Strain Engineering of Intrinsic Ferromagnetism in 2D van der Waals Materials
Abstract
:1. Introduction
2. Theoretical Calculations
2.1. Cr-Based 2D van der Waals Materials
2.1.1. CrCl3
2.1.2. CrBr3
2.1.3. CrI3
2.1.4. CrTe2
2.1.5. Cr2Ge2Te6
2.1.6. CrPS4
2.2. Fe-Based 2D van der Waals Materials
3. Introducing Strain in 2D van der Waals Materials
3.1. Wrinkle-Induced Strain
3.2. Bending or Pre-Stretching Flexible Substrates
3.3. Lattice Mismatch
3.4. Electrostatic Force
3.5. Field-Cooling
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2D | two-dimensional |
3D | three-dimensional |
AFM | antiferromagnetism |
BKT | Berezinskii-Kosterlitz-Thouless |
CDW | charge density wave |
CGT | Cr2Ge2Te6 |
CPT | CrPbTe3 |
DFT | density functional theory |
DM | Dzialoshinskii-Moriya |
DOS | density of states |
FGT | Fe3GeTe2 |
FM | ferromagnetism |
GGA | the generalized gradient approach |
HRTEM | high resolution transmission electron microscopy |
LDA | linear density approach |
LRO | long-range order |
LSDA | local spin density approximation |
LTEM | lorentz transmission electron microscopy |
MAE | magnetic anisotropy energy |
MBE | molecular beam epitaxy |
MC | Monte Carlo |
MCD | magnetic circular dichroism |
MFM | magnetic force microscopy |
MOKE | magneto-optical Kerr effect |
NM | nonmagnetism |
PAD | polymer assisted deposition |
PDMS | polydimethylsiloxane |
PEEM | photoemission electron microscopy |
PET | polyethyleneterephthalate |
PI | polyimide |
PRA | the random phase approximation |
PVA | polyvinyl alcohol |
QMC | Quantum Monte Carlo |
RT | room temperature |
SEM | scanning electron microscopy |
SNVM | scanning nitrogen-vacancy center microscopy |
SP-TEM | spin-polarized scanning tunneling microscopy |
SQUID | superconducting quantum interference device magnetometry |
SOC | spin-orbit coupling |
SSR | solid-state reaction |
STM | scanning tunneling microscopy |
STXM | scanning transmission X-ray microscopy |
XRD | X-ray diffraction |
Fel | electrostatic force |
TC | curie temperature |
J | the exchange coupling constant |
K | magnetic anisotropy |
ΔE | total energy difference |
References
- Mermin, N.D.; Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys. Rev. Lett. 1966, 17, 1133–1136. [Google Scholar] [CrossRef]
- Hohenberg, P.C. Existence of long-range order in one and two dimensions. Phys. Rev. 1967, 158, 383–386. [Google Scholar] [CrossRef]
- Meiklejohn, W.H.; Bean, C.P. New magnetic anisotropy. Phys. Rev. 1956, 102, 1413–1414. [Google Scholar] [CrossRef]
- Onsager, L. Crystal statistics. I. a two-dimensional model with an order-disorder transition. Phys. Rev. 1944, 65, 117–149. [Google Scholar] [CrossRef]
- Gibertini, M.; Koperski, M.; Morpurgo, A.F.; Novoselov, K.S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.H.; Bedoya-Pinto, A.M.; Dismukes, A.H.; Hamo, A.; Jenkins, S.; Koperski, M.; Liu, Y.; Sun, Q.C.; Telford, E.J.; Kim, H.H.; et al. The magnetic genome of two-dimensional van der Waals materials. ACS Nano 2022, 16, 6960–7079. [Google Scholar] [CrossRef]
- Gong, C.; Li, L.; Li, Z.L.; Ji, H.W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.Z.; Wang, Y.A.; et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269. [Google Scholar] [CrossRef]
- Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H.; et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273. [Google Scholar] [CrossRef]
- Bissett, M.A.; Tsuji, M.; Ago, H. Strain engineering the properties of graphene and other two-dimensional crystals. Phys. Chem. Chem. Phys. 2014, 16, 11124–11138. [Google Scholar] [CrossRef]
- Roldán, R.; Castellanos-Gomez, A.; Cappelluti, E.; Guinea, F. Strain engineering in semiconducting two-dimensional crystals. J. Phys. Condens. Matter 2019, 27, 313201. [Google Scholar] [CrossRef]
- Luo, M.C.; Guo, S.J. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2019, 2, 17059. [Google Scholar] [CrossRef]
- Bukharaev, A.A.; Zvezdin, K.; Pyatakov, A.P.; Fetisov, Y.K. Straintronics: A new trend in micro- and nanoelectronics and materials science. Phys.-Usp. 2018, 61, 1175–1212. [Google Scholar] [CrossRef]
- Deng, S.K.; Sumant, A.V.; Berry, V. Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 2018, 22, 14–35. [Google Scholar] [CrossRef]
- Dai, Z.H.; Liu, L.Q.; Zhang, Z. Strain engineering of 2D materials: Issues and opportunities at the interface. Adv. Mater. 2019, 31, 1805417. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.H.; Guo, S.J. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 2019, 48, 3265–3278. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.F.; Liu, K. Strain engineering in functional 2-dimensional materials. J. Appl. Phys. 2019, 125, 082402. [Google Scholar] [CrossRef]
- Peng, Z.W.; Chen, X.L.; Fan, Y.L.; Srolovitz, D.J.; Lei, D.Y. Strain engineering of 2D semiconductors and graphene: From strain fields to band-structure tuning and photonic applications. Light-Sci. Appl. 2020, 9, 190. [Google Scholar] [CrossRef]
- Yan, Y.L.; Ding, S.; Wu, X.N.; Zhu, J.; Feng, D.M.; Yang, X.D.; Li, F.F. Tuning the physical properties of ultrathin transition-metal dichalcogenides via strain engineering. RSC Adv. 2020, 10, 39455–39467. [Google Scholar] [CrossRef]
- Miao, F.; Liang, S.J.; Cheng, B. Straintronics with van der Waals materials. NPJ Quantum Mater. 2021, 6, 59. [Google Scholar] [CrossRef]
- Ren, H.T.; Xiang, G. Morphology-dependent room-temperature ferromagnetism in undoped ZnO nanostructures. Nanomaterials 2021, 11, 3199. [Google Scholar] [CrossRef]
- Yang, S.X.; Chen, Y.J.; Jiang, C.B. Strain engineering of two-dimensional materials: Methods, properties, and applications. InfoMat 2021, 3, 397–420. [Google Scholar] [CrossRef]
- Xu, X.H.; Liang, T.; Kong, D.B.; Wang, B.; Zhi, L.J. Strain engineering of two-dimensional materials for advanced electrocatalysts. Mater. Today Nano 2021, 41, 100111. [Google Scholar] [CrossRef]
- Yang, X.B.; Wang, Y.Y.; Tong, X.L.; Yang, N.J. Strain engineering in electrocatalysts: Fundamentals, progress, and perspectives. Adv. Energy Mater. 2022, 12, 2102261. [Google Scholar] [CrossRef]
- Qi, Y.P.; Sadi, M.A.; Hu, D.; Zheng, M.; Wu, Z.P.; Jiang, Y.C.; Chen, Y.P. Recent progress in strain engineering on van der Waals 2D materials: Tunable electrical, electrochemical, magnetic, and optical properties. Adv. Mater. 2023, 35, 2205714. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.T.; Xiang, G. Strain-modulated magnetism in MoS2. Nanomaterials 2022, 12, 1929. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.T.; Xiang, G. Recent progress in research on ferromagnetic rhenium disulfide. Nanomaterials 2022, 19, 3451. [Google Scholar] [CrossRef]
- Ren, H.T.; Xiang, G.; Lu, J.T.; Zhang, X.; Zhang, L. Biaxial strain-mediated room temperature ferromagnetism of ReS2 web buckles. Adv. Electron. Mater. 2019, 5, 1900814. [Google Scholar] [CrossRef]
- Ren, H.T.; Zhang, L.; Xiang, G. Web buckle-mediated room-temperature ferromagnetism in strained MoS2 thin films. Appl. Phys. Lett. 2020, 116, 012401. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Roldan, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; van der Zant, H.S.J.; Steele, G.A. Local strain engineering in atomically rhin MoS2. Nano Lett. 2013, 13, 5361–5366. [Google Scholar] [CrossRef]
- Lu, P.; Wu, X.J.; Guo, W.L.; Zeng, X.C. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. Phys. Chem. Chem. Phys. 2012, 14, 13035–13040. [Google Scholar] [CrossRef] [PubMed]
- Conley, H.J.; Wang, B.; Ziegler, J.I.; Haglund, R.F.; Pantelides, S.T.; Bolotin, K.I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630. [Google Scholar] [CrossRef] [PubMed]
- Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703–9709. [Google Scholar] [CrossRef]
- Wang, H.Y.; Liu, Y.J.; Wu, P.C.; Hou, W.J.; Jiang, Y.H.; Li, X.H.; Pandey, C.; Chen, D.D.; Yang, Q.; Wang, H.T.; et al. Above room-temperature ferromagnetism in wafer-scale two-dimensional van der Waals Fe3GeTe2 tailored by a topological insulator. ACS Nano 2020, 14, 10045–10053. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.H.; Wang, H.T.; Liu, H.J.; Wang, C.; Wei, G.S.; Fang, C.; Wang, H.C.; Geng, C.Y.; Liu, S.J.; Li, P.Y.; et al. Generation and control of Terahertz spin currents in topology-induced 2D ferromagnetic Fe3GeTe2|Bi2Te3 heterostructures. Adv. Mater. 2022, 34, 2106172. [Google Scholar] [CrossRef]
- Dolui, K.; Petrovic, M.D.; Zollner, K.; Plechac, P.; Fabian, J.; Nikolic, B.K. Proximity spin-orbit torque on a two-dimensional magnet within van der Waals heterostructure: Current-driven antiferromagnet-to-ferromagnet reversible nonequilibrium phase transition in Bilayer CrI3. Nano Lett. 2020, 20, 2288–2295. [Google Scholar] [CrossRef]
- Zhang, L.M.; Huang, X.Y.; Dai, H.W.; Wang, M.S.; Cheng, H.; Tong, L.; Li, Z.; Han, X.T.; Wang, X.; Ye, L.; et al. Proximity-coupling-induced significant enhancement of coercive field and curie temperature in 2D van der Waals heterostructures. Adv. Mater. 2020, 34, 2002032. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Tang, C.; Sachs, R.; Barlas, Y.; Shi, J. Proximity-induced ferromagnetism in graphene revealed by the anomalous hall effect. Phys. Rev. Lett. 2015, 114, 016603. [Google Scholar] [CrossRef]
- Katmis, F.; Lauter, V.; Nogueira, F.S.; Assaf, B.A.; Jamer, M.E.; Wei, P.; Satpati, B.; Freeland, J.W.; Eremin, I.; Heiman, D.; et al. A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature 2016, 533, 513–516. [Google Scholar] [CrossRef]
- Ciorciaro, L.; Kroner, M.; Watanabe, K.; Taniguchi, T.; Imamoglu, A. Observation of magnetic proximity effect using resonant optical spectroscopy of an electrically tunable MoSe2/CrBr3 heterostructure. Phys. Rev. Lett. 2020, 124, 197401. [Google Scholar] [CrossRef]
- Yang, S.X.; Wang, C.; Sahin, H.; Chen, H.; Li, Y.; Li, S.S.; Suslu, A.; Peeters, F.M.; Liu, Q.; Li, J.B.; et al. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 2015, 15, 1660–1666. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, A.; Rahman, S.; Zhang, Z.; Schoenherr, P.; Yildirim, T.J.; Gu, B.; Su, G.; Lu, Y.R.; Seidel, J. Enhanced room temperature ferromagnetism in highly strained 2D semiconductor Cr2Ge2Te6. ACS Nano 2023, 17, 735–742. [Google Scholar] [CrossRef]
- Wang, H.T.; Lu, H.C.; Guo, Z.X.; Li, A.; Wu, P.C.; Li, J.; Xie, W.R.; Sun, Z.M.; Li, P.; Damas, H.; et al. Interfacial engineering of ferromagnetism in wafer-scale van der Waals Fe4GeTe2 far above room temperature. Nat. Commun. 2023, 14, 2483. [Google Scholar] [CrossRef] [PubMed]
- Šiškins, M.; Kurdi, S.; Lee, M.; Slotboom, B.J.M.; Xing, W.Y.; l Mañas-Valero, S.; Coronado, E.; Jia, S.; Han, W.; Sar, T.V.D.; et al. Nanomechanical probing and strain tuning of the curie temperature in suspended Cr2Ge2Te6-based heterostructures. NPJ 2D Mater. Appl. 2022, 6, 41. [Google Scholar] [CrossRef]
- McCray, A.R.C.; Li, Y.; Qian, E.; Li, Y.; Wang, W.; Huang, Z.J.; Ma, X.M.; Liu, Y.Z.; Chung, D.Y.; Kanatzidis, M.G.; et al. Direct observation of magnetic bubble lattices and magnetoelastic effects in van der Waals Cr2Ge2Te6. Adv. Funct. Mater. 2023, 23, 2214203. [Google Scholar] [CrossRef]
- Noah, A.; Zur, Y.; Fridman, N.; Singh, S.; Gutfreund, A.; Herrera, E.; Vakahi, A.; Remennik, S.; Huber, M.E.; Gazit, S.; et al. Nano-patterned magnetic edges in CrGeTe3 for quasi 1-D spintronic devices. ACS Appl. Nano Mater. 2023, 6, 8627–8634. [Google Scholar] [CrossRef]
- Yu, W.; Wang, C.; Liang, S.J.; Ma, Z.C.; Xu, K.; Liu, X.W.; Zhang, L.L.; Admasu, A.S.; Cheong, S.W.; Wang, L.Z.; et al. Strain-sensitive magnetization reversal of a van der Waals magnet. Adv. Mater. 2020, 23, 2004533. [Google Scholar]
- Cenker, J.; Sivakumar, S.; Xie, K.C.; Miller, A.; Thijssen, P.; Liu, Z.Y.; Dismukes, A.; Fonseca, J.; Anderson, E.; Zhu, X.Y.; et al. Reversible strain-induced magnetic phase transition in a van der Waals magnet. Nat. Nanotechnol. 2022, 17, 256–261. [Google Scholar] [CrossRef]
- Rahman, S.; Torres, J.F.; Khan, A.R.; Lu, Y.R. Recent developments in van der Waals antiferromagnetic 2D materials: Synthesis, characterization, and device implementation. ACS Nano 2021, 15, 17175–17213. [Google Scholar] [CrossRef]
- Liu, Y.P.; Zeng, C.; Zhong, J.H.; Ding, J.N.; Wang, Z.M.; Liu, Z.W. Spintronics in two-dimensional materials. Nan-Micro Lett. 2020, 12, 93. [Google Scholar] [CrossRef]
- Mak, K.; Shan, J.; Ralph, D.C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 2019, 1, 646–661. [Google Scholar] [CrossRef]
- Marchiori, E.; Ceccarelli, L.; Rossi, N.; Lorenzelli, L.; Degen, C.L.; Poggio, M. Nanoscale magnetic field imaging for 2D materials. Nat. Rev. Phys. 2021, 4, 49–60. [Google Scholar] [CrossRef]
- Li, W.; Yang, Z.Y.; Hou, Y.L.; Gao, S. Controllable preparation and magnetism control of two-dimensional magnetic nanomaterials. Rrog. Chem. 2020, 32, 1437–1451. [Google Scholar]
- Xing, S.C.; Zhou, J.; Zhang, X.G.; Elliott, S.; Sun, Z.M. Theory, properties and engineering of 2D magnetic materials. Rrog. Mater. Sci. 2023, 132, 101036. [Google Scholar] [CrossRef]
- Ningrum, V.P.; Liu, B.W.; Wang, W.; Yin, Y.; Cao, Y.; Zha, C.Y.; Xie, H.G.; Jiang, X.H.; Sun, Y.; Qin, S.C.; et al. Recent advances in two-dimensional magnets: Physics and devices towards spintronic applications. Research 2020, 2020, 1768918. [Google Scholar] [CrossRef]
- Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, 6428. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.Y.; He, P.; Luo, L.X.; Zhan, P.X.; Guan, B.; Zheng, J. Research progress of two-dimensional magnetic materials. Sci. China. Mater. 2023, 66, 859–876. [Google Scholar] [CrossRef]
- Zhang, W.B.; Qu, Q.; Zhu, P.; Lam, C.H. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J. Phys. Chem. C 2015, 3, 12457–12468. [Google Scholar] [CrossRef]
- Webster, L.; Yan, J.A. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys. Rev. B 2018, 98, 144411. [Google Scholar] [CrossRef]
- Wang, Z.; Gibertini, M.; Dumcenco, D.; Taniguchi, T.; Watanabe, K.; Giannini, E.; Morpurgo, A.F. Determining the phase diagram of atomically thin layered antiferromagnet CrCl3. Nat. Nanotechnol. 2019, 14, 1116–1122. [Google Scholar] [CrossRef]
- Ahmad, A.S.; Liang, Y.C.; Dong, M.D.; Zhou, X.F.; Fang, L.M.; Xia, Y.H.; Dai, J.H.; Yan, X.Z.; Yu, X.H.; Dai, J.F.; et al. Pressure-driven switching of magnetism in layered CrCl3. Nanoscale 2020, 12, 22935–22944. [Google Scholar] [CrossRef] [PubMed]
- Bedoya-Pinto, A.; Ji, J.R.; Pandeya, A.K.; Gargiani, P.; Valvidares, M.; Sessi, P.; Taylor, J.M.; Radu, F.; Chang, K.; Parkin, S.S.P. Intrinsic 2D-XY Ferromagnetism in a van der Waals monolayer. Science 2021, 374, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Dupont, M.; Kvashnin, Y.O.; Shiranzaei, M.; Fransson, J.; Laflorencie, N.; Kantian, A. Monolayer CrCl3 as an ideal test bed for the universality classes of 2D magnetism. Phys. Rev. Lett. 2021, 127, 037204. [Google Scholar] [CrossRef]
- Ebrahimian, A.; Dyrdał, A.; Qaiumzadeh, A. Control of magnetic states and spin interactions in bilayer CrCl3 with strain and electric fields: An ab initio study. Sci. Rep. 2023, 13, 5336. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Mo, P.H.; Shi, M.C.; Gao, D.; Jiwu Lu, J.W. Multi-scale analysis of strain-dependent magnetocrystalline anisotropy and strain-induced villari and nagaoka-honda effects in a two-dimensional ferromagnetic chromium tri-iodide monolayer. J. Appl. Phys. 2018, 124, 044303. [Google Scholar] [CrossRef]
- Sivadas, N.; Okamoto, S.; Xu, X.D.; Fennie, C.J.; Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 2018, 18, 7658–7664. [Google Scholar] [CrossRef]
- Li, T.X.; Jiang, S.W.; Sivadas, N.; Wang, Z.F.; Xu, Y.; Weber, D.; Goldberger, J.E.; Watanabe, K.; Taniguchi, T.; Fennie, C.J.; et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 2019, 18, 1303–1308. [Google Scholar] [CrossRef]
- Song, T.C.; Fei, Z.Y.; Yankowitz, M.; Lin, Z.; Jiang, Q.N.; Hwangbo, K.; Zhang, Q.; Sun, B.S.; Taniguchi, T.; Watanabe, K.; et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat. Mater. 2019, 18, 1298–1302. [Google Scholar] [CrossRef]
- Wu, Z.W.; Yu, J.; Yuan, S.J. Strain-tunable magnetic and electronic properties of monolayer CrI3. Phys. Chem. Chem. Phys. 2019, 21, 7750–7755. [Google Scholar] [CrossRef]
- Leon, A.M.; Gonzalez, J.W.; Mejia-Lopez, J.; Lima, F.C.D.; Morell, E.S. Strain-induced phase transition in CrI3 bilayers. 2D Mater. 2020, 7, 035008. [Google Scholar] [CrossRef]
- Vishkayi, S.I.; Torbatian, Z.; Qaiumzadeh, A.; Asgari, R. Strain and electric-field control of spin-spin interactions in monolayer CrI3. Phys. Rev. Mater. 2020, 4, 094004. [Google Scholar] [CrossRef]
- Safi, A.L.; Chakraborty, S.; Ahmed, M.A.; Chattopadhyay, B. Strain tunable electronic band structure and magnetic anisotropy of CrI3 bilayer. ECS J. Solid State Sci. Technol. 2022, 11, 063008. [Google Scholar] [CrossRef]
- Li, X.X.; Yang, J.L. CrXTe3 (X = Si, Ge) nanosheets: Two dimensional intrinsic ferromagnetic semiconductors. J. Phys. Chem. C 2014, 2, 7071–7076. [Google Scholar] [CrossRef]
- Zhuang, H.L.; Xie, Y.; Kent, P.R.C.; Ganesh, P. Computational discovery of ferromagnetic semiconducting single-Layer CrSnTe3. Phys. Rev. B 2015, 92, 035407. [Google Scholar] [CrossRef]
- Dong, X.J.; You, J.Y.; Gu, B.; Su, G. Strain-induced room-temperature ferromagnetic semiconductors with large anomalous hall conductivity in two-dimensional Cr2Ge2Se6. Phys. Rev. Appl. 2019, 12, 014020. [Google Scholar] [CrossRef]
- Idzuchi, H.; Llacsahuanga Allcca, A.E.; Pan, X.C.; Tanigaki, K.; Chen, Y.P. Increased curie temperature and enhanced perpendicular magneto anisotropy of Cr2Ge2Te6/NiO heterostructures. Appl. Phys. Lett. 2019, 115, 232403. [Google Scholar] [CrossRef]
- Zeisner, J.; Alfonsov, A.; Selter, S.; Aswartham, S.; Ghimire, M.P.; Richter, M.; van den Brink, J.; Büchner, B.; Kataev, V. Magnetic anisotropy and spin-polarized two-dimensional electron gas in the van der Waals ferromagnet Cr2Ge2Te6. Phys. Rev. B 2019, 99, 165109. [Google Scholar] [CrossRef]
- Khan, I.; Hong, J.S. High curie temperature and strain-induced semiconductor-metal transition with spin reorientation transition in 2D CrPbTe3 monolayer. Nanotechnology 2020, 31, 195704. [Google Scholar] [CrossRef]
- Selter, S.; Bastien, G.; Wolter, A.U.B.; Aswartham, S.; Büchner, B. Magnetic anisotropy and low-field magnetic phase diagram of the quasi-two-dimensional ferromagnet Cr2Ge2Te6. Phys. Rev. B 2020, 101, 014440. [Google Scholar] [CrossRef]
- Spachmann, S.; Selter, S.; Büchner, B.; Aswartham, S.; Klingeler, R. Strong uniaxial pressure dependencies evidencing spin-lattice coupling and spin fluctuations in Cr2Ge2Te6. Phys. Rev. B 2023, 107, 184421. [Google Scholar] [CrossRef]
- Deiseroth, H.J.; Aleksandrov, K.; Reiner, C.; Kienle, L.; Kremer, R.K. Fe3GeTe2 and Ni3GeTe2 -two new layered transition-metal compounds: Crystal structures, HRTEM investigations, and magnetic and electrical properties. Eur. J. Inorg. Chem. 2006, 2006, 1561–1567. [Google Scholar] [CrossRef]
- Zhuang, H.L.; Kent, P.R.C.; Hennig, R.G. Strong anisotropy and magnetostriction in the two-dimensional stoner ferromagnet Fe3GeTe2. Phys. Rev. B 2016, 93, 134407. [Google Scholar] [CrossRef]
- Joe, M.; Yang, U.; Lee, C.G. First-principles study of ferromagnetic metal Fe5GeTe2. Nano Mater. Sci. 2009, 1, 299–303. [Google Scholar] [CrossRef]
- Li, X.L.; Lu, J.T.; Zhang, J.; You, L.; Su, Y.R.; Tsymbal, E.Y. Spin-dependent transport in van der Waals magnetic tunnel junctions with Fe3GeTe2 electrodes. Nano Lett. 2019, 19, 5133–5139. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.H.; Zhao, Y.H.; Shen, X.D.; Krasheninnikov, A.V.; Chen, Z.F.; Sun, L.T. Enhanced ferromagnetism and tunable magnetism in Fe3GeTe2 monolayer by strain engineering. ACS Appl. Mater. Inter. 2020, 12, 26367–26373. [Google Scholar] [CrossRef]
- Zhu, M.M.; You, Y.R.; Xu, G.Z.; Tang, J.X.; Gong, Y.Y.; Xu, F. Strain modulation of magnetic coupling in the metallic van der Waals magnet Fe3GeTe2. Intermetallics 2021, 131, 107085. [Google Scholar] [CrossRef]
- Chen, D.; Sun, W.; Wang, W.X.; Li, X.N.; Li, H.; Cheng, Z.X. Twist-stacked 2D bilayer Fe3GeTe2 with tunable magnetism. J. Mater. Chem. C 2022, 10, 12741–12750. [Google Scholar] [CrossRef]
- Ouvrard, G.; Brec, R. Modification of the cationic ordering with respect to the chalcogen in the layered MM’P2X6 phases. synthesis and structure of two-dimensional AgVP2Se6. Mat. Res. Bull. 1988, 23, 1199–1209. [Google Scholar] [CrossRef]
- Song, Z.G.; Sun, X.T.; Zheng, J.X.; Pan, F.; Hou, Y.L.; Yung, M.H.; Yang, J.B.; Lu, J. Spontaneous valley splitting and valley pseudospin field effect transistors of monolayer VagP2Se6. Nanoscale 2018, 10, 13986–13993. [Google Scholar] [CrossRef]
- Peng, Y.X.; Cheng, X.; Gu, P.F.; Wang, F.G.; Yang, J.; Xue, M.Z.; Yang, W.Y.; Wang, C.S.; Liu, S.Q.; Watanabe, K.; et al. A quaternary van der Waals ferromagnetic semiconductor AgVP2Se6. Adv. Funct. Mater. 2020, 30, 1910036. [Google Scholar] [CrossRef]
- Joolee, S.; Son, S.; Park, P.; Kim, M.; Tao, Z.; Oh, J.; Lee, T.; Lee, S.; Kim, J.; Zhang, K.X.; et al. Air-stable and layer-dependent ferromagnetism in atomically thin van der Waals CrPS4. ACS Nano 2021, 15, 16904–16912. [Google Scholar]
- Sadhukhan, B.; Bergman, A.; Kvashnin, Y.O.; Hellsvik, J.; Delin, A. Spin-lattice couplings in two-dimensional CrI3 from first-principles computations. Phys. Rev. B 2022, 105, 104418. [Google Scholar] [CrossRef]
- Kashin, I.V.; Mazurenko, V.V.; Katsnelson, M.I.; Rudenko, A.N. Orbitally-resolved ferromagnetism of monolayer CrI3. 2D Mater. 2020, 7, 025036. [Google Scholar] [CrossRef]
- Soriano, D.; Rudenko, A.N.; Katsnelson, M.I.; Rösner, M. Environmental screening and ligand-field effects to magnetism in CrI3 monolayer. NPJ 2D Comput. Mater. 2021, 7, 162. [Google Scholar] [CrossRef]
- Esteras, D.L.; Rybakov, A.; Ruiz, A.M.; Baldoví, J.J. Magnon straintronics in the 2D van der Waals ferromagnet CrSBr from first-principles. Nano Lett. 2022, 22, 8771–8778. [Google Scholar] [CrossRef]
- Kvashnin, Y.O.; Bergman, A.; Lichtenstein, A.I.; Katsnelson, M.I. Relativistic exchange interactions in CrX3 (X=Cl, Br, I) monolayers. Phys. Rev. B 2020, 102, 115162. [Google Scholar] [CrossRef]
- Torelli, D.; Olsen, T. Calculating critical temperatures for ferromagnetic order in two-dimensional materials. 2D Mater. 2019, 6, 015028. [Google Scholar] [CrossRef]
- Şaşıoğlu, E.; Sandratskii, L.M.; Bruno, P. First-principles calculation of the intersublattice exchange interactions and curie temperatures of the full heusler alloys Ni2MnX (X=Ga, In, Sn, Sb). Phys. Rev. B 2004, 70, 024427. [Google Scholar] [CrossRef]
- Singh, S.; Caron, L.; D’Souza, S.W.; Fichtner, T.; Porcari, G.; Fabbrici, S.; Shekhar, C.; Chadov, S.; Solzi, M.; Felser, C. Large magnetization and reversible magnetocaloric effect at the second-order magnetic transition in Heusler materials. Adv. Mater. 2016, 28, 3321–3325. [Google Scholar] [CrossRef]
- Chang, C.; Chen, W.; Chen, Y.; Chen, Y.H.; Chen, Y.; Ding, F.; Fan, C.H.; Fan, H.J.; Fan, Z.; Gong, C.; et al. Recent progress on two-dimensional materials. Acta Phys.-Chim. Sin. 2021, 37, 2108017. [Google Scholar] [CrossRef]
- Ghosh, S.; Ershadrad, S.; Borisov, V.; Sanyal, B. Unraveling effects of electron correlation in two-dimensional FenGeTe2 (N = 3, 4, 5) by dynamical mean field theory. NPJ 2D Comput. Mater. 2023, 9, 86. [Google Scholar] [CrossRef]
- Kim, K.S.; Zhao, Y.; Jang, H.; Lee, S.Y.; Kim, J.M.; Kim, K.S.; Ahn, J.H.; Kim, P.; Choi, J.Y.; Hong, B.H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710. [Google Scholar] [CrossRef]
- Liu, J.Y.; Sun, Q.; Kawazoe, Y.; Jena, P. Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers. Phys. Chem. Chem. Phys. 2016, 13, 8777–8784. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.Y.; Lu, N.; Wang, L.; Wu, X.J.; Zeng, X.C. Tuning electronic and magnetic properties of early transition-metal dichalcogenides via tensile strain. J. Phys. Chem. C 2014, 118, 7242–7249. [Google Scholar] [CrossRef]
- Lv, H.Y.; Lu, W.J.; Shao, D.F.; Liu, Y.; Sun, Y.P. Strain-controlled switch between ferromagnetism and antiferromagnetism in CrSeTe monolayers. Phys. Rev. B 2015, 92, 214419. [Google Scholar] [CrossRef]
- Liu, Y.H.; Kwon, S.; de Coster, G.J.; Lake, R.K.; Neupane, M.R. Structural, electronic, and magnetic properties of CrTe2. Phys. Rev. Mater. 2022, 6, 084004. [Google Scholar] [CrossRef]
- Fumega, A.O.; Phillips, J.; Victor Pardo, V. Controlled two-dimensional ferromagnetism in 1T–CrTe2: The role of charge density wave and strain. J. Phys. Chem. C 2020, 124, 21047–21053. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.C.; Mi, W.B. Role of electron filling in the magnetic anisotropy of monolayer WSe2 doped with 5d transition metals. Phys. Rev. Mater. 2017, 1, 074408. [Google Scholar] [CrossRef]
- Liu, J.; You, Y.R.; Batashev, I.; Gong, Y.Y.; You, X.M.; Huang, B.W.; Zhang, F.Q.; Miao, X.F.; Xu, F.; van Dijk, N.; et al. Design of reversible low-field magnetocaloric effect at room temperature in hexagonal Mn Ferromagnets. Phys. Rev. Appl. 2020, 13, 054003. [Google Scholar] [CrossRef]
- Stahl, J.; Shlaen, E.; Johrendt, D. The van der Waals ferromagnets Fe5-δGeTe2 and Fe5-δ-XNixGeTe2 -crystal structure, stacking faults, and magnetic properties. Z. Anorg. Allg. Chem. 2018, 644, 1923–1929. [Google Scholar] [CrossRef]
- May, A.F.; Ovchinnikov, D.; Zheng, Q.; Hermann, R.; Calder, S.; Huang, B.V.; Fei, Z.Y.; Liu, Y.H.; Xu, X.D.; McGuire, M.A. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano 2019, 13, 4436–4442. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, K.P.; Roy, S.; Jang, H.; Chen, X.; Yun, W.S.; Kim, H.; Lee, J.D.; Kim, J.; Ahn, J.H. Local strain induced band gap modulation and photoluminescence enhancement of multilayer transition metal dichalcogenides. Chem. Mater. 2017, 29, 5124–5133. [Google Scholar] [CrossRef]
- Iguiniz, N.; Frisenda, R.; Bratschitsch, R.; Castellanos-Gomez, A. Revisiting the buckling metrology method to determine the Young’s modulus of 2D materials. Adv. Mater. 2019, 31, 1807150. [Google Scholar] [CrossRef]
- Liu, Z.; Amani, M.; Najmaei, S.; Xu, Q.; Zou, X.L.; Zhou, W.; Yu, T.; Qiu, C.Q.; Glen Birdwell, A.; Crowne, F.J.; et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 2014, 5, 5246. [Google Scholar] [CrossRef]
- Brennan, C.J.; Nguyen, J.; Yu, E.T.; Lu, N.S. Interface adhesion between 2D materials and elastomers measured by buckle delaminations. Adv. Mater. Interfaces 2015, 2, 1500176. [Google Scholar] [CrossRef]
- Plechinger, G.; Castellanos-Gomez, A.; Buscema, M.; van der Zant, H.S.J.; Steele, G.A.; Kuc, A.; Heine, T.; Schüller, C.; Korn, T. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate. 2D Mater. 2015, 2, 015006. [Google Scholar] [CrossRef]
- Yang, R.; Lee, J.; Tang, G.H.; Sankaran, R.M.; Zorman, C.A.; Feng, P.X.L. Tuning optical signatures of single- and few-layer MoS2 by blown-bubble bulge straining up to fracture. Nano Lett. 2017, 17, 4568–4575. [Google Scholar] [CrossRef]
- Pak, S.; Lee, J.; Lee, Y.W.; Jang, A.R.; Ahn, S.; Ma, K.Y.; Cho, Y.; Hong, J.; Lee, S.; Jeong, H.Y.; et al. Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer. Nano Lett. 2017, 17, 5634–5640. [Google Scholar] [CrossRef]
- John, A.P.; Thenapparambil, A.; Thalakulam, M. Strain-engineering the schottky barrier and electrical transport on MoS2. Nanotechnology 2020, 31, 275703. [Google Scholar] [CrossRef] [PubMed]
- Thai, K.Y.; Park, I.J.; Kim, B.J.; Hoang, A.T.; Na, Y.; Park, C.U.; Chae, Y.; Ahn, J.H. MoS2/graphene photodetector array with strain-modulated photoresponse up to the near-infrared regime. ACS Nano 2021, 15, 12836–12846. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Zhou, J.; Hou, Z.P.; Su, W.T.; Yang, B.Z.; Li, L.W.; Yan, M. Polymer-buried van der Waals magnets for promising wearable room-temperature spintronics. Mater. Horiz. 2021, 8, 3306–3314. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.W.; Lv, Y.W.; Ren, L.W.; Li, J.; Kong, L.G.; Zeng, Y.J.; Tao, Q.Y.; Wu, R.X.; Ma, H.F.; Zhao, B.; et al. Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun. 2020, 11, 1151. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.K.; Pan, F.H.; Xu, S.; Ai, K.; Xia, T.L.; Cheng, P. Tunable magnetic properties in van der Waals crystals (Fe1-XCox)5GeTe2. Appl. Phys. Lett. 2019, 115, 232403. [Google Scholar] [CrossRef]
- Seo, J.; Kim, D.Y.; An, E.S.; Kim, K.; Kim, G.Y.; Hwang, S.Y.; Kim, D.W.; Jang, B.G.; Kim, H.; Eom, G.; et al. room temperature ferromagnetism in a magnetic metal-rich van der Waals metal. Sci. Adv. 2020, 6, eaay8912. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.M.; Song, L.Y.; Dai, H.W.; Yuan, J.H.; Wang, M.S.; Huang, X.Y.; Qiao, L.; Cheng, H.; Wang, X.; Ren, W.; et al. Substrate-modulated ferromagnetism of two-dimensional Fe3GeTe2. Appl. Phys. Lett. 2020, 116, 042402. [Google Scholar] [CrossRef]
- Deng, Y.J.; Yu, Y.J.; Song, Y.C.; Zhang, J.Z.; Wang, N.Z.; Sun, Z.Y.; Yi, Y.F.; Wu, Y.Z.; Wu, S.W.; Zhu, J.Y.; et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99. [Google Scholar] [CrossRef]
- Li, Q.; Yang, M.M.; Gong, C.; Chopdekar, R.V.; N’Diaye, A.T.; Turner, J.; Chen, G.; Scholl, A.; Shafer, P.; Arenholz, E.; et al. Patterning-induced ferromagnetism of Fe3GeTe2 van der Waals materials beyond room temperature. Nano Lett. 2018, 18, 5974–5980. [Google Scholar] [CrossRef]
- Yang, M.M.; Li, Q.; Chopdekar, R.V.; Stan, C.; Cabrini, S.; Choi, J.W.; Wang, S.; Wang, T.Y.; Gao, N.; Scholl, A.; et al. Highly enhanced curie temperature in Ga-implanted Fe3GeTe2 van der Waals material. Adv. Quantum Technol. 2020, 3, 2000017. [Google Scholar] [CrossRef]
- Niu, W.; Zhang, X.Q.; Wang, W.; Sun, J.B.; Xu, Y.B.; He, L.; Liu, W.Q.; Pu, Y. Probing the atomic-scale ferromagnetism in van der Waals magnet CrSiTe3. Appl. Phys. Lett. 2021, 119, 172402. [Google Scholar] [CrossRef]
- Kim, D.; Park, S.; Lee, J.; Yoon, J.; Joo, S.; Kim, T.; Min, K.J.; Park, S.Y.; Kim, C.; Moon, K.W.; et al. Antiferromagnetic coupling of van der Waals ferromagnetic Fe3GeTe2. Nanotechnology 2019, 30, 245701. [Google Scholar] [CrossRef]
- Ribeiro, M.; Gentile, G.; Marty, A.; Dosenovic, D.; Okuno, H.; Vergnaud, C.; Jacquot, J.F.; Jalabert, D.; Longo, D.; Ohresser, P.; et al. Large-scale epitaxy of two-dimensional van der Waals room-temperature ferromagnet Fe5GeTe2. NPJ 2D Mater. Appl. 2022, 6, 10. [Google Scholar] [CrossRef]
- Dong, X.J.; You, J.Y.; Zhang, Z.; Gu, B.; Su, G. Great enhancement of curie temperature and magnetic anisotropy in two-dimensional van der Waals magnetic semiconductor heterostructures. Phys. Rev. B 2020, 102, 144443. [Google Scholar] [CrossRef]
- Carteaux, V.; Brunet, D.; Ouvrard, G.; Andre, G. Crystallographic, magnetic and electronic structures of a new layered ferromagnetic compound Cr2Ge2Te6. J. Phys. Condens. Matter 1995, 7, 69. [Google Scholar] [CrossRef]
- Spachmann, S.; Elghandour, A.; Selter, S.; Büchner, B.; Aswartham, S.; Klingeler, R. Strong effects of uniaxial pressure and short-range correlations in Cr2Ge2Te6. Phys. Rev. Res. 2022, 4, L022040. [Google Scholar] [CrossRef]
- Wang, J.W.; Han, M.J.; Wang, Q.; Ji, Y.Q.; Zhang, X.; Shi, R.; Wu, Z.F.; Zhang, L.; Amini, A.; Guo, L.; et al. Strained epitaxy of monolayer transition metal dichalcogenides for wrinkle arrays. ACS Nano 2021, 15, 6633–6644. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.Z.; Chen, Z.K.; Shi, R.; Xiong, Z.X.; Xin, Z.X.; Wang, B.L.; Guo, J.; Peng, R.X.; Wu, Y.H.; Li, C.Y.; et al. Humidity-controlled dynamic engineering of buckling dimensionality in MoS2 thin films. ACS Nano 2022, 16, 14157–14167. [Google Scholar] [CrossRef]
- Wang, J.W.; Luo, Y.; Cai, X.B.; Shi, R.; Wang, W.J.; Li, T.R.; Wu, Z.F.; Zhang, X.; Peng, O.W.; Amini, A.; et al. Multiple regulation over growth direction, band structure, and dimension of monolayer WS2 by a quartz substrate. Chem. Mater. 2020, 32, 2508–2517. [Google Scholar] [CrossRef]
- Wang, E.Z.; Xiong, Z.X.; Chen, Z.K.; Xin, Z.Q.; Ma, H.C.; Ren, H.T.; Wang, B.L.; Guo, J.; Sun, Y.F.; Wang, X.W.; et al. Water nanolayer facilitated solitary-wave-like blisters in MoS2 thin films. Nat. Commun. 2023, 14, 4324. [Google Scholar] [CrossRef]
- Ren, H.T.; Xiong, Z.X.; Wang, E.Z.; Yuan, Z.Q.; Sun, Y.F.; Zhu, K.L.; Wang, B.L.; Wang, X.W.; Ding, H.Y.; Liu, P.; et al. Watching dynamic self-assembly of web buckles in strained MoS2 thin films. ACS Nano 2019, 13, 3106–3116. [Google Scholar] [CrossRef]
- Ahn, G.H.; Amani, M.; Rasool, H.; Lien, D.H.; Mastandrea, J.P.; Ager, J.W.; Dubey, M.; Chrzan, D.C.; Minor, A.M.; Javey, A. Strain-engineered growth of two-dimensional materials. Nat. Commun. 2017, 8, 608. [Google Scholar] [CrossRef]
- Li, H.; Qi, X.; Wu, J.; Zeng, Z.; Wei, J.; Zhang, H. Investigation of MoS2 and graphene nanosheets by magnetic force microscopy. ACS Nano 2013, 7, 2842–2849. [Google Scholar] [CrossRef] [PubMed]
- Kezilebieke, S.; Silveira, O.J.; Huda, M.N.; Vaňo, V.; Aapro, M.; Ganguli, S.C.; Lahtinen, J.; Mansell, R.; Dijken, S.V.; Foster, A.S.; et al. Electronic and magnetic characterization of epitaxial CrBr3 monolayers on a superconducting substrate. Adv. Mater. 2021, 33, 2006850. [Google Scholar] [CrossRef] [PubMed]
- Kerr, J.X. On rotation of the plane of polarization by reflection from the pole of a magnet. London Edinb. Dublin Philos. Mag. J. Sci. 1877, 3, 321–343. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, T.Y.; Ding, M.; Dong, B.J.; Li, Y.X.; Chen, M.L.; Li, X.X.; Huang, J.Q.; Wang, H.W.; Zhao, X.T.; et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 2018, 13, 554–559. [Google Scholar] [CrossRef]
- Fei, Z.Y.; Huang, B.; Malinowski, P.; Wang, W.B.; Song, T.C.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X.Y.; May, A.F.; et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 2018, 17, 778–782. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.H.; Tao, Z.; Kang, K.F.; Watanabe, K.; Taniguchi, T.; Mak, K.F.; Shan, J. Imaging and control of critical fluctuations in two-dimensional magnets. Nat. Mater. 2020, 19, 1290–1294. [Google Scholar] [CrossRef]
- Jiang, S.W.; Shan, J.; Mak, K.F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 2018, 17, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Clark, G.; Klein, D.R.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K.L.; Wilson, N.; McGuire, M.A.; Cobden, D.H.; Xiao, D.; et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544–548. [Google Scholar] [CrossRef]
- Jiang, S.W.; Li, L.Z.; Wang, Z.F.; Mak, K.F.; Jie Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 2018, 13, 549–553. [Google Scholar] [CrossRef]
- Ding, B.; Li, Z.F.; Xu, G.Z.; Li, H.; Hou, Z.P.; Liu, E.K.; Xi, X.K.; Xu, F.; Yao, Y.; Wang, W.H. Observation of magnetic skyrmion bubbles in a van der Waals ferromagnet Fe3GeTe2. Nano Lett. 2020, 20, 868–873. [Google Scholar] [CrossRef]
- Park, T.E.; Peng, L.C.; Liang, J.H.; Hallal, A.; Yasin, F.S.; Zhang, X.C.; Song, K.M.; Kim, S.J.; Kim, K.; Weigand, M.; et al. Neel-type skyrmions and their current-induced motion in van der Waals ferromagnet-based heterostructures. Phys. Rev. B 2021, 104410, 024427. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.X.; Li, Z.A.; Tian, H.F.; Shi, Y.G.; Yang, H.X.; Li, J.Q. Characteristics and temperature-field-thickness evolutions of magnetic domain structures in van der Waals magnet Fe3GeTe2 nanolayers. Appl. Phys. Lett. 2020, 116, 192403. [Google Scholar] [CrossRef]
- Chen, W.J.; Sun, Z.Y.; Wang, Z.J.; Gu, L.H.; Xu, X.D.; Wu, S.W.; Gao, C.L. Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 2019, 366, 983–987. [Google Scholar] [CrossRef] [PubMed]
- Schmid, I.; Marioni, M.A.; Kappenberger, P.; Romer, S.; Parlinska-Wojtan, M.; Hug, H.J.; Hellwig, O.; Carey, M.J.; Fullerton, E.E. Exchange bias and domain evolution at 10 nm scales. Phys. Rev. Lett. 2010, 105, 197201. [Google Scholar] [CrossRef]
- Kirtley, J.R.; Paulius, L.; Rosenberg, A.J.; Palmstrom, J.C.; Holland, C.M.; Spanton, E.M.; Schiessl, D.; Jermain, C.L.; Gibbons, J.; Fung, Y.K.K.; et al. Scanning SQUID susceptometers with sub-micron spatial resolution. Rev. Sci. Instrum. 2016, 87, 093702. [Google Scholar] [CrossRef] [PubMed]
- Finkler, A.; Vasyukov, D.; Segev, Y.; Ne’eman, L.; Lachman, E.O.; Rappaport, M.L.; Myasoedov, Y.; Zeldov, E.; Huber, M.E. Scanning superconducting quantum interference device on a tip for magnetic imaging of nanoscale phenomena. Rev. Sci. Instrum. 2012, 83, 073702. [Google Scholar] [CrossRef]
- Vasyukov, D.; Anahory, Y.; Embon, L.; Halbertal, D.; Cuppens, J.; Neeman, L.; Finkler, A.; Segev, Y.; Myasoedov, Y.; Rappaport, L.; et al. A scanning superconducting quantum interference device with single electron spin sensitivity. Nat. Nanotechnol. 2013, 8, 639–644. [Google Scholar] [CrossRef]
- Bagani, K.; Sarkar, J.; Uri, A.; Rappaport, M.L.; Huber, M.E.; Zeldov, E.; Myasoedov, Y. Sputtered Mo66Re34 squid-on-tip for high-field magnetic and thermal nanoimaging. Phys. Rev. Appl. 2019, 12, 044062. [Google Scholar] [CrossRef]
- Ren, H.T.; Zhong, J.; Xiang, G. The progress on magnetic material thin films prepared using polymer-assisted deposition. Molecules 2023, 28, 5004. [Google Scholar] [CrossRef]
- Chang, K.; Eichler, A.; Rhensius, J.; Lorenzelli, L.; Degen, C.L. Nanoscale imaging of current density with a single-spin magnetometer. Nano Lett. 2017, 17, 2367–2373. [Google Scholar] [CrossRef]
- Balasubramanian, G.; Chan, I.Y.; Kolesov, R.; Al-Hmoud, M.; Tisler, J.; Shin, C.; Kim, C.; Wojcik, A.; Hemmer, P.R.; Krueger, A.; et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 2008, 455, 648–651. [Google Scholar] [CrossRef] [PubMed]
- Ariyaratne, A.; Bluvstein, D.; Myers, B.A.; Bleszynski Jayich, A.C. Nanoscale electrical conductivity imaging using a nitrogen-vacancy center in diamond. Nat. Commun. 2019, 9, 2406. [Google Scholar] [CrossRef] [PubMed]
- Vool, U.; Hamo, A.; Varnavides, G.; Wang, Y.; Zhou, T.X.; Kumar, N.; Dovzhenko, Y.; Qiu, Z.; Garcia, C.A.C.; Pierce, A.T. Imaging phonon-mediated hydrodynamic flow in WTe2. Nat. Phys. 2021, 17, 1216–1220. [Google Scholar] [CrossRef]
- Wörnle, M.S.; Welter, P.; Giraldo, M.; Lottermoser, T.; Fiebig, M.; Gambardella, P.; Degen, C.L. Coexistence of Bloch and N’eel walls in a collinear antiferromagnet. Phys. Rev. B 2021, 103, 094426. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, H.; Xiang, G. Strain Engineering of Intrinsic Ferromagnetism in 2D van der Waals Materials. Nanomaterials 2023, 13, 2378. https://doi.org/10.3390/nano13162378
Ren H, Xiang G. Strain Engineering of Intrinsic Ferromagnetism in 2D van der Waals Materials. Nanomaterials. 2023; 13(16):2378. https://doi.org/10.3390/nano13162378
Chicago/Turabian StyleRen, Hongtao, and Gang Xiang. 2023. "Strain Engineering of Intrinsic Ferromagnetism in 2D van der Waals Materials" Nanomaterials 13, no. 16: 2378. https://doi.org/10.3390/nano13162378
APA StyleRen, H., & Xiang, G. (2023). Strain Engineering of Intrinsic Ferromagnetism in 2D van der Waals Materials. Nanomaterials, 13(16), 2378. https://doi.org/10.3390/nano13162378