Electrochemical Immunosensors Based on Screen-Printed Gold and Glassy Carbon Electrodes: Comparison of Performance for Respiratory Syncytial Virus Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrochemical Procedures
2.2. Preparation of Au/4-ATP/Anti-RSV/BSA Immunosensor
2.3. Preparation of GC/PLL/Anti-RSV/BSA Immunosensor
2.4. Virus Propagation
2.5. Quantification of RSV Infectious Particles
2.6. Virus RNA Quantification
3. Results
3.1. Characterization of the Test Electrodes
3.2. RSV Detection with Electrochemical Immunosensors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chanock, R.; Roizman, B.; Myers, R. Recovery from infants with respiratory illness of a virus related to chimpanzee coryza agent (CCA). I. Isolation, properties and characterization. Am. J. Hyg. 1957, 66, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Blount, R.E.; Morris, J.A.; Savage, R.E. Recovery of cytopathogenic agent from chimpanzees with coryza. Proc. Soc. Exp. Biol. Med. 1956, 92, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.B. Respiratory syncytial virus and parainfluenza virus. N. Engl. J. Med. 2001, 344, 1917–1928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, C.B.; Weinberg, G.A.; Iwane, M.K.; Blumkin, A.K.; Edwards, K.M.; Staat, M.A.; Auinger, P.; Griffin, M.R.; Poehling, K.A.; Erdman, D.; et al. The burden of respiratory syncytial virus infection in young children. N. Engl. J. Med. 2009, 360, 588–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falsey, A.R.; Hennessey, P.A.; Formica, M.A.; Cox, C.; Walsh, E.E. Respiratory syncytial virus infection in elderly and high-risk adults. N. Engl. J. Med. 2005, 352, 1749–1759. [Google Scholar] [CrossRef]
- Falsey, A.R.; Walsh, E.E. Respiratory syncytial virus infection in elderly adults. Drugs Aging 2005, 22, 577–587. [Google Scholar] [CrossRef]
- Han, L.L.; Alexander, J.P.; Anderson, L.J. Respiratory Syncytial Virus Pneumonia among the Elderly: An Assessment of Disease Burden. J. Infect. Dis. 1999, 179, 25–30. [Google Scholar] [CrossRef]
- Falsey, A.R.; Walsh, E.E. Respiratory Syncytial Virus Infection in Adults. Clin. Microbiol. Rev. 2000, 13, 371–384. [Google Scholar] [CrossRef]
- French, C.E.; McKenzie, B.C.; Coope, C.; Rajanaidu, S.; Paranthaman, K.; Pebody, R.; Nguyen-Van-Tam, J.S.; Noso-RSV Study Group; Higgins, J.P.T.; Beck, C.R. Risk of nosocomial respiratory syncytial virus infection and effectiveness of control measures to prevent transmission events: A systematic review. Influenza Other Respir. Viruses 2016, 10, 268–290. [Google Scholar] [CrossRef] [Green Version]
- Do, L.A.H.; van Doorn, H.R.; Bryant, J.E.; Nghiem, M.N.; Nguyen Van, V.C.; Vo, C.K.; Nguyen, M.D.; Tran, T.H.; Farrar, J.; de Jong, M.D. A sensitive real-time PCR for detection and subgrouping of human respiratory syncytial virus. J. Virol. Methods 2012, 179, 250–255. [Google Scholar] [CrossRef] [Green Version]
- Henrickson, K.J. Advances in the laboratory diagnosis of viral respiratory disease. Pediatr. Infect. Dis. J. 2004, 23, S6–S10. [Google Scholar] [CrossRef] [PubMed]
- Borg, I.; Rohde, G.; Löseke, S.; Bittscheidt, J.; Schultze-Werninghaus, G.; Stephan, V.; Bufe, A. Evaluation of a quantitative real-time PCR for the detection of respiratory syncytial virus in pulmonary diseases. Eur. Respir. J. 2003, 21, 944–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewhurst-Maridor, G.; Simonet, V.; Bornand, J.E.; Nicod, L.P.; Pache, J.C. Development of a quantitative TaqMan RT-PCR for respiratory syncytial virus. J. Virol. Methods 2004, 120, 41–49. [Google Scholar] [CrossRef] [PubMed]
- do Nascimento, C.A.; Leal, A.L.; Souza, T.S.; de Moraes, C.T.P.; Comone, P.; Tenório, E.C.N.; Vedovello, D.; Quinzani, R.H.A.; Gilio, A.E.; Vieira, S.E.; et al. One-step reverse transcriptase polymerase chain reaction for the diagnosis of respiratory syncytial virus in children. J. Virol. Methods 2008, 148, 115–119. [Google Scholar] [CrossRef]
- Falsey, A.R.; Formica, M.A.; Walsh, E.E. Diagnosis of respiratory syncytial virus infection: Comparison of reverse transcription-PCR to viral culture and serology in adults with respiratory illness. J. Clin. Microbiol. 2002, 40, 817–820. [Google Scholar] [CrossRef] [Green Version]
- Houben, M.L.; Coenjaerts, F.E.J.; Rossen, J.W.A.; Belderbos, M.E.; Hofland, R.W.; Kimpen, J.L.L.; Bont, L. Disease severity and viral load are correlated in infants with primary respiratory syncytial virus infection in the community. J. Med. Virol. 2010, 82, 1266–1271. [Google Scholar] [CrossRef]
- Mentel, R.; Wegner, U.; Bruns, R.; Gürtler, L. Real-time PCR to improve the diagnosis of respiratory syncytial virus infection. J. Med. Microbiol. 2003, 52, 893–896. [Google Scholar] [CrossRef]
- Perkins, S.M.; Webb, D.L.; Torrance, S.A.; El Saleeby, C.; Harrison, L.M.; Aitken, J.A.; Patel, A.; DeVincenzo, J.P. Comparison of a Real-Time Reverse Transcriptase PCR Assay and a Culture Technique for Quantitative Assessment of Viral Load in Children Naturally Infected with Respiratory Syncytial Virus. J. Clin. Microbiol. 2005, 43, 2356–2362. [Google Scholar] [CrossRef] [Green Version]
- Young, S.; Phillips, J.; Griego-Fullbright, C.; Wagner, A.; Jim, P.; Chaudhuri, S.; Tang, S.; Sickler, J. Molecular point-of-care testing for influenza A/B and respiratory syncytial virus: Comparison of workflow parameters for the ID Now and cobas Liat systems. J. Clin. Pathol. 2020, 73, 328–334. [Google Scholar] [CrossRef] [Green Version]
- Dziąbowska, K.; Czaczyk, E.; Nidzworski, D. Application of Electrochemical Methods in Biosensing Technologies. In Biosensing Technologies for the Detection of Pathogens-A Prospective Way for Rapid Analysis; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Liu, P.; Petrenko, V.A.; Liu, A. A Label-Free Electrochemical Impedance Cytosensor Based on Specific Peptide-Fused Phage Selected from Landscape Phage Library. Sci. Rep. 2016, 6, 22199. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Kulkarni, A.; Doepke, A.; Halsall, H.B.; Iyer, S.; Heineman, W.R. Carbohydrate-Based Label-Free Detection of Escherichia coli ORN 178 Using Electrochemical Impedance Spectroscopy. Anal. Chem. 2012, 84, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, B.V.; Cordeiro, T.A.R.; Oliveira e Freitas, G.R.; Ferreira, L.F.; Franco, D.L. Biosensors for the detection of respiratory viruses: A review. Talanta Open 2020, 2, 100007. [Google Scholar] [CrossRef]
- Zou, X.; Wu, J.; Gu, J.; Shen, L.; Mao, L. Application of Aptamers in Virus Detection and Antiviral Therapy. Front. Microbiol. 2019, 10, 1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nidzworski, D.; Siuzdak, K.; Niedziałkowski, P.; Bogdanowicz, R.; Sobaszek, M.; Ryl, J.; Weiher, P.; Sawczak, M.; Wnuk, E.; Goddard, W.A.; et al. A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond. Sci. Rep. 2017, 7, 15707. [Google Scholar] [CrossRef] [PubMed]
- Welch, N.G.; Scoble, J.A.; Muir, B.W.; Pigram, P.J. Orientation and characterization of immobilized antibodies for improved immunoassays (Review). Biointerphases 2017, 12, 02D301. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.T.; Gooding, J.J. Modification of Carbon Electrode Surfaces. In Electrochemistry of Carbon Electrodes; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2016; pp. 211–240. ISBN 978-3-527-69748-9. [Google Scholar]
- Brodowski, M.; Kowalski, M.; Skwarecka, M.; Pałka, K.; Skowicki, M.; Kula, A.; Lipiński, T.; Dettlaff, A.; Ficek, M.; Ryl, J.; et al. Highly selective impedimetric determination of Haemophilus influenzae protein D using maze-like boron-doped carbon nanowall electrodes. Talanta 2021, 221, 121623. [Google Scholar] [CrossRef]
- Niedziałkowski, P.; Ossowski, T.; Zięba, P.; Cirocka, A.; Rochowski, P.; Pogorzelski, S.J.; Ryl, J.; Sobaszek, M.; Bogdanowicz, R. Poly-l-lysine-modified boron-doped diamond electrodes for the amperometric detection of nucleic acid bases. J. Electroanal. Chem. 2015, 756, 84–93. [Google Scholar] [CrossRef]
- Idris, A.O.; Mabuba, N.; Arotiba, O.A. An alpha-fetoprotein electrochemical immunosensor based on a carbon/gold bi-nanoparticle platform. Anal. Methods 2018, 10, 5649–5658. [Google Scholar] [CrossRef]
- Samadi Pakchin, P.; Ghanbari, H.; Saber, R.; Omidi, Y. Electrochemical immunosensor based on chitosan-gold nanoparticle/carbon nanotube as a platform and lactate oxidase as a label for detection of CA125 oncomarker. Biosens. Bioelectron. 2018, 122, 68–74. [Google Scholar] [CrossRef]
- Xiang, H.; Wang, Y.; Wang, M.; Shao, Y.; Jiao, Y.; Zhu, Y. A redox cycling-amplified electrochemical immunosensor for α-fetoprotein sensitive detection via polydopamine nanolabels. Nanoscale 2018, 10, 13572–13580. [Google Scholar] [CrossRef]
- Lacina, K.; Sopoušek, J.; Čunderlová, V.; Hlaváček, A.; Václavek, T.; Lacinová, V. Biosensing based on electrochemical impedance spectroscopy: Influence of the often-ignored molecular charge. Electrochem. Commun. 2018, 93, 183–186. [Google Scholar] [CrossRef]
- Valdez, J.; Bawage, S.; Gomez, I.; Singh, S.R. Facile and rapid detection of respiratory syncytial virus using metallic nanoparticles. J. Nanobiotechnol. 2016, 14, 13. [Google Scholar] [CrossRef] [Green Version]
- Perez, J.W.; Adams, N.M.; Zimmerman, G.R.; Haselton, F.R.; Wright, D.W. Detecting respiratory syncytial virus using nanoparticle-amplified immuno-PCR. Methods Mol. Biol. 2013, 1026, 93–110. [Google Scholar] [CrossRef] [PubMed]
- Hendry, R.M.; McIntosh, K. Enzyme-linked immunosorbent assay for detection of respiratory syncytial virus infection: Development and description. J. Clin. Microbiol. 1982, 16, 324–328. [Google Scholar]
- Eboigbodin, K.E.; Moilanen, K.; Elf, S.; Hoser, M. Rapid and sensitive real-time assay for the detection of respiratory syncytial virus using RT-SIBA®®. BMC Infect. Dis. 2017, 17, 134. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir, M.S.; Marczak, M.; Bohets, H.; Bonroy, K.; Roymans, D.; Stuyver, L.; Vanhoutte, K.; Pawlak, M.; Bakker, E. A Label-Free Potentiometric Sensor Principle for the Detection of Antibody–Antigen Interactions. Anal. Chem. 2013, 85, 4770–4776. [Google Scholar] [CrossRef]
- Perez, J.W.; Haselton, F.R.; Wright, D.W. Viral detection using DNA functionalized gold filaments. Analyst 2009, 134, 1548–1553. [Google Scholar] [CrossRef] [Green Version]
Gold Electrode | ||||
Modification Step | Re (Ω) | Rct (Ω) | CPE 1* (µΩ−1sn) | n |
Au | 15.58 | 129.8 | 0.33 | 0.980 |
Au_4-ATP | 42.15 | 221.3 | 1.60 | 0.980 |
Au_4-ATP_GA | 57.72 | 328.4 | 9.63 | 0.944 |
Au_4-ATP_GA_anti-RSV | 59.92 | 612.5 | 6.12 | 0.951 |
Au_4-ATP_GA_anti-RSV_BSA | 54.38 | 784.1 | 9.33 | 0.947 |
Glassy Carbon Electrode | ||||
Modification Step | Re (Ω) | Rct (Ω) | CPE (µΩ−1sn) | n |
GC | 72.19 | 40.06 | 45.9 | 0.687 |
GC_PLL 2* | 78.19 | 1457 | 15.6 | 0.874 |
GC_PLL_anti-RSV | 72.59 | 925.8 | 14.3 | 0.862 |
GC_PLL_anti-RSV_BSA | 76.46 | 1708 | 23.1 | 0.883 |
Incubation Time | ΔRct/% |
---|---|
1 min | 12.2 (±1.66) |
3 min | 20.6 (±1.00) |
5 min | 42.9 (±2.38) |
10 min | 43.7 (±1.83) |
Type of Method | Detection Limit | Year | Reference |
---|---|---|---|
UV–Vis spectroscopy | 2.11 × 102 PFU/mL | 2016 | [34] |
RT-PCR | 1.79 × 101 PFU/mL | 2013 | [35] |
ELISA | 5.0 × 101 PFU/mL | 1982 | [36] |
RT-qPCR | 1.0 × 101 PFU/mL | 2003 | [18] |
Surface Enhanced Raman Spectroscopy(SERS) | 1.00 × 102 PFU/mL | 2006 | [37] |
Potentiometry (immunosensor) | 103 PFU/mL | 2013 | [38] |
Fluorimetry | 1.19 × 101 PFU/mL | 2009 | [39] |
Electrochemical impedance spectroscopy (Au/4-ATP/anti-RSV/BSA) | 1.10 × 103 PFU/mL | 2020 | This work |
Electrochemical impedance spectroscopy (GC/PLL/anti-RSV/BSA) | 2.85 × 106 PFU/mL | 2020 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Białobrzeska, W.; Firganek, D.; Czerkies, M.; Lipniacki, T.; Skwarecka, M.; Dziąbowska, K.; Cebula, Z.; Malinowska, N.; Bigus, D.; Bięga, E.; et al. Electrochemical Immunosensors Based on Screen-Printed Gold and Glassy Carbon Electrodes: Comparison of Performance for Respiratory Syncytial Virus Detection. Biosensors 2020, 10, 175. https://doi.org/10.3390/bios10110175
Białobrzeska W, Firganek D, Czerkies M, Lipniacki T, Skwarecka M, Dziąbowska K, Cebula Z, Malinowska N, Bigus D, Bięga E, et al. Electrochemical Immunosensors Based on Screen-Printed Gold and Glassy Carbon Electrodes: Comparison of Performance for Respiratory Syncytial Virus Detection. Biosensors. 2020; 10(11):175. https://doi.org/10.3390/bios10110175
Chicago/Turabian StyleBiałobrzeska, Wioleta, Daniel Firganek, Maciej Czerkies, Tomasz Lipniacki, Marta Skwarecka, Karolina Dziąbowska, Zofia Cebula, Natalia Malinowska, Daniel Bigus, Ewelina Bięga, and et al. 2020. "Electrochemical Immunosensors Based on Screen-Printed Gold and Glassy Carbon Electrodes: Comparison of Performance for Respiratory Syncytial Virus Detection" Biosensors 10, no. 11: 175. https://doi.org/10.3390/bios10110175
APA StyleBiałobrzeska, W., Firganek, D., Czerkies, M., Lipniacki, T., Skwarecka, M., Dziąbowska, K., Cebula, Z., Malinowska, N., Bigus, D., Bięga, E., Pyrć, K., Pala, K., Żołędowska, S., & Nidzworski, D. (2020). Electrochemical Immunosensors Based on Screen-Printed Gold and Glassy Carbon Electrodes: Comparison of Performance for Respiratory Syncytial Virus Detection. Biosensors, 10(11), 175. https://doi.org/10.3390/bios10110175