Aptamer Based on Silver Nanoparticle-Modified Flexible Carbon Ink Printed Electrode for the Electrochemical Detection of Chikungunya Virus
Abstract
:1. Introduction
2. Methods and Materials
2.1. Reagents and Materials
2.2. Instrument
2.3. Silver Nanoparticles Synthesis
2.4. PVC-Based Biosensor Fabrication and Working
2.5. Electrochemical Identification of CHIKV-Ag on the Surface of the Working Electrode
2.6. Other Optimization in Electrochemical Measurements
3. Results and Discussion
3.1. AgNPs Characterizations
3.2. Analysis of Different Stages of Aptasensor (Aptamer/AgNPs/PCE)
3.2.1. Analysis of Aptasensor Using Cyclic Voltammetry (CV) and Linear Sweep Voltammetry (LSV)
3.2.2. Electrochemical Impedance Spectroscopy (EIS)
3.3. Effect of Temperature and Time on the Fabricated Sensor
3.4. Study of Different Chikungunya Virus-Antigen Concentrations on the Aptamer/AgNPs/PCE
3.5. Other Optimization Parameters of the Apta Sensor
3.5.1. Recovery and Precision
3.5.2. Specificity Studies, Stability, Reproducibility, and Flexibility
3.6. Applications of CHIKV Spiked Serum Sample Analysis
4. Comparative Analysis
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vasiliya, K.; Aïqui-Reboul-Paviet, O.; Briant, L.; Amara, A. New insights into chikungunya virus infection and pathogenesis. Annu. Rev. Virol. 2021, 8, 327–347. [Google Scholar]
- Khongwichit, S.; Chansaenroj, J.; Chirathaworn, C.; Poovorawan, Y. Chikungunya virus infection: Molecular biology, clinical characteristics, and epidemiology in Asian countries. J. Biomed. Sci. 2021, 28, 84. [Google Scholar] [CrossRef]
- Bartholomeeusen, K.; Daniel, M.; LaBeaud, D.A. Chikungunya fever. Nat. Rev. Dis. Primers 2023, 9, 17. [Google Scholar] [CrossRef]
- Sudeep, A.B.; Parashar, D. Chikungunya: An overview. J. Biosci. 2008, 33, 443–449. [Google Scholar] [CrossRef]
- George, A.; Amrutha, M.S.; Srivastava, P.; Sai, V.V.R.; Sunil, S.; Srinivasan, R. Label-free detection of Chikungunya non-structural protein 3 using electrochemical impedance spectroscopy. J. Electrochem. Soc. 2019, 166, B1356. [Google Scholar] [CrossRef]
- Byakodi, M.; Shrikrishna, N.S.; Sharma, R.; Bhansali, S.; Mishra, Y.; Kaushik, A.; Gandhi, S. Emerging 0D, 1D, 2D, and 3D nanostructures for efficient point-ofcare biosensing. Biosens. Bioelectron. 2022, 12, 100284. [Google Scholar]
- Cinti, S. Novel paper-based electroanalytical tools for food surveillance. Anal. Bioanal. Chem. 2019, 411, 4303–4311. [Google Scholar] [CrossRef]
- Umapathi, R.; Ghoreishian, S.M.; Rani, G.M.; Cho, Y.; Huh, Y.S. Review—Emerging Trends in the Development of Electrochemical Devices for the On-Site Detection of Food Contaminants. ECS Sens. Plus 2022, 1, 044601. [Google Scholar] [CrossRef]
- Fatima, T.; Husain, S.; Khanuja, M. Optimization of WS2 modified polyaniline for superior photocatalytic degradation and electrochemical detection of pharmaceutical drug. FlatChem 2024, 44, 100624. [Google Scholar] [CrossRef]
- Nesakumar, N.; Kesavan, S.; Li, C.Z.; Alwarappan, S. Microfluidic Electrochemical Devices for Biosensing. J. Anal. Test. 2019, 3, 3–18. [Google Scholar] [CrossRef]
- Silva-Neto, H.A.; Arantes, I.V.S.; Ferreira, A.L.; Nascimento, G.H.M.D.; Meloni, G.N.; de Araujo, W.R.; Paix, T.R.C.; Coltro, W.K.T. Recent advances on paper based microfluidic devices for bioanalysi. TrAC Trends Anal. Chem. 2023, 158, 116893. [Google Scholar] [CrossRef]
- Yamanaka, K.; Vestergaard, M.C.; Tamiya, E. Printable electrochemical biosensors: A focus on screen-printed electrodes and their application. Sensors 2016, 16, 1761. [Google Scholar] [CrossRef]
- Dincer, C.; Bruch, R.; Costa-Rama, E.; Fern, M.T.; Merkoçi, A.; Manz, A.; Urban, G.A.; Güder, F. Disposable sensors in diagnostics, food, and environmental monitoring. Adv. Mater. 2019, 31, e1806739. [Google Scholar] [CrossRef]
- Killard, A.J. Disposable sensors. Curr. Opin. Electrochem. 2017, 3, 57–62. [Google Scholar] [CrossRef]
- Alonso-Lomillo, M.A.; Domínguez-Renedo, O.; Arcos-Martínez, M.J. Screen-printed biosensors in microbiology; a review. Talanta 2010, 82, 1629–1636. [Google Scholar] [CrossRef]
- Barry, R.C.; Lin, Y.; Wang, J.; Liu, G.; Timchalk, C.A. Nanotechnology-based electrochemical sensors for biomonitoring chemical exposures. J. Exposure Sci. Environ. Epidemiol. 2009, 19, 1–18. [Google Scholar] [CrossRef]
- Shaheen, S.E.; Radspinner, R.; Peyghambarian, N.; Jabbour, G.E. Fabrication of bulk heterojunction plastic solar cells by screen printing. Appl. Phys. Lett. 2001, 79, 2996–2998. [Google Scholar] [CrossRef]
- Sadeghi, M.; Kashanian, S.; Naghib, S.M.; Arkan, E. A high-performance electrochemical aptasensor based on graphene-decorated rhodium nanoparticles to detect HER2-ECD oncomarker in liquid biopsy. Sci. Rep. 2022, 12, 3299. [Google Scholar] [CrossRef]
- Sadeghi, M.; Kashanian, S.; Naghib, S.M.; Haghiralsadat, F.; Tofighi, D. An efficient electrochemical biosensor based on pencil graphite electrode mediated by 2D functionalized graphene oxide to detect HER2 breast cancer biomarker. Int. J. Electrochem. Sci. 2022, 17, 220459. [Google Scholar] [CrossRef]
- Vinkenborg, J.L.; Mayer, G.; Famulok, M. Aptamer-based affinity labeling of proteins. Angew. Chem. Int. Ed. 2012, 51, 9176–9180. [Google Scholar] [CrossRef]
- Kim, Y.S.; Raston, N.H.A.; Gu, M.B. Aptamer-based nanobiosensors. Biosens. Bioelectron. 2016, 76, 2–19. [Google Scholar] [PubMed]
- Nutiu, R.; Li, Y. Aptamers with fluorescence-signaling properties. Methods 2005, 37, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Ravalli, A.; Voccia, D.; Palchetti, I.; Marrazza, G. Electrochemical, electrochemiluminescence, and photoelectrochemical aptamer-based nanostructured sensors for biomarker analysis. Biosensors 2016, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.J.; Ding, Y.P.; Chen, X. Silver nanoparticles-based electrochemical biosensors: A review. J. Electroanal. Chem. 2019, 847, 113204. [Google Scholar]
- Napi, M.L.; Sultan, S.M.; Ismail, R.; How, K.W.; Ahmad, M.K. Electrochemical-based biosensors on different zinc oxide nanostructures: A review. Materials 2019, 12, 2985. [Google Scholar] [CrossRef]
- Andreotti, I.A.d.A.; Orzari, L.O.; Camargo, J.R.; Faria, R.C.; Marcolino-Junior, L.H.; Bergamini, M.F.; Gatti, A.; Janegitz, B.C. Disposable and flexible electrochemical sensor made by recyclable material and low-cost conductive ink. J. Electroanal. Chem. 2019, 840, 109–116. [Google Scholar] [CrossRef]
- Kouisni, L.; Rochefort, D. Confocal microscopy study of polymer microcapsules for enzyme immobilisation in paper substrates. J. Appl. Polym. Sci. 2009, 111, 1–10. [Google Scholar] [CrossRef]
- Orzari, L.O.; Andreotti, I.A.d.A.; Bergamini, M.F.; Marcolino, L.H.; Janegitz, B.C. Disposable electrode obtained by pencil drawing on corrugated fiberboard substrate. Sens. Actuators B 2018, 264, 20–26. [Google Scholar] [CrossRef]
- Hernández-Rodríguez, J.F.; Della Pelle, F.; Rojas, D.; Compagnone, D.; Escarpa, A. Xurography-Enabled Thermally Transferred Carbon Nanomaterial-Based Electrochemical Sensors on Polyethylene Terephthalate-Ethylene Vinyl Acetate Films. Anal. Chem. 2020, 92, 13565–13572. [Google Scholar] [CrossRef]
- Senhadji, Y.; Siad, H.; Escadeillas, G.; Benosman, A.S.; Chihaoui, R.; Mouli, M.; Lachemi, M. Physical, mechanical, and thermal properties of lightweight composite mortars containing recycled polyvinyl chloride. Constr. Build. Mater. 2019, 195, 198–207. [Google Scholar] [CrossRef]
- Vuorinen, T.; Niittynen, J.; Kankkunen, T.; Kraft, T.M.; M¨antysalo, M. Inkjet-printed graphene/PEDOT: PSS temperature sensors on a skin conformable polyurethane substrate. Sci. Rep. 2016, 6, 35289. [Google Scholar] [CrossRef] [PubMed]
- Janczak, C.M.; Craig, A.A. Composite nanoparticles: The best of two worlds, Analytical and bioanalytical chemistry. Anal. Bioanal. Chem. 2012, 402, 83–89. [Google Scholar] [CrossRef]
- Tam, P.D.; Tuan, M.A.; Chien, N. DNA Covalent Attachment on Conductometric Biosensor for Modified Genetic Soybean Detection. Commun. Phys. 2007, 17, 234–240. [Google Scholar]
- Peng, H.; Soeller, C.; Travas-Sejdic, J. Novel Conducting Polymers for DNA Sensing. Macromolecules 2007, 40, 909–914. [Google Scholar] [CrossRef]
- Pividori, M.; Merkoçi, A.; Alegret, S. Electrochemical Genosensor Design: Immobilisation of Oligonucleotides onto Transducer Surfaces and Detection Methods. Biosens. Bioelectron. 2007, 15, 291–303. [Google Scholar] [CrossRef]
- Cossettini, A.; Pasquardini, L.; Romani, A.; Feriani, A.; Pinamonti, D.; Manzano, M. Computational aptamer design for spike glycoprotein (S)(SARS CoV-2) detection with an electrochemical aptasensor. Appl. Microbiol. Biotechnol. 2024, 108, 259. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Pilloton, R.; Jain, S.; Roy, S.; Khanuja, M.; Mathur, A.; Narang, J. Paper based electrodes conjugated with tungsten disulfide nanostructure and aptamer for impedimetric detection of Listeria monocytogenes. Biosensors 2022, 12, 88. [Google Scholar] [CrossRef]
- Bruno, J.G.; Carrillo, M.P.; Richarte, A.M.; Phillips, T.; Andrews, C.; Lee, J.S. Development, screening, and analysis of DNA aptamer libraries potentially useful for diagnosis and passive immunity of arboviruses. BMC Res. Notes 2012, 5, 633. [Google Scholar] [CrossRef]
- Mulfinger, L.; Solomon, S.D.; Bahadory, M.; Jeyarajasingam, A.V.; Rutkowsky, A.S.; Boritz, C. Synthesis and study of silver nanoparticles. J. Chem. Educ. 2007, 84, 322. [Google Scholar] [CrossRef]
- Yupapin, P.; Trabelsi, Y.; Vigneswaran, D. Ultra-highsensitive sensor based on surface plasmon resonance structure having Si and graphene layers for the detection of chikungunya virus. Plasmonics 2022, 17, 1315–1321. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, A.; Singh, K.S.; Tyagi, H.K. 2D photonic crystal-based biosensor for the detection of chikungunya virus. Optik 2021, 237, 166575. [Google Scholar] [CrossRef]
- Shukla, S.; Grover, N.; Arora, P. Resolution enhancement using a multi-layered aluminum-based plasmonic device for chikungunya virus detection. Opt. Quantum Electron. 2023, 55, 274. [Google Scholar] [CrossRef]
- Daher, M.G.; Alsalman, O.; Ahmed, N.M.; Sassi, I.; Sorathiya, V.; Tsui, H.C.L.; Patel, S.K. Modeling a novel chikungunya virus detector based on silicon and titanium nitride multilayer thin films. Optik 2023, 287, 171136. [Google Scholar] [CrossRef]
- Singh, T.I.; Singh, P.; Karki, B. Early detection of chikungunya virus utilizing the surface plasmon resonance comprising a silversilicon-PtSe2 multilayer structure. Plasmonics 2023, 18, 1173–1180. [Google Scholar] [CrossRef] [PubMed]
- Sarra, B.; Amira, M.; Boutheyna, M. High Sensitivity Refractive Index Sensor Based on Two-Dimensional Photonic Crystal for Chikungunya Virus. J. Nano-Electron. Phys. 2023, 15, 05008. [Google Scholar] [CrossRef]
- Nasrin, F.; Tsuruga, K.; Utomo, D.; Chowdhury, A.D.; Park, E.Y. Design and analysis of a single system of impedimetric biosensors for the detection of mosquito-borne viruses. Biosensors 2021, 11, 376. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Hassan, H.; Hasan, M.R.; Fatima, T.; Mohan, H.; Khanuja, M.; Kaushik, S.; Narang, J. PBIS-based system integrated with zinc–silver nanocomposite for the detection of Chikungunya virus. Biosens. Bioelectron. X 2023, 13, 100303. [Google Scholar] [CrossRef]
- Arshavsky-Graham, S.; Heuer, C.; Jiang, X.; Segal, E. Aptasensors versus immunosensors—Which will prevail? Eng. Life Sci. 2022, 22, 319–333. [Google Scholar] [CrossRef]
- Katta, M.; Sandanalakshmi, R. Simultaneous tropical disease identification with PZT-5H piezoelectric material including molecular mass biosensor microcantilever collection. Sens. Bio-Sens. Res. 2021, 32, 100413. [Google Scholar] [CrossRef]
- Simão, E.P.; Silva, D.B.; Cordeiro, M.T.; Gil, L.H.; Andrade, C.A.; Oliveira, M.D. Nanostructured impedimetric lectin-based biosensor for arboviruses detection. Talanta 2020, 208, 120338. [Google Scholar] [CrossRef]
- Singhal, C.; Dubey, A.; Mathur, A.; Pundir, C.; Narang, J. Paper based DNA biosensor for detection of chikungunya virus using gold shells coated magnetic nanocubes. Process. Biochem. 2018, 74, 35–42. [Google Scholar] [CrossRef]
Initial Concentration µg/mL | Current Measured (µA) | Concentration (Added) µg/mL | Final Current Measured (µA) Mean± SD | Found Concentration µg/mL | RSD (%) | Recovery (%) |
---|---|---|---|---|---|---|
0.001 | 16.00 | 0.005 | 14.58 ± 0.27 | 0.0067 | 1.91 | 91 |
0.01 | 12.21 | 0.05 | 11.30 ± 0.81 | 0.054 | 7.1 | 92.5 |
0.0001 | 18.74 | 0.0005 | 17.51 ± 0.71 | 0.0007 | 4.05 | 93 |
Antigen | Within Batch (n = 5) Mean ± SD | Between Batch (n = 5) Mean ± SD |
---|---|---|
CHIKV-Ag (ng/mL) | 0.15 ± 0.03 | 0.13 ± 0.01 |
S.No. | Method | Substrate Type | LOD | Linear Range | Reference |
---|---|---|---|---|---|
1. | Surface plasmon resonance sensor | Silicon and graphene layers are positioned over the base of a glass prism sputtered with a silver coating. | 393 degRIU−1 (platelets) 160 degRIU−1 (plasma cells) | - | [40] |
2. | Surface plasmon resonance sensor | BK7prism(coupling)/ Ag(metal)/PtSe2(TMD) | 287.3 degRIU−1 | - | [44] |
4 | Piezoelectric sensing | Cantilever | - | - | [49] |
5 | Electrochemical biosensor | Three-electrode (conventional) | 0.062 pfuml−1 | - | [50] |
6 | Immunosensor | Gold (Au) electrode | 22.1 fg mL−1 | 100 fg mL−1–1 ng/mL−1 | [46] |
7 | Genosensor (Electrochemical) | ePAD | 0.1 nM | 0.1 nM–100 μM | [51] |
8 | Electrochemical PVC–based sensor | PVC | 0.1 ng/mL | 0.1 ng/mL to 1 µg/mL | Present Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, P.; Hasan, M.R.; Naikoo, U.M.; Khatoon, S.; Pilloton, R.; Narang, J. Aptamer Based on Silver Nanoparticle-Modified Flexible Carbon Ink Printed Electrode for the Electrochemical Detection of Chikungunya Virus. Biosensors 2024, 14, 344. https://doi.org/10.3390/bios14070344
Sharma P, Hasan MR, Naikoo UM, Khatoon S, Pilloton R, Narang J. Aptamer Based on Silver Nanoparticle-Modified Flexible Carbon Ink Printed Electrode for the Electrochemical Detection of Chikungunya Virus. Biosensors. 2024; 14(7):344. https://doi.org/10.3390/bios14070344
Chicago/Turabian StyleSharma, Pradakshina, Mohd. Rahil Hasan, Ubaid Mushtaq Naikoo, Shaheen Khatoon, Roberto Pilloton, and Jagriti Narang. 2024. "Aptamer Based on Silver Nanoparticle-Modified Flexible Carbon Ink Printed Electrode for the Electrochemical Detection of Chikungunya Virus" Biosensors 14, no. 7: 344. https://doi.org/10.3390/bios14070344
APA StyleSharma, P., Hasan, M. R., Naikoo, U. M., Khatoon, S., Pilloton, R., & Narang, J. (2024). Aptamer Based on Silver Nanoparticle-Modified Flexible Carbon Ink Printed Electrode for the Electrochemical Detection of Chikungunya Virus. Biosensors, 14(7), 344. https://doi.org/10.3390/bios14070344