CLICK-FLISA Based on Metal–Organic Frameworks for Simultaneous Detection of Fumonisin B1 (FB1) and Zearalenone (ZEN) in Maize
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of MOFs
2.2. Preparation of CLICK-MOF Assemblies
2.3. Preparation of TCO-Ab2
2.4. Detection Process of CLICK-FLISA
2.5. Selectivity for ZEN and FB1
2.6. Actual Sample Detection
3. Results and Discussion
3.1. Mechanisms Associated with CLICK-FLISA
3.2. Feasibility Verification and Characterization of the CLICK-FLISA System
3.3. Optimization of the Analytical Performance of the CLICK-FLISA System
3.4. Evaluation of the Analytical Performance of the CLICK-FLISA System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bogomolov, A.B.; Kulakov, S.A.; Zinin, P.V.; Kutwitskii, V.A.; Bulatov, M.F. Synthesis of Fluorescent Composite Materials Based on Graphitic Carbon Nitride. Opt. Spectrosc. 2020, 128, 920–923. [Google Scholar] [CrossRef]
- Luo, S.; Liu, Y.; Rao, H.; Wang, Y.; Wang, X. Fluorescence and magnetic nanocomposite Fe3 O4@SiO2@Au MNPs as peroxidase mimetics for glucose detection. Anal. Biochem. 2017, 538, 26–33. [Google Scholar] [CrossRef]
- Regeenes, R.; Silva, P.; Kilkenny, D.M.; Rocheleau, J.V. Quantitative Fluorescence Microscopy Reveals Higher Order Oligomerization of FGFR5. Biophys. J. 2017, 112, 88A. [Google Scholar] [CrossRef]
- Mayilo, S.; Ehlers, B.; Wunderlich, M.; Klar, T.A.; Josel, H.-P.; Heindl, D.; Nichtl, A.; Kürzinger, K.; Feldmann, J. Competitive homogeneous digoxigenin immunoassay based on fluorescence quenching by gold nanoparticles. Anal. Chim. Acta 2009, 646, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Guirgis, B.S.S.; Sá e Cunha, C.; Gomes, I.; Cavadas, M.; Silva, I.; Doria, G.; Blatch, G.L.; Baptista, P.V.; Pereira, E.; Azzazy, H.M.E.; et al. Gold nanoparticle-based fluorescence immunoassay for malaria antigen detection. Anal. Bioanal. Chem. 2011, 402, 1019–1027. [Google Scholar] [CrossRef]
- Blout, E.R.; Eager, V.W. Absorption Spectra II Some Aldehyde Condensation Products of Methyl Pyridines. J. Am. Chem. Soc. 2002, 67, 1315–1319. [Google Scholar] [CrossRef]
- Stryer, L. Excited-State Proton-Transfer Reactions. J. Am. Chem. Soc. 1966, 88, 5708–5712. [Google Scholar] [CrossRef]
- Velick, S.F.; Parker, C.W.; Eisen, H.N. Excitation energy transfer and the quantitative study of the antibody hapten reaction. Proc. Natl. Acad. Sci. USA 1960, 46, 1470–1482. [Google Scholar] [CrossRef]
- Sloan, D.L.; Velick, S.F. Protein Hydration Changes in the Formation of the Nicotinamide Adenine Dinucleotide Complexes of Glyceraldehyde 3-Phosphate Dehydrogenase of Yeast. J. Biol. Chem. 1973, 248, 5419–5423. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, Y.; Choe, B.K.; Kim, S.A.; Lee, H.J.; Kim, J.W.; Huh, Y.; Kim, C.; Chung, J.H. Differential expression of nicotinamide adenine dinucleotide phosphate-diaphorase in hypothalamic areas of obese Zucker rats. Neurosci. Lett. 2000, 292, 60–62. [Google Scholar] [CrossRef]
- Beaudet, L.; Rodriguez-Suarez, R.; Venne, M.H. AlphaLISA immunoassays: The no-wash alternative to ELISAs for research and drug discovery. Nat. Methods 2008, 5, an8–an9. [Google Scholar] [CrossRef]
- Chen, R.; Huang, X.; Xu, H.; Xiong, Y.; Li, Y. Plasmonic Enzyme-Linked Immunosorbent Assay Using Nanospherical Brushes as a Catalase Container for Colorimetric Detection of Ultralow Concentrations of Listeria monocytogenes. ACS Appl. Mater. 2015, 7, 28632–28639. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Zhou, Y.; Huang, X.; Yu, R.; Lai, W.; Xiong, Y. Ultrasensitive direct competitive FLISA using highly luminescent quantum dot beads for tuning affinity of competing antigens to antibodies. Anal. Chim. Acta 2017, 972, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Jacquemin, D.; Perpète, E.A.; Scalmani, G.; Frisch, M.J.; Ciofini, I.; Adamo, C. Absorption and emission spectra in gas-phase and solution using TD-DFT: Formaldehyde and benzene as case studies. Chem. Phys. Lett. 2006, 421, 272–276. [Google Scholar] [CrossRef]
- Gao, N.; Chang, J.; Zhu, Z.; You, H. Multistory Stairs-based, Fast and Point-of-care Testing for Disease Biomarker Using One-step Capillary Microfluidic Fluoroimmunoassay Chip via Continuous On-chip Labelling. BioChip J. 2021, 15, 268–275. [Google Scholar] [CrossRef]
- Wong, D.; Phani, A.; Homayoonnia, S.; Park, S.S.; Kim, S.; Abuzalat, O. Manipulating Active Sites of 2D Metal–Organic Framework Nanosheets with Fluorescent Materials for Enhanced Colorimetric and Fluorescent Ammonia Sensing. Adv. Mater. 2022, 9, 2102086. [Google Scholar] [CrossRef]
- Zhao, B.; Ma, H.; Zheng, M.; Xu, K.; Zou, C.; Qu, S.; Tan, Z.A. Narrow-bandwidth emissive carbon dots: A rising star in the fluorescent material family. Carbon Energy 2022, 4, 88–114. [Google Scholar] [CrossRef]
- Co, C.M.; Izuagbe, S.; Zhou, J.; Zhou, N.; Sun, X.; Borrelli, J.; Tang, L. Click chemistry-based pre-targeting cell delivery for cartilage regeneration. Regen Biomater. 2021, 8, rbab018. [Google Scholar] [CrossRef]
- Zhao, Q.; Lu, D.; Zhang, G.; Zhang, D.; Shi, X. Recent improvements in enzyme-linked immunosorbent assays based on nanomaterials. Talanta 2021, 223, 121722. [Google Scholar] [CrossRef]
- Li, J.-X.; Li, Y.-H.; Qin, Z.-B.; Dong, G.-Y. Ultrasound assisted synthesis of a zinc(II) coordination polymer with nano-flower morphology and the use as precursor for zinc(II) oxide nanoparticles. Polyhedron 2018, 155, 94–101. [Google Scholar] [CrossRef]
- Abazari, R.; Mahjoub, A.R.; Ataei, F.; Morsali, A.; Carpenter-Warren, C.L.; Mehdizadeh, K.; Slawin, A.M.Z. Chitosan Immobilization on Bio-MOF Nanostructures: A Biocompatible pH-Responsive Nanocarrier for Doxorubicin Release on MCF-7 Cell Lines of Human Breast Cancer. Inorg. Chem. 2018, 57, 13364–13379. [Google Scholar] [CrossRef] [PubMed]
- Aghajanzadeh, M.; Zamani, M.; Molavi, H.; Khieri Manjili, H.; Danafar, H.; Shojaei, A. Preparation of Metal–Organic Frameworks UiO-66 for Adsorptive Removal of Methotrexate from Aqueous Solution. J. Inorg. Organomet. Polym Mater. 2017, 28, 177–186. [Google Scholar] [CrossRef]
- Dong, J.; Zhao, D.; Lu, Y.; Sun, W.-Y. Photoluminescent metal–organic frameworks and their application for sensing biomolecules. J. Mater. 2019, 7, 22744–22767. [Google Scholar] [CrossRef]
- Yang, L.; Wang, X.; Zhang, F.; Yu, L.; Bai, B.; Zhang, J.; Zhang, B.; Tian, Y.; Qin, S.; Yang, Y. Two birds with one stone: A universal design and application of signal-on labeled fluorescent/electrochemical dual-signal mode biosensor for the detection of tetracycline residues in tap water, milk and chicken. Food Chem. 2024, 430, 136904. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Liu, H.; Zhang, C.; Yang, X.; Blecker, C. LMOF serve as food preservative nanosensor for sensitive detection of nitrite in meat products. Lwt 2022, 169, 114030. [Google Scholar] [CrossRef]
- Samanta, P.; Desai, A.V.; Sharma, S.; Chandra, P.; Ghosh, S.K. Selective Recognition of Hg2+ ion in Water by a Functionalized Metal–Organic Framework (MOF) Based Chemodosimeter. Inorg. Chem. 2018, 57, 2360–2364. [Google Scholar] [CrossRef]
- He, K.; Li, Z.; Wang, L.; Fu, Y.; Quan, H.; Li, Y.; Wang, X.; Gunasekaran, S.; Xu, X. A Water-Stable Luminescent Metal–Organic Framework for Rapid and Visible Sensing of Organophosphorus Pesticides. ACS Appl. Mater. 2019, 11, 26250–26260. [Google Scholar] [CrossRef]
- Guo, X.; Zhu, N.; Lou, Y.; Ren, S.; Pang, S.; He, Y.; Chen, X.-B.; Shi, Z.; Feng, S. A stable nanoscaled Zr-MOF for the detection of toxic mycotoxin through a pH-modulated ratiometric luminescent switch. Chem. Commun. 2020, 56, 5389–5392. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Ren, X.; Zhang, W.; Zhang, T.; Liu, X.; Du, T.; Li, T.; Wang, J. Internally extended growth of core–shell NH2-MIL-101(Al)@ZIF-8 nanoflowers for the simultaneous detection and removal of Cu(ii). J. Mater. 2018, 6, 21029–21038. [Google Scholar] [CrossRef]
- Tian, D.; Liu, X.-J.; Feng, R.; Xu, J.-L.; Xu, J.; Chen, R.-Y.; Huang, L.; Bu, X.-H. Microporous Luminescent Metal–Organic Framework for a Sensitive and Selective Fluorescence Sensing of Toxic Mycotoxin in Moldy Sugarcane. AACS Appl. Mater. 2018, 10, 5618–5625. [Google Scholar] [CrossRef]
- Ahmadijokani, F.; Mohammadkhani, R.; Ahmadipouya, S.; Shokrgozar, A.; Rezakazemi, M.; Molavi, H.; Aminabhavi, T.M.; Arjmand, M. Superior chemical stability of UiO-66 metal-organic frameworks (MOFs) for selective dye adsorption. Chem. Eng. J. 2020, 399, 125346. [Google Scholar] [CrossRef]
- Awfa, D.; Ateia, M.; Fujii, M.; Johnson, M.S.; Yoshimura, C. Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO2 composites: A critical review of recent literature. Water Res. 2018, 142, 26–45. [Google Scholar] [CrossRef]
- Blasco, C.; Corcia, A.D.; Picó, Y. Determination of tetracyclines in multi-specie animal tissues by pressurized liquid extraction and liquid chromatography–tandem mass spectrometry. Food Chem. 2009, 116, 1005–1012. [Google Scholar] [CrossRef]
- Sanogo, S.; Silimbani, P.; Gaggeri, R.; Masini, C. Development and validation of an HPLC-DAD method for the simultaneous identification and quantification of Topotecan, Irinotecan, Etoposide, Doxorubicin and Epirubicin. Arab. J. Chem. 2021, 14, 102896. [Google Scholar] [CrossRef]
- Neumann, M.M.; Volodkin, D. Porous antibody-containing protein microparticles as novel carriers for ELISA. Analyst 2020, 145, 1202–1206. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Shen, D.; Zhu, Z.; Li, M.; Yuan, C.; Zhu, Y.; Wu, J.; Mao, C. Quantifying contrast of latent fingerprints developed by fluorescent nanomaterials based on spectral analysis. Talanta 2021, 231, 122138. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xia, K.; Wang, L.; Wu, M.; Sang, X.; Wan, K.; Zhang, X.; Liu, X.; Wei, G. Peptide-Engineered Fluorescent Nanomaterials: Structure Design, Function Tailoring, and Biomedical Applications. Small 2021, 17, 2005578. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Qi, H.; Teng, Y.; Pierre, D.; Kutoka, P.T.; Liu, D. Advances and Challenges of Fluorescent Nanomaterials for Synthesis and Biomedical Applications. Nanoscale Res. Lett. 2021, 16, 1–23. [Google Scholar] [CrossRef]
- Blanch, G.P.; Gómez-Jiménez, M.C.; del Castillo, M.L.R. Exogenous Salicylic Acid Improves Phenolic Content and Antioxidant Activity in Table Grapes. Plant Foods Hum. Nutr. 2020, 75, 177–183. [Google Scholar] [CrossRef]
- Buzalaf, M.A.R. Review of Fluoride Intake and Appropriateness of Current Guidelines. Adv. Dent. Res. 2018, 29, 157–166. [Google Scholar] [CrossRef]
- Chen, B.; Jiang, T.; Fu, H.; Qu, X.; Xu, Z.; Zheng, S. Ultrasensitive, rapid and selective sensing of hazardous fluoride ion in aqueous solution using a zirconium porphyrinic luminescent metal-organic framework. Anal. Chim. Acta 2021, 1145, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, Y.; Yang, S.; Tian, H.; Sun, B. Discriminative detection of mercury (II) and hydrazine using a dual-function fluorescent probe. Luminescence 2020, 35, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Zhou, Y.; Wang, X.-L.; Liang, L.-P.; Long, Y.-J.; Wang, Q.-L.; Zhang, H.-J.; Huang, X.-X.; Zheng, H.-Z. Detection of Hg2+ based on the selective inhibition of peroxidase mimetic activity of BSA-Au clusters. Talanta 2013, 117, 127–132. [Google Scholar] [CrossRef]
- Rudd, N.D.; Wang, H.; Fuentes-Fernandez, E.M.A.; Teat, S.J.; Chen, F.; Hall, G.; Chabal, Y.J.; Li, J. Highly Efficient Luminescent Metal–Organic Framework for the Simultaneous Detection and Removal of Heavy Metals from Water. ACS Appl. Mater. Interfaces 2016, 8, 30294–30303. [Google Scholar] [CrossRef] [PubMed]
Sample | Target | Fortified Concentration | Detection Value | Recovery (%) | RSD (%) |
---|---|---|---|---|---|
1 | ZEN | 0.05 | 0.043 | 86.0 | 8.4 |
2 | ZEN | 0.1 | 0.105 | 105.1 | 8.2 |
3 | ZEN | 0.5 | 0.578 | 115.6 | 5.8 |
4 | ZEN | 1 | 1.168 | 116.8 | 9.2 |
5 | ZEN | 2 | 2.226 | 111.3 | 4.9 |
6 | FB1 | 1 | 1.150 | 115.0 | 6.1 |
7 | FB1 | 5 | 4.855 | 97.1 | 6.7 |
8 | FB1 | 10 | 10.914 | 109.1 | 5.8 |
9 | FB1 | 50 | 53.352 | 106.7 | 3.4 |
10 | FB1 | 100 | 104.340 | 104.3 | 2.3 |
Method | Target | Detection Range (ng·mL−1) | LOD (ng·mL−1) | Recovery (%) | RSD (%) |
---|---|---|---|---|---|
ELISA | ZEN | 3.9~2000 | 3.228 | - | - |
FB1 | 40~4000 | 22.787 | - | - | |
FLISA | ZEN | 0.2~250 | 0.124 | 92~107.9 | 2.7~5.6 |
FB1 | 12~2500 | 2.103 | 91.2~107.9 | 2.7~7.3 | |
LFIA | ZEN | 0.8~40 | 0.70 | 88.28~104.68 | - |
FB1 | 4~80 | 3.27 | 88.36~112.49 | - | |
CLICK-FLISA | ZEN | 0.02~5 | 0.016 | 88~117.1 | 4.8~9.2 |
FB1 | 0.4~250 | 0.394 | 96.8~115.6 | 2.1~6.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhu, B.; Zhang, X.; Peng, Y.; Li, S.; Han, D.; Ren, S.; Qin, K.; Wang, Y.; Zhou, H.; et al. CLICK-FLISA Based on Metal–Organic Frameworks for Simultaneous Detection of Fumonisin B1 (FB1) and Zearalenone (ZEN) in Maize. Biosensors 2024, 14, 355. https://doi.org/10.3390/bios14070355
Zhang J, Zhu B, Zhang X, Peng Y, Li S, Han D, Ren S, Qin K, Wang Y, Zhou H, et al. CLICK-FLISA Based on Metal–Organic Frameworks for Simultaneous Detection of Fumonisin B1 (FB1) and Zearalenone (ZEN) in Maize. Biosensors. 2024; 14(7):355. https://doi.org/10.3390/bios14070355
Chicago/Turabian StyleZhang, Jingyang, Banglei Zhu, Xiaoyu Zhang, Yuan Peng, Shuang Li, Dianpeng Han, Shuyue Ren, Kang Qin, Yu Wang, Huanying Zhou, and et al. 2024. "CLICK-FLISA Based on Metal–Organic Frameworks for Simultaneous Detection of Fumonisin B1 (FB1) and Zearalenone (ZEN) in Maize" Biosensors 14, no. 7: 355. https://doi.org/10.3390/bios14070355
APA StyleZhang, J., Zhu, B., Zhang, X., Peng, Y., Li, S., Han, D., Ren, S., Qin, K., Wang, Y., Zhou, H., & Gao, Z. (2024). CLICK-FLISA Based on Metal–Organic Frameworks for Simultaneous Detection of Fumonisin B1 (FB1) and Zearalenone (ZEN) in Maize. Biosensors, 14(7), 355. https://doi.org/10.3390/bios14070355