Structural and Enhanced Optical Properties of Stabilized γ‒Bi2O3 Nanoparticles: Effect of Oxygen Ion Vacancies
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Morphological and Elemental Analysis
3.2. Structural Properties
3.3. Raman Spectroscopy
3.4. Photoluminescence Spectroscopy
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sonkusare, V.N.; Chaudhary, R.G.; Bhusari, G.S.; Rai, A.R.; Juneja, H.D. Microwave-mediated synthesis, photocatalytic degradation and antibacterial activity of α-Bi2O3 microflowers/novel γ-Bi2O3 microspindles. Nano-Struct. Nano-Objects 2018, 13, 121–131. [Google Scholar] [CrossRef]
- Li, K.; Li, S.; Zhang, J.; Feng, Z.; Li, C. Preparation and stabilization of γ-Bi2O3 photocatalyst by adding surfactant and its photocatalytic performance. Mater. Res. Express 2017, 4, 065902. [Google Scholar] [CrossRef]
- Egorysheva, A.V.; Gaitko, O.M.; Kuvshinova, T.B.; Golodukhina, S.V.; Lebedev, V.A.; Erov, K.E. Targeted synthesis ultrafine α- and γ-Bi2O3 having different morphologies. Russ. J. Inorg. Chem. 2017, 62, 1426–1434. [Google Scholar] [CrossRef]
- Liu, G.; Li, S.; Lu, Y.; Zhang, J.; Feng, Z.; Li, C. Controllable synthesis of α-Bi2O3 and γ-Bi2O3 with high photocatalytic activity by α-Bi2O3→γ-Bi2O3→α-Bi2O3 transformation in a facile precipitation method. J. Alloy. Compd. 2016, 689, 787–799. [Google Scholar] [CrossRef]
- Wang, F.; Cao, K.; Zhang, Q.; Gong, X.; Zhou, Y. A computational study on the photoelectric properties of various Bi2O3 polymorphs as visible-light driven photocatalysts. J. Mol. Model. 2014, 20, 2506. [Google Scholar] [CrossRef] [PubMed]
- Iyyapushpam, S.; Nishanthi, S.T.; Pathinettam Padiyan, D. Enhanced photocatalytic degradation of methyl orange by gamma Bi2O3 and its kinetics. J. Alloy. Compd. 2014, 601, 85–87. [Google Scholar] [CrossRef]
- Hao, W.; Gao, Y.; Jing, X.; Zou, W.; Chen, Y.; Wang, T. Visible light photocatalytic properties of metastable γ-Bi2O3 with different morphologies. J. Mater. Sci. Technol. 2014, 30, 192–196. [Google Scholar] [CrossRef]
- Han, M.; Sun, T.; Tan, P.Y.; Chen, X.; Tan, O.K.; Tse, M.S. m-BiVO4@γ-Bi2O3 core–shell p–n heterogeneous nanostructure for enhanced visible-light photocatalytic performance. RSC Adv. 2013, 3, 24964–24970. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, W.; Zhang, L.; Zhang, Z. Design and controllable synthesis of α-/γ- Bi2O3 homojunction with synergetic effect on photocatalytic activity. Chem. Eng. 2012, 211–212, 161–167. [Google Scholar] [CrossRef]
- Shang, J.; Zou, W.; Hao, W.; Xin, X.; Xu, H.; Wang, T. Visible-light photocatalytic properties of γ-Bi2O3 composited with Fe2O3. Rare Metal 2011, 30, 140–143. [Google Scholar] [CrossRef]
- Weber, M.; Rüffer, T.; Speck, F.; Göhler, F.; Weimann, D.P.; Schalley, C.A.; Seyller, T.; Lang, H.; Mehring, M. From a cerium-doped polynuclear bismuth oxido cluster to β-Bi2O3:Ce. Inorg. Chem. 2020, 59, 3353–3366. [Google Scholar] [CrossRef] [PubMed]
- Schumb, W.C.; Rittner, E.S. Polymorphism of bismuth trioxide1. J. Am. Chem. Soc. 1943, 65, 1055–1060. [Google Scholar] [CrossRef]
- Harwig, H.A.; Gerards, A.G. The polymorphism of bismuth sesquioxide. Thermochim. Acta 1979, 28, 121–131. [Google Scholar] [CrossRef]
- Mehring, M. From molecules to bismuth oxide-based materials: Potential homo- and heterometallic precursors and model compounds. Coord. Chem. Rev. 2007, 251, 974–1006. [Google Scholar] [CrossRef]
- Radaev, S.F.; Yu, V.I.S.; Kargin, F. Structural features of y-phase Bi2O3 and its place in the sillenite family. Acta Cryst. 1992, 48, 6. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; Hao, W.; Xu, H.; Wang, C. Effect of intrinsic oxygen vacancy on the electronic structure of γ-Bi2O3: First-principles calculations. J. Phys. Chem. C 2012, 116, 1251–1255. [Google Scholar] [CrossRef]
- Kröger, F.A.; Vink, H.J. Relations between the concentrations of imperfections in solids. J. Phys. Chem. Solids 1958, 5, 208–223. [Google Scholar] [CrossRef]
- Poleti, D.; Karanović, L.; Zdujić, M.; Jovalekić, Č.; Branković, Z. Mechanochemical synthesis of γ-Bi2O3. Solid State Sci. 2004, 6, 239–245. [Google Scholar] [CrossRef]
- Gurunathan, K. Photocatalytic hydrogen production using transition metal ions-doped γ-Bi2O3 semiconductor particles. Int. J. Hydrog. Energy 2004, 29, 933–940. [Google Scholar] [CrossRef]
- Wu, Y.-C.; Huang, Y.-T.; Yang, H.-Y. Crystallization mechanism and photocatalytic performance of vanadium-modified bismuth oxide through precipitation processes at room temperature. Cryst. Eng. Commun. 2016, 18, 6881–6888. [Google Scholar] [CrossRef]
- Popescu, T.; Lupu, A.R.; Feder, M.; Tarabasanu-Mihaila, D.; Teodorescu, V.S.; Vlaicu, A.M.; Diamandescu, L. In vitro toxicity evaluation of Ti4+-stabilized γ-Bi2O3 sillenites. Toxicol. Vitr. 2014, 28, 1523–1530. [Google Scholar] [CrossRef] [PubMed]
- Dapčević, A.; Poleti, D.; Karanović, L. Improved structural model of Pb-doped γ-Bi2O3: (Bi23.68Pb0.32)(Bi1.28Pb0.72)O38.48. Powder Diffr. 2012, 27, 2–7. [Google Scholar]
- Branković, M.Z.; Branković, O.G.; Poleti, D.D.; Karanović, Č.L.; Varela, A.J. Correlation between chemical composition of the γ- Bi2O3 phase and the properties of ZnO varistors. Chem. Ind. Chem. Eng. Q. 2005, 11, 4. [Google Scholar]
- Wang, Y.; Li, Z.; Yu, H.; Guo, L. Controllable synthesis of metastable γ-Bi2O3 architectures and optical properties. Mater. Sci. Semicond. Process. 2017, 64, 55–62. [Google Scholar] [CrossRef]
- Jia, B.; Zhang, J.; Luan, J.; Li, F.; Han, J. Synthesis and growth mechanism of various structures Bi2O3 via chemical precipitate method. J. Mater. Sci. Mater. 2017, 28, 11084–11090. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y. Metastable γ-Bi2O3 tetrahedra: Phase-transition dominated by polyethylene glycol, photoluminescence and implications for internal structure by etch. J. Colloid Interface Sci. 2015, 454, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Wang, S.; Zhao, L.; Dong, B.; Xu, Z.; Li, J. Surfactant-assisted hydrothermal synthesis of Bi2O3 nano/microstructures with tunable size. RSC Adv. 2012, 2, 3374–3378. [Google Scholar] [CrossRef]
- Jing, H.; Chen, X.; Jiang, X. Controlled synthesis of bismuth oxide microtetrahedrons and cubes by precipitation in alcohol–water systems. Micro Nano Lett. 2012, 7, 357–359. [Google Scholar] [CrossRef]
- Tseng, T.-K.; Choi, J.; Jung, D.-W.; Davidson, M.; Holloway, P.H. Three-dimensional self-assembled hierarchical architectures of gamma-phase flowerlike bismuth oxide. ACS Appl. Mater. Interfaces 2010, 2, 943–946. [Google Scholar] [CrossRef]
- Weber, M.; Rodriguez, R.D.; Zahn, D.R.T.; Mehring, M. γ-Bi2O3—To be or not to be? Comparison of the Sillenite γ-Bi2O3 and isomorphous sillenite-type Bi12SiO20. Inorg. Chem. 2018, 57, 8540–8549. [Google Scholar] [CrossRef]
- Weber, M.; Schlesinger, M.; Mehring, M. Evaluation of synthetic methods for Bismuth(III) oxide polymorphs: Formation of binary versus ternary oxides. Cryst. Growth Des. 2016, 16, 5678–5688. [Google Scholar] [CrossRef]
- Ahila, M.; Dhanalakshmi, J.; Selvakumari, J.C.; Padiyan, D.P. Heat treatment effect on crystal structure and design of highly sensitive room temperature CO2 gas sensors using anodic Bi2O3 nanoporous formed in a citric acid electrolyte. Mater. Res. Express 2016, 3, 105025. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Dutta, S.; Dutta, A.; Pradhan, S.K. Mechanosynthesis of nanocrystalline fully stabilized bcc γ-phase of Bi2O3 without any additive: Manifestation of ferroelasticity in microstructure, optical, and transport properties. Cryst. Growth Des. 2018, 18, 6564–6572. [Google Scholar] [CrossRef]
- Salazar-Pérez, A.J.; Camacho-López, M.A.; Morales-Luckie, R.A.; Sánchez-Mendieta, V.; Ureña-Ñúñez, F.; Arenas-Alatorre, J. Structural evolution of Bi2O3 prepared by thermal oxidation of bismuth nano-particles. Superf. Vacío 2005, 18, 4–8. [Google Scholar]
- Gandhi, A.C.; Pant, J.; Pandit, S.D.; Dalimbkar, S.K.; Chan, T.-S.; Cheng, C.-L.; Ma, Y.-R.; Wu, S.Y. Short-range magnon excitation in NiO nanoparticles. J. Phys. Chem. C 2013, 117, 18666–18674. [Google Scholar] [CrossRef]
- Gandhi, A.C.; Wu, S.Y. Strong deep-level-emission photoluminescence in NiO nanoparticles. Nanomaterials 2017, 7, 231. [Google Scholar] [CrossRef]
- Yang, B.; Mo, M.; Hu, H.; Li, C.; Yang, X.; Li, Q.; Qian, Y. A rational self-sacrificing template route to β-Bi2O3 nanotube arrays. Eur. J. Inorg. Chem. 2004, 2004, 1785–1787. [Google Scholar] [CrossRef]
- Xiao, X.; Hu, R.; Liu, C.; Xing, C.; Qian, C.; Zuo, X.; Nan, J.; Wang, L. Facile large-scale synthesis of β-Bi2O3 nanospheres as a highly efficient photocatalyst for the degradation of acetaminophen under visible light irradiation. Appl. Catal. B Environ. 2013, 140–141, 433–443. [Google Scholar] [CrossRef]
- Gandhi, A.C.; Gaikwad, S.S.; Peng, J.-C.; Wang, C.-W.; Chan, T.S.; Wu, S.Y. Strong electron-phonon coupling in superconducting bismuth nanoparticles. APL Mater. 2019, 7, 031111. [Google Scholar] [CrossRef] [Green Version]
- Toby, B.H.; Von Dreele, R.B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Cryst. 2013, 46, 6. [Google Scholar]
- Venugopalan, S.; Ramdas, A.K. Raman spectra of bismuth germanium oxide and bismuth silicon oxide. Phys. Rev. B 1972, 5, 4065–4079. [Google Scholar] [CrossRef]
- Egorysheva, A.V.; Yu, V.I.B.; Kargin, F.; Plotnichenko, V.G.; Koltashev, V.V.; Obraztsova, E.D.; Terekhov, S.V. Atomic structure features of sillenite crystals as probed by raman spectroscopy. Zhurnal Neorg. Khimii 2005, 38, 9. [Google Scholar]
- Wiehl, L.; Friedrich, A.; Haussühl, E.; Morgenroth, W.; Grzechnik, A.; Friese, K.; Winkler, B.; Refson, K.; Milman, V. Structural compression and vibrational properties of Bi12SiO20 sillenite from experiment and theory. J. Condens. Matter Phys. 2010, 22, 505401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihailova, B.; Gospodinov, M.; Konstantinov, L. Raman spectroscopy study of sillenites. I. Comparison between Bi12(Si,Mn)O20 single crystals. J. Phys. Chem. Solids 1999, 60, 1821–1827. [Google Scholar] [CrossRef]
- Wojdowski, W. Vibrational Modes in Bi12GeO20 and Bi12SiO20 Crystals. Phys. Status Solidi B 1985, 130, 121–130. [Google Scholar] [CrossRef]
- Blasse, G.; Zhiran, H.; Winnubst, A.J.A.; Burggraaf, A.J. The luminescence of yitria stabilized zirconia doped with Bi2O3. Mater. Res. Bull. 1984, 19, 1057–1062. [Google Scholar] [CrossRef] [Green Version]
- Kumari, L.; Lin, J.-H.; Ma, Y.-R. One-dimensional Bi2O3 nanohooks: Synthesis, characterization and optical properties. J. Phys. Condens. Matter 2007, 19, 406204. [Google Scholar] [CrossRef]
- Hamstra, M.A.; Folkerts, H.F.; Blasse, G. Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates. J. Mater. Chem. 1994, 4, 1349–1350. [Google Scholar] [CrossRef]
- Gaft, M.; Reisfeld, R.; Panczer, G.; Boulon, G.; Saraidarov, T.; Erlish, S. The luminescence of Bi, Ag and Cu in natural and synthetic barite BaSO4. Opt. Mater. 2001, 16, 279–290. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Lu, G.X. The roles of density-tunable surface oxygen vacancy over bouquet-like Bi2O3 in enhancing photocatalytic activity. Phys. Chem. Chem. Phys. 2014, 16, 4165–4175. [Google Scholar] [CrossRef]
- Schmidt, S.; Kubaski, E.T.; Li, M.S.; Bezzon, V.D.N.; Sequinel, T.; Tebcherani, S.M. Blue or red photoluminescence emission in α-Bi2O3 needles: Effect of synthesis method. Luminscence 2018, 33, 1281–1287. [Google Scholar] [CrossRef] [PubMed]
- Rafiaei, S.M.; Shokouhimehr, M. Impact of process parameters on luminescence properties and nanostructure of YVO4:Eu phosphor. Mater. Chem. Phys. 2019, 229, 431–436. [Google Scholar] [CrossRef]
- Shukla, S.; Seal, S. Mechanisms of room temperature metastable tetragonal phase stabilization in zirconia. Int. Mater. Rev. 2005, 50, 45–64. [Google Scholar] [CrossRef]
Sites | Element | x | y | z | Occupancy |
---|---|---|---|---|---|
24f | Bi(1) | 0.8244(1) | 0.6801(1) | 0.9881(1) | 0.9989(4) |
2a | Bi(2) | 0 | 0 | 0 | 0.943(8) |
24f | O(1) | 0.8690(7) | 0.7661(7) | 0.4884(16) | 1.0104(17) |
8c | O(2) | 0.8093(16) | 0.8093(16) | 0.8093(16) | 0.861(29) |
8c | O(3) | 0.162(3) | 0.162(3) | 0.162(3) | 1.08(4) |
Vibration Symmetry [41] | Frequency (cm−1) | FWHM (cm−1) | I.A. (%) |
---|---|---|---|
A | 81 | 10 | 3.2 |
A | 89 | 15 | 3.0 |
A | 141 | 14 | 3.0 |
A | 157 | 23 | 2.9 |
A | 281 | 28 | 6.6 |
A | 312 | 36 | 14.6 |
A | 528 | 34 | 24.0 |
E/F | 111 | 23 | 5.6 |
E | 125 | 10 | 4.9 |
E | 257 | 27 | 9.3 |
E | 381 | 30 | 4.0 |
E | 448 | 11 | 0.2 |
E | 614 | 16 | 0.2 |
F | 206 | 14 | 0.3 |
F | 344 | 54 | 13.2 |
F | 436 | 12 | 0.05 |
F | 494 | 26 | 1.6 |
F | 628 | 24 | 1.1 |
? | 567 | 22 | 2.3 |
? | 481 | 5 | 0.05 |
Peak Center (nm) | FWHM (nm) | Integrated Area (a.u.) |
---|---|---|
394 | 57 | 259 |
487 | 115 | 912 |
588 | 61 | 1657 |
701 | 120 | 11,936 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gandhi, A.C.; Cheng, C.-L.; Wu, S.Y. Structural and Enhanced Optical Properties of Stabilized γ‒Bi2O3 Nanoparticles: Effect of Oxygen Ion Vacancies. Nanomaterials 2020, 10, 1023. https://doi.org/10.3390/nano10061023
Gandhi AC, Cheng C-L, Wu SY. Structural and Enhanced Optical Properties of Stabilized γ‒Bi2O3 Nanoparticles: Effect of Oxygen Ion Vacancies. Nanomaterials. 2020; 10(6):1023. https://doi.org/10.3390/nano10061023
Chicago/Turabian StyleGandhi, Ashish Chhaganlal, Chia-Liang Cheng, and Sheng Yun Wu. 2020. "Structural and Enhanced Optical Properties of Stabilized γ‒Bi2O3 Nanoparticles: Effect of Oxygen Ion Vacancies" Nanomaterials 10, no. 6: 1023. https://doi.org/10.3390/nano10061023
APA StyleGandhi, A. C., Cheng, C.-L., & Wu, S. Y. (2020). Structural and Enhanced Optical Properties of Stabilized γ‒Bi2O3 Nanoparticles: Effect of Oxygen Ion Vacancies. Nanomaterials, 10(6), 1023. https://doi.org/10.3390/nano10061023