A Novel Bio-Inspired Ag/3D-TiO2/Si SERS Substrate with Ordered Moth-like Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Fabrication of 2D and 3D Polystyrene (PS) Templates
2.3. Fabrication of 2D-TiO2/Si and 3D-TiO2/Si
2.4. Fabrication of Ag/2D-TiO2/Si and Ag/3D-TiO2/Si
2.5. Raman Measurements
2.6. Photocatalytic Measurements
2.7. Photoelectrochemical (PEC) Measurements
2.8. Characterizations
3. Results and Discussion
3.1. Fabrication and Surface Characterization of SERS Substrate
3.2. Raman Performance of Ag/3D-TiO2/Si
3.3. Photocatalysis and Recyclability of Ag/3D-TiO2/Si
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Zeng, Y.; Ananth, R.; Dill, T.J.; Rodarte, A.; Rozin, M.J.; Bradshaw, N.; Brown, E.R.; Tao, A.R. Metasurface-Enhanced Raman Spectroscopy (mSERS) for Oriented Molecular Sensing. ACS Appl. Mater. Interfaces 2022, 14, 32598–32607. [Google Scholar] [CrossRef]
- Esteban, R.; Baumberg, J.J.; Aizpurua, J. Molecular Optomechanics Approach to Surface-Enhanced Raman Scattering. Acc. Chem. Res. 2022, 55, 1889–1899. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Tan, J.; Wang, Z.; Yu, L.; Liu, B.; Lin, J.; Li, J.; Huang, Z.-H.; Kang, F.; Lv, R. Femtomolar-Level Molecular Sensing of Monolayer Tungsten Diselenide Induced by Heteroatom Doping with Long-Term Stability. Adv. Funct. Mater. 2022, 2022, 2200273. [Google Scholar] [CrossRef]
- Zhou, J.; Guo, J.; Mebel, A.M.; Ghimire, G.; Liang, F.; Chang, S.; He, J. Probing the Intermediates of Catalyzed Dehydration Reactions of Primary Amide to Nitrile in Plasmonic Junctions. ACS Catal. 2022, 12, 7737–7747. [Google Scholar] [CrossRef]
- Li, H.; Merkl, P.; Sommertune, J.; Thersleff, T.; Sotiriou, G.A. SERS Hotspot Engineering by Aerosol Self-Assembly of Plasmonic Ag Nanoaggregates with Tunable Interparticle Distance. Adv. Sci. 2022, 2022, 2201133. [Google Scholar] [CrossRef]
- Nguyen, L.B.T.; Leong, Y.X.; Koh, C.S.L.; Leong, S.X.; Boong, S.K.; Sim, H.Y.F.; Phan-Quang, G.C.; Phang, I.Y.; Ling, X.Y. Inducing Ring Complexation for Efficient Capturing and Detection of Small Gaseous Molecules Using SERS for Environmental Surveillance. Angew. Chem. Int. Ed. 2022, 134, e202207447. [Google Scholar] [CrossRef]
- Dong, Y.; Gong, M.; Shah, F.U.; Laaksonen, A.; An, R.; Ji, X. Phosphonium-Based Ionic Liquid Significantly Enhances SERS of Cytochrome c on TiO2 Nanotube Arrays. ACS Appl. Mater. Interfaces 2022, 14, 27456–27465. [Google Scholar] [CrossRef]
- Wang, W.; Rahman, A.; Huang, Q.; Vikesland, P.J. Surface-Enhanced Raman Spectroscopy Enabled Evaluation of Bacterial Inactivation. Water Res. 2022, 220, 118668. [Google Scholar] [CrossRef]
- Zheng, Z.; Luo, Y.; Yang, H.; Yi, Z.; Zhang, J.; Song, Q.; Yang, W.; Liu, C.; Wu, X.; Wu, P. Thermal Tuning of Terahertz Metamaterial Absorber Properties based on VO2. Phys. Chem. Chem. Phys. 2022, 24, 8846–8853. [Google Scholar] [CrossRef]
- Zheng, Z.; Zheng, Y.; Luo, Y.; Yi, Z.; Zhang, J.; Liu, Z.; Yang, W.; Yu, Y.; Wu, X.; Wu, P. A Switchable Terahertz Device Combining Ultra-Wideband Absorption and Ultra-Wideband Complete Reflection. Phys. Chem. Chem. Phys. 2022, 24, 2527–2533. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, Y.; Luo, Y.; Zhang, J.; Yi, Z.; Wu, X.; Cheng, S.; Yang, W.; Yu, Y.; Wu, P. A Four-Band and Polarization-Independent BDS-based Tunable Absorber with High Refractive Index Sensitivity. Phys. Chem. Chem. Phys. 2021, 23, 26864–26873. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Dong, C.; Zhang, J.; Fang, X.; Ni, J.; Gan, H.; Li, J.; Song, C. DNA Walker-Powered Ratiometric SERS Cytosensor of Circulating Tumor Cells with Single-Cell Sensitivity. Biosens. Bioelectron. 2022, 213, 114442. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.R.; Hsu, S.H.-J.; Chou, D.-A.; Wang, G.-J.; Chang, C.C. Surface Plasmon-Enhanced Fluorescence and Surface-Enhanced Raman Scattering Dual-Readout Chip Constructed with Silver Nanowires: Label-Free Clinical Detection of Direct-Bilirubin. Biosens. Bioelectron. 2022, 213, 114440. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhang, J.; Zhu, X.; Liu, Z.; Huang, J.; Jiang, X.; Fu, F.; Lin, Z.; Dong, Y. Hybridizing Silver Nanoparticles in Hydrogel for High-Performance Flexible SERS Chips. ACS Appl. Mater. Interfaces 2022, 14, 26216–26224. [Google Scholar] [CrossRef]
- Man, T.; Lai, W.; Zhu, C.; Shen, X.; Zhang, W.; Bao, Q.; Chen, J.; Wan, Y.; Pei, H.; Li, L. Perovskite Mediated Vibronic Coupling of Semiconducting SERS for Biosensing. Adv. Funct. Mater. 2022, 2022, 2201799. [Google Scholar] [CrossRef]
- Park, S.; Jeon, C.S.; Choi, N.; Moon, J.-I.; Lee, K.M.; Pyun, S.H.; Kang, T.; Choo, J. Sensitive and Reproducible Detection of SARS-CoV-2 using SERS-Based Microdroplet Sensor. Chem. Eng. J. 2022, 446, 137085. [Google Scholar] [CrossRef]
- Nie, M.; Zhao, Y.; Nam, W.; Song, J.; Zhu, W.; Lezec, H.J.; Agrawal, A.; Zhou, W. Broadband Nanoscale Surface-Enhanced Raman Spectroscopy by Multiresonant Nanolaminate Plasmonic Nanocavities on Vertical Nanopillars. Adv. Funct. Mater. 2022, 2022, 2202231. [Google Scholar] [CrossRef]
- Nahi, O.; Broad, A.; Kulak, A.N.; Freeman, H.M.; Zhang, S.; Turner, T.D.; Roach, L.; Darkins, R.; Ford, I.J.; Meldrum, F.C. Positively Charged Additives Facilitate Incorporation in Inorganic Single Crystals. Chem. Mater. 2022, 34, 4910–4923. [Google Scholar] [CrossRef]
- Cai, J.; Wang, Z.; Jia, S.; Feng, Z.; Ren, Y.; Lin, L.; Chen, G.; Zheng, Z. Si/TiO2/Ag Multistorey Structures with Interfacial Charge Transfer for a Recyclable Surface-Enhanced Raman Scattering Substrate. ACS Appl. Mater. Interfaces 2022, 14, 13703–13712. [Google Scholar] [CrossRef]
- Tian, Y.; Hu, H.; Chen, P.; Dong, F.; Huang, H.; Xu, L.; Yan, L.; Song, Z.; Xu, T.; Chu, W. Dielectric Walls/Layers Modulated 3D Periodically Structured SERS Chips: Design, Batch Fabrication, and Applications. Adv. Sci. 2022, 9, 2200647. [Google Scholar] [CrossRef]
- Garg, A.; Mejia, E.; Nam, W.; Nie, M.; Wang, W.; Vikesland, P.; Zhou, W. Microporous Multiresonant Plasmonic Meshes by Hierarchical Micro–Nanoimprinting for Bio-Interfaced SERS Imaging and Nonlinear Nano-Optics. Small 2022, 18, 2106887. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Zhao, Y.; Zhuang, S.; Zha, J.; Dong, J.; You, Q.; Gan, Z.; Xia, N.; Li, J.; Wu, Z.; et al. Unravelling the Structure of a Medium-Sized Metalloid Gold Nanocluster and its Filming Property. Angew. Chem. Int. Ed. 2021, 60, 11184–11189. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Ma, D.; Chen, F.; Chen, D.; Bai, M.; Xu, K.; Zhao, Y. Green in Situ Synthesis of Clean 3D Chestnutlike Ag/WO3-x Nanostructures for Highly Efficient, Recyclable and Sensitive SERS Sensing. ACS Appl. Mater. Interfaces 2017, 9, 7436–7446. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wu, H.; Huang, Y.; Zou, S.; Li, J.; Zhang, Z. High-Performance Real-Time SERS Detection with Recyclable Ag Nanorods@HfO2 Substrates. ACS Appl. Mater. Interfaces 2016, 8, 27162–27168. [Google Scholar] [CrossRef] [PubMed]
- Butmee, P.; Samphao, A.; Tumcharern, G. Reduced Graphene Oxide on Silver Nanoparticle Layers-Decorated Titanium Dioxide Nanotube Arrays as SERS-Based Sensor for Glyphosate Direct Detection in Environmental Water and Soil. J. Hazard. Mater. 2022, 437, 129344. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, J.; Lai, W.; Yang, X.; Meng, J.; Su, L.; Gu, C.; Jiang, T.; Li, Q.; Han, J.; et al. Irreversible Accumulated SERS Behavior of the Molecule-Linked Silver and Silver-Doped Titanium Dioxide Hybrid System. Nat. Commun. 2020, 11, 1785. [Google Scholar] [CrossRef]
- Chen, C.; Wang, X.; Zhang, Y.; Li, X.; Gao, H.; Waterhouse, G.I.N.; Qiao, X.; Xu, Z. A Molecularly-Imprinted SERS Sensor Based on a TiO2@Ag Substrate for the Selective Capture and Sensitive Detection of Tryptamine in Foods. Food Chem. 2022, 394, 133536. [Google Scholar] [CrossRef]
- Mu, W.Q.; Hwang, D.K.; Chang, R.P.H.; Ketterson, J.B. Silver-Coated Inverse Opals Formed from Polystyrene Spheres for Surface-Enhanced Raman Scattering. J. Raman Spectrosc. 2011, 42, 941–944. [Google Scholar] [CrossRef]
- Li, J.Y.; Zhang, S.F.; Yang, J.; Zheng, X.D. Improved SERS Sensitivity of TiO2 Nanorod Films by Annealing in Vacuum. Vacuum 2021, 194, 110579. [Google Scholar] [CrossRef]
- Li, L.; Dong, J.; Qian, W.P. Research in the Preparation and Application of Nanobowl Arrays. Prog. Chem. 2018, 30, 156–165. [Google Scholar]
- Ai, B.; Wang, Z.; Mohwald, H.; Zhang, G. Plasmonic Nanochemistry Based on Nanohole Array. ACS Nano 2017, 11, 12094–12102. [Google Scholar] [CrossRef]
- Geng, C.; Zheng, L.; Yu, J.; Yan, Q.; Wei, T.; Wang, X.; Shen, D. Thermal Annealing of Colloidal Monolayer at the Air/Water Interface: A Facile Approach to Transferrable Colloidal Masks with Tunable Interstice Size for Nanosphere Lithography. J. Mater. Chem. 2012, 22, 22678–22685. [Google Scholar] [CrossRef]
- Jin, X.; Zhu, Q.; Feng, L.; Li, X.; Zhu, H.; Miao, H.; Zeng, Z.; Wang, Y.; Li, Y.; Wang, L.; et al. Light-Trapping SERS Substrate with Regular Bioinspired Arrays for Detecting Trace Dyes. ACS Appl. Mater. Interfaces 2021, 13, 11535–11542. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Lu, N.; Gao, L.; Xu, H.; Yang, B.; Li, Y.; Wu, Y.; Chi, L. Fabrication of TiO2 Arrays Using Solvent-Assisted Soft Lithography. Langmuir 2009, 25, 9639–9643. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Salgueirino-Maceira, V.; Liz-Marzan, L.M. Deposition of Silver Nanoparticles on Silica Spheres by Pretreatment Steps in Electroless Plating. Chem. Mater. 2001, 13, 1630–1633. [Google Scholar] [CrossRef]
- Zhang, S.F.; Zhao, H.; Li, X.; Li, Y.; Jin, Y.B.; Liu, X.F.; Shi, G.; Wong, P.K. A Hierarchical SiPN/CN/MoSX Photocathode with Low Internal Resistance and Strong Light-Absorption for Solar Hydrogen Production. Appl. Catal. B-Environ. 2022, 300, 120758. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Wang, H.; Miao, H.; Zhu, H.; Liu, X.; Lin, H.; Shi, G. Fabrication of a Three-Dimensional Bionic Si/TiO2/MoS2 Photoelectrode for Efficient Solar Water Splitting. ACS Appl. Energ. Mater. 2021, 4, 730–736. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, J.; Zheng, J.; Chen, X.; Xu, H.; Petrescu, F.I.T.; Ungureanu, L.M.; Shi, G. A Simple Polypyrrole/Polyvinylidene Fluoride Membrane with Hydrophobic and Self-Floating Ability for Solar Water Evaporation. Nanomaterials 2022, 12, 859. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, L.; Zhu, H.; Miao, H.; Li, Y.; Liu, X.; Shi, G. Noncontact Metal–Spiropyran–Metal Nanostructured Substrates with Ag and Au@SiO2 Nanoparticles Deposited in Nanohole Arrays for Surface-Enhanced Fluorescence and Trace Detection of Metal Ions. ACS Appl. Nano Mater. 2021, 4, 3780–3789. [Google Scholar] [CrossRef]
- Sun, H.; Li, X.; Chen, J.; Zhu, H.; Miao, H.; Li, Y.; Liu, X.; Shi, G. A Novel Photothermal, Self-Healing and Anti-Reflection Water Evaporation Membrane. Soft Matter 2021, 17, 4730–4737. [Google Scholar] [CrossRef]
- Shi, G.; Zhang, X.; Li, J.; Zhu, H.; Li, Y.; Zhang, L.; Ni, C.; Chi, L. Fabrication of 3D Biomimetic Composite Coating with Broadband Antireflection, Superhydrophilicity, and Double p-n Heterojunctions. Nano Res. 2017, 10, 2377–2385. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Z.; Yang, H.; Wen, L.; Yi, Z.; Zhou, Z.; Dai, B.; Zhang, J.; Wu, X.; Wu, P. Multi-mode Surface Plasmon Resonance Absorber based on Dart-Type Single-Layer Graphene. RSC Adv. 2022, 12, 7821–7829. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Lin, J.; Lei, Z.; Yi, Z.; Qin, F.; Zhang, J.; Liu, L.; Wu, X.; Yang, W.; Wu, P. Realization of 18.97% Theoretical Efficiency of 0.9 µm Thick c-Si/ZnO Heterojunction Ultrathin-Film Solar Cells via Surface Plasmon Resonance Enhancement. Phys. Chem. Chem. Phys. 2022, 24, 4871–4880. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Qin, F.; Yi, Z.; Yao, W.T.; Liu, Z.; Wu, X.; Wu, P. Ultra-wideband and Wide-Angle Perfect Solar Energy Absorber based on Ti Nanorings Surface Plasmon Resonance. Phys. Chem. Chem. Phys. 2021, 23, 17041–17048. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Feng, L.; Li, J.; Li, X.; Chen, J.; Wang, L.; Qi, D.; Liu, X.; Shi, G. Fabrication of an Insect-like Compound-eye SERS Substrate with 3D Ag Nano-bowls and its Application in Optical Sensor. Sensor. Actuat. B-Chem. 2021, 330, 129357. [Google Scholar] [CrossRef]
- Yang, W.; Li, Z.; Lu, Z.; Yu, J.; Huo, Y.; Man, B.; Pan, J.; Si, H.; Jiang, S.; Zhang, C. Graphene-Ag Nnoparticles-Cicada Wings Hybrid System for Obvious SERS Performance and DNA Molecular Detection. Opt. Express 2019, 27, 3000–3013. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Petrescu, F.I.T.; Li, Y.; Song, D.; Shi, G. A Novel Bio-Inspired Ag/3D-TiO2/Si SERS Substrate with Ordered Moth-like Structure. Nanomaterials 2022, 12, 3127. https://doi.org/10.3390/nano12183127
Yang J, Petrescu FIT, Li Y, Song D, Shi G. A Novel Bio-Inspired Ag/3D-TiO2/Si SERS Substrate with Ordered Moth-like Structure. Nanomaterials. 2022; 12(18):3127. https://doi.org/10.3390/nano12183127
Chicago/Turabian StyleYang, Jingguo, Florian Ion Tiberiu Petrescu, Ying Li, Dandan Song, and Gang Shi. 2022. "A Novel Bio-Inspired Ag/3D-TiO2/Si SERS Substrate with Ordered Moth-like Structure" Nanomaterials 12, no. 18: 3127. https://doi.org/10.3390/nano12183127
APA StyleYang, J., Petrescu, F. I. T., Li, Y., Song, D., & Shi, G. (2022). A Novel Bio-Inspired Ag/3D-TiO2/Si SERS Substrate with Ordered Moth-like Structure. Nanomaterials, 12(18), 3127. https://doi.org/10.3390/nano12183127