensuk et al., 2018 [23] | Randomized clinical trial | PLA | Collagen membrane | 6 months | 48 patients 60 surgical areas | - | TG: 2.58 ± 1.08 * CG: 2.89 ± 1.02 * | Three cases with complications in the test group and two in the control group are reported. |
Ogata et al., 2021 [24] | A series of cases | P(LA/CL) | No | 5 months | 5 patients/ 5 surgical areas | - | TG: 2.19 ± 0.62 * | There were no complications except for a fistula reported 30 days later in a single patient, which was eventually resolved. |
Li et al., 2023 [25] | Prospective randomized clinical trial | PLA | Collagen membrane | 3 years/36 months | 48 patients/ 48 surgical areas | - | TG: 2.46 ± 0.34 CG: 2.32 ± 0.46 | 2 dehiscences with PLA 1 dehiscence with collagen membrane |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima-Sánchez, B.; Baus-Domínguez, M.; Serrera-Figallo, M.-A.; Torres-Lagares, D. Advances in Synthetic Polymer Membranes for Guided Bone Regeneration in Dental Implants: A Scoping Review. J. Funct. Biomater. 2025, 16, 149. https://doi.org/10.3390/jfb16050149
Lima-Sánchez B, Baus-Domínguez M, Serrera-Figallo M-A, Torres-Lagares D. Advances in Synthetic Polymer Membranes for Guided Bone Regeneration in Dental Implants: A Scoping Review. Journal of Functional Biomaterials. 2025; 16(5):149. https://doi.org/10.3390/jfb16050149
Chicago/Turabian StyleLima-Sánchez, Belén, María Baus-Domínguez, María-Angeles Serrera-Figallo, and Daniel Torres-Lagares. 2025. "Advances in Synthetic Polymer Membranes for Guided Bone Regeneration in Dental Implants: A Scoping Review" Journal of Functional Biomaterials 16, no. 5: 149. https://doi.org/10.3390/jfb16050149
APA StyleLima-Sánchez, B., Baus-Domínguez, M., Serrera-Figallo, M.-A., & Torres-Lagares, D. (2025). Advances in Synthetic Polymer Membranes for Guided Bone Regeneration in Dental Implants: A Scoping Review. Journal of Functional Biomaterials, 16(5), 149. https://doi.org/10.3390/jfb16050149