Artificial Intelligence-Assisted Nanosensors for Clinical Diagnostics: Current Advances and Future Prospects
Abstract
1. Introduction
2. AI-Assisted Nanosensor Design and Clinical Application
2.1. AI in Sensor Design
2.1.1. Target Analyte Selection
2.1.2. Recognition Element Selection
2.1.3. Transduction Material Selection
2.2. Sensor Optimization
2.3. Data Analysis and Clinical Decision-Making
3. AI-Assisted Nanosensors for Disease Diagnostics
3.1. Infectious Diseases
3.2. Cancers
3.3. Cardiovascular Diseases
3.4. Metabolic Disorders
3.5. Neurological Disorders
4. Real-World Applications of AI-Assisted Nanosensors
5. Challenges and Future Directions
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| Abs | Antibodies |
| AgNPs | Silver nanoparticles |
| AI | Artificial intelligence |
| AIDS | Acquired immunodeficiency syndrome |
| ANN | Artificial neural network |
| AUC | Area under the curve |
| CNN | Convolutional neural network |
| CTCs | Circulating tumor cells |
| DGFET | Dual-gate field-effect transistor |
| DL | Deep learning |
| DNN | Deep neural network |
| ECM1 | Extracellular matrix protein-1 |
| ELISA | Enzyme-linked immunosorbent assay |
| FDT | Fuzzy-based decision tree |
| FET | Field-effect transistor |
| FFNN | Feedforward neural networks |
| FNDs | Fluorescent nanodiamonds |
| GANs | Generative adversarial networks |
| GDCFN | Generalized deep convolutional fuzzy network |
| GNPs | Gold nanoparticles |
| GO | Graphene oxide |
| GPLMs | General protein language models |
| GPR | Gaussian process regression |
| IoT | Internet of Things |
| KNN | k-Nearest Neighbors |
| LMs | Language models |
| LOD | Limit of detection |
| LSTM | Long short-term memory |
| MERS-CoV | Middle East respiratory syndrome coronavirus |
| MIPs | Molecularly imprinted polymers |
| ML | Machine learning |
| MLP | Multilayer perceptron |
| MLR | Multiple linear regression |
| MS | Mass spectrometry |
| MWCNTs | Multi-walled carbon nanotubes |
| NMs | Nanomaterials |
| PCR | Polymerase chain reaction |
| PI-RADS | Prostate imaging reporting and data system |
| POCT | Point-of-care testing |
| PSO | Particle swarm optimization |
| RBD | Receptor binding domain |
| RBMs | Restricted Boltzmann machines |
| RF | Random forest |
| RNN | Recurrent neural network |
| SARS-CoV | Severe acute respiratory coronavirus |
| SELEX | Systematic evolution of ligands by exponential enrichment |
| SERS | Surface-enhanced Raman scattering |
| SPR | Surface plasmon resonance |
| SSO | Shuffle shepherd optimization |
| SVC/RBF | Support vector classifier with a radial basis function |
| SVM | Support vector machine |
| SVR | Support vector regression |
| VAEs | Variational autoencoders |
| VOC | Volatile organic compound |
| XAI | Explainable artificial intelligence |
References
- Darwish, M.A.; Abd-Elaziem, W.; Elsheikh, A.; Zayed, A.A. Advancements in nanomaterials for nanosensors: A comprehensive review. Nanoscale Adv. 2024, 6, 4015–4046. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.; Haleem, A.; Singh, R.P.; Rab, S.; Suman, R. Exploring the potential of nanosensors: A brief overview. Sensors Int. 2021, 2, 100130. [Google Scholar] [CrossRef]
- Adam, T.; Gopinath, S.C. Nanosensors: Recent perspectives on attainments and future promise of downstream applications. Process. Biochem. 2022, 117, 153–173. [Google Scholar] [CrossRef]
- Eissa, M. Nanosensors for Early Detection and Diagnosis of Cancer: A Review of Recent Advances. J. Cancer Res. Rev. 2024, 1, 1–13. [Google Scholar] [CrossRef]
- Gulati, S.; Yadav, R.; Kumari, V.; Nair, S.; Gupta, C.; Aishwari, M. Nanosensors in healthcare: Transforming real-time monitoring and disease management with cutting-edge nanotechnology. RSC Pharm. 2025, 2, 1003–10018. [Google Scholar] [CrossRef]
- Tang, X.; Zhu, Y.; Guan, W.; Zhou, W.; Wei, P. Advances in nanosensors for cardiovascular disease detection. Life Sci. 2022, 305, 120733. [Google Scholar] [CrossRef]
- Lin, X.; Cao, Z.; Zeng, S.; Zhu, H.; Zhai, K.; Yin, B.; Zhang, C.; Peng, T.; Cheng, T.; Zhang, B. Portable dual-mode microfluidic sensor for rapid and sensitive detection of DPA on chip. Adv. Compos. Hybrid Mater. 2025, 8, 240. [Google Scholar] [CrossRef]
- Das, R.; Nag, S.; Banerjee, P. Electrochemical Nanosensors for Sensitization of Sweat Metabolites: From Concept Mapping to Personalized Health Monitoring. Molecules 2023, 28, 1259. [Google Scholar] [CrossRef]
- Liu, S.; Liao, Y.; Shu, R.; Sun, J.; Zhang, D.; Zhang, W.; Wang, J. Evaluation of the Multidimensional Enhanced Lateral Flow Immunoassay in Point-of-Care Nanosensors. ACS Nano 2024, 18, 27167–27205. [Google Scholar] [CrossRef]
- Tavakoli, H.; Mohammadi, S.; Li, X.; Fu, G.; Li, X. Microfluidic platforms integrated with nano-sensors for point-of-care bioanalysis. TrAC Trends Anal. Chem. 2022, 157, 116806. [Google Scholar] [CrossRef] [PubMed]
- Secinaro, S.; Calandra, D.; Secinaro, A.; Muthurangu, V.; Biancone, P. The role of artificial intelligence in healthcare: A structured literature review. BMC Med. Inform. Decis. Mak. 2021, 21, 125. [Google Scholar] [CrossRef] [PubMed]
- Saraswat, D.; Bhattacharya, P.; Verma, A.; Prasad, V.K.; Tanwar, S.; Sharma, G.; Bokoro, P.N.; Sharma, R. Explainable AI for Healthcare 5.0: Opportunities and Challenges. IEEE Access 2022, 10, 84486–84517. [Google Scholar] [CrossRef]
- Qureshi, R.; Irfan, M.; Gondal, T.M.; Khan, S.; Wu, J.; Hadi, M.U.; Heymach, J.; Le, X.; Yan, H.; Alam, T. AI in drug discovery and its clinical relevance. Heliyon 2023, 9, e17575. [Google Scholar] [CrossRef]
- Blanco-González, A.; Cabezón, A.; Seco-González, A.; Conde-Torres, D.; Antelo-Riveiro, P.; Piñeiro, Á.; Garcia-Fandino, R. The Role of AI in Drug Discovery: Challenges, Opportunities, and Strategies. Pharmaceuticals 2023, 16, 891. [Google Scholar] [CrossRef]
- Ahn, J.S.; Shin, S.; Yang, S.-A.; Park, E.K.; Kim, K.H.; Cho, S.I.; Ock, C.-Y.; Kim, S. Artificial Intelligence in Breast Cancer Diagnosis and Personalized Medicine. J. Breast Cancer 2023, 26, 405–435. [Google Scholar] [CrossRef]
- Zheng, D.; He, X.; Jing, J. Overview of Artificial Intelligence in Breast Cancer Medical Imaging. J. Clin. Med. 2023, 12, 419. [Google Scholar] [CrossRef]
- Al Kuwaiti, A.; Nazer, K.; Al-Reedy, A.; Al-Shehri, S.; Al-Muhanna, A.; Subbarayalu, A.V.; Al Muhanna, D.; Al-Muhanna, F.A. A Review of the Role of Artificial Intelligence in Healthcare. J. Pers. Med. 2023, 13, 951. [Google Scholar] [CrossRef]
- Hassan, S.A.H.; Almaliki, M.N.S.; Hussein, Z.A.; Albehadili, H.M.; Rabeea Banoon, S.; Abboodi, A.; AlSaady, M. Development of Nanotechnology by Artificial Intelligence: A Comprehensive Review. J. Nanostruct 2023, 13, 915–932. [Google Scholar] [CrossRef]
- Fallah, A.; Havaei, S.A.; Sedighian, H.; Kachuei, R.; Fooladi, A.A.I. Prediction of aptamer affinity using an artificial intelligence approach. J. Mater. Chem. B 2024, 12, 8825–8842. [Google Scholar] [CrossRef] [PubMed]
- Lowdon, J.W.; Ishikura, H.; Kvernenes, M.K.; Caldara, M.; Cleij, T.J.; van Grinsven, B.; Eersels, K.; Diliën, H. Identifying Potential Machine Learning Algorithms for the Simulation of Binding Affinities to Molecularly Imprinted Polymers. Computation 2021, 9, 103. [Google Scholar] [CrossRef]
- Hamedi, S.; Jahromi, H.D.; Lotfiani, A. Artificial intelligence-aided nanoplasmonic biosensor modeling. Eng. Appl. Artif. Intell. 2023, 118, 105646. [Google Scholar] [CrossRef]
- Haick, H.; Tang, N. Artificial Intelligence in Medical Sensors for Clinical Decisions. ACS Nano 2021, 15, 3557–3567. [Google Scholar] [CrossRef] [PubMed]
- Akkaş, T.; Reshadsedghi, M.; Şen, M.; Kılıç, V.; Horzum, N. The Role of Artificial Intelligence in Advancing Biosensor Technology: Past, Present, and Future Perspectives. Adv. Mater. 2025, 37, 2504796. [Google Scholar] [CrossRef] [PubMed]
- Taha, B.A.; Abdulrahm, Z.M.; Addie, A.J.; Haider, A.J.; Alkawaz, A.N.; Yaqoob, I.A.M.; Arsad, N. Advancing optical nanosensors with artificial intelligence: A powerful tool to identify disease-specific biomarkers in multi-omics profiling. Talanta 2025, 287, 127693. [Google Scholar] [CrossRef] [PubMed]
- Leong, Y.X.; Tan, E.X.; Leong, S.X.; Koh, C.S.L.; Nguyen, L.B.T.; Chen, J.R.T.; Xia, K.; Ling, X.Y. Where Nanosensors Meet Machine Learning: Prospects and Challenges in Detecting Disease X. ACS Nano 2022, 16, 13279–13293. [Google Scholar] [CrossRef]
- Chugh, V.; Basu, A.; Kaushik, A.; Bhansali, S.; Basu, A.K. Employing nano-enabled artificial intelligence (AI)-based smart technologies for prediction, screening, and detection of cancer. Nanoscale 2024, 16, 5458–5486. [Google Scholar] [CrossRef]
- Ramalingam, M.; Jaisankar, A.; Cheng, L.; Krishnan, S.; Lan, L.; Hassan, A.; Sasmazel, H.T.; Kaji, H.; Deigner, H.-P.; Pedraz, J.L.; et al. Impact of nanotechnology on conventional and artificial intelligence-based biosensing strategies for the detection of viruses. Discover Nano 2023, 18, 58. [Google Scholar] [CrossRef]
- Khan, H.; Jan, Z.; Ullah, I.; Alwabli, A.; Alharbi, F.; Habib, S.; Islam, M.; Shin, B.-J.; Lee, M.Y.; Koo, J. A deep dive into AI integration and advanced nanobiosensor technologies for enhanced bacterial infection monitoring. Nanotechnol. Rev. 2024, 13. [Google Scholar] [CrossRef]
- Tafadzwa Mpofu, K.; Mthunzi-Kufa, P. Recent Advances in Artificial Intelligence and Machine Learning Based Biosensing Technologies. In Current Developments in Biosensor Applications and Smart Strategies; Karakuş, S., Ed.; IntechOpen: London, UK, 2025. [Google Scholar] [CrossRef]
- Flynn, C.D.; Chang, D. Artificial Intelligence in Point-of-Care Biosensing: Challenges and Opportunities. Diagnostics 2024, 14, 1100. [Google Scholar] [CrossRef]
- Califf, R.M. Biomarker definitions and their applications. Exp. Biol. Med. 2018, 243, 213–221. [Google Scholar] [CrossRef]
- Das, S.; Dey, M.K.; Devireddy, R.; Gartia, M.R. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. Sensors 2023, 24, 37. [Google Scholar] [CrossRef]
- Wasilewski, T.; Kamysz, W.; Gębicki, J. AI-Assisted Detection of Biomarkers by Sensors and Biosensors for Early Diagnosis and Monitoring. Biosensors 2024, 14, 356. [Google Scholar] [CrossRef]
- Ali, H. Artificial intelligence in multi-omics data integration: Advancing precision medicine, biomarker discovery and genomic-driven disease interventions. Int. J. Sci. Res. Arch. 2023, 8, 1012–1030. [Google Scholar] [CrossRef]
- Deng, Y.; Yao, Y.; Wang, Y.; Yu, T.; Cai, W.; Zhou, D.; Yin, F.; Liu, W.; Liu, Y.; Xie, C.; et al. An end-to-end deep learning method for mass spectrometry data analysis to reveal disease-specific metabolic profiles. Nat. Commun. 2024, 15, 7136. [Google Scholar] [CrossRef]
- Hällqvist, J.; Bartl, M.; Dakna, M.; Schade, S.; Garagnani, P.; Bacalini, M.-G.; Pirazzini, C.; Bhatia, K.; Schreglmann, S.; Xylaki, M.; et al. Plasma proteomics identify biomarkers predicting Parkinson’s disease up to 7 years before symptom onset. Nat. Commun. 2024, 15, 4759. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Ge, J.; Tang, G.; Xiong, D.; Zhu, D.; Ding, X.; Zhou, X.; Sang, M. Machine learning-based identification of biomarkers and drugs in immunologically cold and hot pancreatic adenocarcinomas. J. Transl. Med. 2024, 22, 775. [Google Scholar] [CrossRef]
- Mataraso, S.J.; Espinosa, C.A.; Seong, D.; Reincke, S.M.; Berson, E.; Reiss, J.D.; Kim, Y.; Ghanem, M.; Shu, C.-H.; James, T.; et al. A machine learning approach to leveraging electronic health records for enhanced omics analysis. Nat. Mach. Intell. 2025, 7, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Dens, C.; Adams, C.; Laukens, K.; Bittremieux, W. Machine Learning Strategies to Tackle Data Challenges in Mass Spectrometry-Based Proteomics. J. Am. Soc. Mass Spectrom. 2024, 35, 2143–2155. [Google Scholar] [CrossRef]
- Morales, M.A.; Halpern, J.M. Guide to Selecting a Biorecognition Element for Biosensors. Bioconjugate Chem. 2018, 29, 3231–3239. [Google Scholar] [CrossRef]
- Ravina; Kumar, D.; Prasad, M.; Mohan, H. Biological Recognition Elements. In Electrochemical Sensors; Elsevier: Amsterdam, The Netherlands, 2022; pp. 213–239. [Google Scholar]
- Ding, N.; Yuan, Z.; Ma, Z.; Wu, Y.; Yin, L. AI-Assisted Rational Design and Activity Prediction of Biological Elements for Optimizing Transcription-Factor-Based Biosensors. Molecules 2024, 29, 3512. [Google Scholar] [CrossRef] [PubMed]
- Musnier, A.; Dumet, C.; Mitra, S.; Verdier, A.; Keskes, R.; Chassine, A.; Jullian, Y.; Cortes, M.; Corde, Y.; Omahdi, Z.; et al. Applying artificial intelligence to accelerate and de-risk antibody discovery. Front. Drug Discov. 2024, 4, 1339697. [Google Scholar] [CrossRef]
- da Silva, B.M.; Myung, Y.; Ascher, D.B.; Pires, D.E.V. epitope3D: A machine learning method for conformational B-cell epitope prediction. Briefings Bioinform. 2022, 23, 1–8. [Google Scholar] [CrossRef]
- Parkinson, J.; Hard, R.; Wang, W. The RESP AI model accelerates the identification of tight-binding antibodies. Nat. Commun. 2023, 14, 454. [Google Scholar] [CrossRef]
- Hou, Q.; Kwasigroch, J.M.; Rooman, M.; Pucci, F. SOLart: A structure-based method to predict protein solubility and aggregation. Bioinformatics 2020, 36, 1445–1452. [Google Scholar] [CrossRef] [PubMed]
- Harmalkar, A.; Rao, R.; Xie, Y.R.; Honer, J.; Deisting, W.; Anlahr, J.; Hoenig, A.; Czwikla, J.; Sienz-Widmann, E.; Rau, D.; et al. Toward generalizable prediction of antibody thermostability using machine learning on sequence and structure features. mAbs 2023, 15, 2163584. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Zheng, Y.; Huang, M.; Wu, L.; Wang, W.; Zhu, Z.; Song, Y.; Yang, C. A Sequential Multidimensional Analysis Algorithm for Aptamer Identification based on Structure Analysis and Machine Learning. Anal. Chem. 2020, 92, 3307–3314. [Google Scholar] [CrossRef]
- Di Gioacchino, A.; Procyk, J.; Molari, M.; Schreck, J.S.; Zhou, Y.; Liu, Y.; Monasson, R.; Cocco, S.; Šulc, P.; Li, J. Generative and interpretable machine learning for aptamer design and analysis of in vitro sequence selection. PLoS Comput. Biol. 2022, 18, e1010561. [Google Scholar] [CrossRef]
- Madsen, C.T.; Refsgaard, J.C.; Teufel, F.G.; Kjærulff, S.K.; Wang, Z.; Meng, G.; Jessen, C.; Heljo, P.; Jiang, Q.; Zhao, X.; et al. Combining mass spectrometry and machine learning to discover bioactive peptides. Nat. Commun. 2022, 13, 6235. [Google Scholar] [CrossRef]
- Saka, K.; Kakuzaki, T.; Metsugi, S.; Kashiwagi, D.; Yoshida, K.; Wada, M.; Tsunoda, H.; Teramoto, R. Antibody design using LSTM based deep generative model from phage display library for affinity maturation. Sci. Rep. 2021, 11, 5852. [Google Scholar] [CrossRef]
- Eguchi, R.R.; Choe, C.A.; Huang, P.-S.; Slusky, J. Ig-VAE: Generative modeling of protein structure by direct 3D coordinate generation. PLoS Comput. Biol. 2022, 18, e1010271. [Google Scholar] [CrossRef]
- Rajagopal, N.; Choudhary, U.; Tsang, K.; Martin, K.P.; Karadag, M.; Chen, H.-T.; Kwon, N.-Y.; Mozdzierz, J.; Horspool, A.M.; Li, L.; et al. Deep learning-based design and experimental validation of a medicine-like human antibody library. Briefings Bioinform. 2024, 26, bbaf023. [Google Scholar] [CrossRef]
- Hie, B.L.; Shanker, V.R.; Xu, D.; Bruun, T.U.J.; Weidenbacher, P.A.; Tang, S.; Wu, W.; Pak, J.E.; Kim, P.S. Efficient evolution of human antibodies from general protein language models. Nat. Biotechnol. 2024, 42, 275–283. [Google Scholar] [CrossRef]
- Shetty, C. AI-Optimized Design of Nanosensors for Real-Time Pathogen Detection. Int. J. Sci. Res. Eng. Dev. 2025, 8, 1313–1318. [Google Scholar]
- Mazumdar, H.; Khondakar, K.R.; Das, S.; Halder, A.; Kaushik, A. Artificial intelligence for personalized nanomedicine; from material selection to patient outcomes. Expert Opin. Drug Deliv. 2024, 22, 85–108. [Google Scholar] [CrossRef]
- Shiba, K.; Tamura, R.; Sugiyama, T.; Kameyama, Y.; Koda, K.; Sakon, E.; Minami, K.; Ngo, H.T.; Imamura, G.; Tsuda, K.; et al. Functional Nanoparticles-Coated Nanomechanical Sensor Arrays for Machine Learning-Based Quantitative Odor Analysis. ACS Sensors 2018, 3, 1592–1600. [Google Scholar] [CrossRef] [PubMed]
- Malakar, P.; Thakur, S.H.; Nahid, S.M.; Islam, M. Data-Driven Machine Learning to Predict Mechanical Properties of Monolayer Transition-Metal Dichalcogenides for Applications in Flexible Electronics. ACS Appl. Nano Mater. 2022, 5, 16489–16499. [Google Scholar] [CrossRef]
- Xu, L.; Xiong, Y.; Wu, R.; Geng, X.; Li, M.; Yao, H.; Wang, X.; Wen, Y.; Ai, S. An Emerging Machine Learning Strategy for the Fabrication of Nanozyme Sensor and Voltametric Determination of Benomyl In Agro-Products. J. Electrochem. Soc. 2022, 169, 047506. [Google Scholar] [CrossRef]
- Wekalao, J.; Mandela, N.; Obed, A.; Bouhenna, A. Design and Evaluation of Tunable Terahertz Metasurface Biosensor for Malaria Detection with Machine learning Optimization Using Artificial Intelligence. Plasmonics 2024, 20, 2569–2593. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Parmar, J.; Natesan, A.; Katkar, V. Graphene-Based Metasurface Refractive Index Biosensor for Hemoglobin Detection: Machine Learning Assisted Optimization. IEEE Trans. NanoBioscience 2023, 22, 430–437. [Google Scholar] [CrossRef]
- Jemmali, A.; Kaziz, S.; Echouchene, F.; Gazzah, M.H. Optimization of Lab-On-a-CD by Experimental Design and Machine Learning Models for Microfluidic Biosensor Application. IEEE Sensors J. 2024, 24, 9299–9307. [Google Scholar] [CrossRef]
- Bajahzar, A.S. Box-Behnken Design for Optimization of Particle Swarm Optimizer for Artificial Neural Networks: Application to Lab-on-a-Disc Biosensors. IEEE Access 2024, 12, 158367–158375. [Google Scholar] [CrossRef]
- Appadurai, J.P.; Kaliaperumal, K.; Wekalao, J.; Rajakannu, A. Artificial Intelligence-Enhanced Terahertz Metasurface Biosensor for Breast Cancer Biomarker Detection. Plasmonics 2025. [Google Scholar] [CrossRef]
- Aalizadeh, M.; Afshar, M.A.; Fan, X. Machine Learning Enabled Multidimensional Data Utilization Through Multi-Resonance Architecture: A Pathway to Enhanced Accuracy in Biosensing. ACS Omega 2025, 10, 20713–20722. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Srivatsa, P.; Ahmadzai, F.H.; Liu, Y.; Song, X.; Karpatne, A.; Kong, Z.; Johnson, B.N. Improving biosensor accuracy and speed using dynamic signal change and theory-guided deep learning. Biosens. Bioelectron. 2024, 246, 115829. [Google Scholar] [CrossRef]
- Esmaeili, F.; Cassie, E.; Nguyen, H.P.T.; Plank, N.O.V.; Unsworth, C.P.; Wang, A. Utilizing Deep Learning Algorithms for Signal Processing in Electrochemical Biosensors: From Data Augmentation to Detection and Quantification of Chemicals of Interest. Bioengineering 2023, 10, 1348. [Google Scholar] [CrossRef]
- Quan, H.; Wang, S.; Xi, X.; Zhang, Y.; Ding, Y.; Li, Y.; Lin, J.; Liu, Y. Deep learning enhanced multiplex detection of viable foodborne pathogens in digital microfluidic chip. Biosens. Bioelectron. 2024, 245, 115837. [Google Scholar] [CrossRef]
- Li, F.; Zhu, M.; Li, Z.; Shen, N.; Peng, H.; Li, B.; He, J. Machine learning assisted discrimination and detection of antibiotics by using multicolor microfluidic chemiluminescence detection chip. Talanta 2024, 269, 125446. [Google Scholar] [CrossRef]
- Vaiyapuri, T. Utilizing Explainable AI and Biosensors for Clinical Diagnosis of Infectious Vector-Borne Diseases. Eng. Technol. Appl. Sci. Res. 2024, 14, 18640–18648. [Google Scholar] [CrossRef]
- Alam, M.; Alam, M.; Mirza, H.; Sultana, N.; Sultana, N.; Pasha, A.A.; Khan, A.I.; Zafar, A.; Ahmad, M.T. A Novel COVID-19 Diagnostic System Using Biosensor Incorporated Artificial Intelligence Technique. Diagnostics 2023, 13, 1886. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Lv, W.; Gao, Z.; Su, S.; Guo, B.; Li, Y.; Liang, L.; Wang, B.; Cheng, G.; et al. Ultra-early detection of S100B biomarkers using a nanophotonic biosensor with deep learning quantification: A clinical model based on EDAS patients. Biosens. Bioelectron. 2025, 288, 117810. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Junior, M.A.; Andrade, B.S.; Lima, A.P.; Soares, I.P.; Notário, A.F.O.; Bernardino, S.S.; Guevara-Vega, M.F.; Honório-Silva, G.; Munoz, R.A.A.; Jardim, A.C.G.; et al. Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms. Biosensors 2025, 15, 75. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, S.; Supraja, P.; Mohanty, S.; Sai, V.M.; Agrawal, T.; Chowdary, C.G.; Taranikanti, M.; Bandaru, R.; Mudunuru, A.K.; Tadi, L.J.; et al. Artificial Intelligence-Based Portable Bioelectronics Platform for SARS-CoV-2 Diagnosis with Multi-nucleotide Probe Assay for Clinical Decisions. Anal. Chem. 2021, 93, 14955–14965. [Google Scholar] [CrossRef] [PubMed]
- Vishalatchi, S.; Murugan, K.; Ramrao, N.; Sharan, P. Modeling and realization of photonic biosensor for hazardous virus detection using ML approach. J. Opt. 2024, 53, 4392–4404. [Google Scholar] [CrossRef]
- Zhao, S.; Xu, M.; Lin, C.; Zhang, W.; Li, D.; Peng, Y.; Tanemura, M.; Yang, Y. AI-Driven Comprehensive SERS-LFIA System: Improving Virus Automated Diagnostics Through SERS Image Recognition and Deep Learning. Biosensors 2025, 15, 458. [Google Scholar] [CrossRef]
- Nyamdavaa, A.; Kaladharan, K.; Ganbold, E.-O.; Jeong, S.; Paek, S.; Su, Y.; Tseng, F.-G.; Ishdorj, T.-O. DeepATsers: A deep learning framework for one-pot SERS biosensor to detect SARS-CoV-2 virus. Sci. Rep. 2025, 15, 12245. [Google Scholar] [CrossRef] [PubMed]
- Irshad, R.R.; Alattab, A.A.; Alwayle, I.M.; Alalayah, K.M.; Noaman, K.M.G.; Mahdi, M.A.; Aqlan, A.M. A Novel Structure Optoelectronic Biosensor for Detection of Infectious Diseases Using SALP Swarm Optimized Artificial Neural Network Technique. J. Nanoelectron. Optoelectron. 2022, 17, 1154–1162. [Google Scholar] [CrossRef]
- Wekalao, J. Graphene-Enhanced Terahertz Metamaterial Biosensor for Tuberculosis Detection with XGBoost-Based Machine Learning Optimization. Plasmonics 2025. [Google Scholar] [CrossRef]
- Beisenova, A.; Adi, W.; Bashar, S.J.; Velmurugan, M.; Germanson, K.B.; Shelef, M.A.; Yesilkoy, F. Machine-learning-aided multiplexed nanoplasmonic biosensor for COVID-19 population immunity profiling. Sensors Diagn. 2023, 2, 1186–1198. [Google Scholar] [CrossRef]
- Sukjee, W.; Sirisangsawang, P.; Thepparit, C.; Auewarakul, P.; Puttasakul, T.; Sangma, C. MIP-based electrochemical sensor with machine learning for accurate ZIKV detection in protein- and glucose-rich urine. Anal. Biochem. 2025, 702, 115854. [Google Scholar] [CrossRef]
- Wang, W.; Liu, L.; Zhu, J.; Xing, Y.; Jiao, S.; Wu, Z. AI-Enhanced Visual-Spectral Synergy for Fast and Ultrasensitive Biodetection of Breast Cancer-Related miRNAs. ACS Nano 2024, 18, 6266–6275. [Google Scholar] [CrossRef]
- Pathak, R.K.; Mishra, S.; Sharan, P. Design of optical sensor for cancer prognosis prediction using artificial intelligence. J. Opt. 2024, 53, 1009–1017. [Google Scholar] [CrossRef]
- Choi, J.Y.; Park, S.; Shim, J.S.; Park, H.J.; Kuh, S.U.; Jeong, Y.; Park, M.G.; Noh, T.I.; Yoon, S.G.; Park, Y.M.; et al. Explainable artificial intelligence-driven prostate cancer screening using exosomal multi-marker based dual-gate FET biosensor. Biosens. Bioelectron. 2025, 267, 116773. [Google Scholar] [CrossRef] [PubMed]
- Balaji, V.; Jahan, M.I.; Sridarshini, T.; Geerthana, S.; Thirumurugan, A.; Hegde, G.; Sitharthan, R.; Dhanabalan, S.S. Machine learning enabled 2D photonic crystal biosensor for early cancer detection. Measurement 2024, 224, 113858. [Google Scholar] [CrossRef]
- Wekalao, J.; Kumaresan, M.S.; Mallan, S.; Murthy, G.S.; Nagarajan, N.R.; Karthikeyan, S.; Dorairajan, N.; Prabu, R.T.; Rashed, A.N.Z. Metasurface Based Surface Plasmon Resonance (SPR) Biosensor for Cervical Cancer Detection with Behaviour Prediction using Machine Learning Optimization Based on Support Vector Regression. Plasmonics 2024, 20, 4067–4090. [Google Scholar] [CrossRef]
- Albano, L.D.T.; Granato, D.C.; Albano, L.G.S.; Patroni, F.M.S.; Santana, A.G.; A Câmara, G.; de Camargo, D.H.S.; Mores, A.L.; Brandão, T.B.; Prado-Ribeiro, A.C.; et al. Noninvasive and Sensitive Biosensor for the Detection of Oral Cancer Prognostic Biomarkers. Small 2025, e04278. [Google Scholar] [CrossRef]
- Lei, Y.; Zhang, D.; Wang, Q.; Mao, S.; Kim, E.-S.; Kim, N.-Y.; Zhou, Q.; Li, Y.; Yao, Z. Detection of carcinoembryonic antigen specificity using microwave biosensor with machine learning. Biosens. Bioelectron. 2025, 269, 116908. [Google Scholar] [CrossRef]
- Tumrani, S.H.; Soomro, R.A.; Thabet, H.K.; Karakuş, S.; El-Bahy, Z.M.; Küçükdeniz, T.; Khoso, S. Au-decorated Ti3C2Tx/porous carbon immunoplatform for ECM1 breast cancer biomarker detection with machine learning computation for predictive accuracy. Talanta 2024, 278, 126507. [Google Scholar] [CrossRef]
- Redín, G.I.; Braz, D.C.; Gonçalves, D.; Oliveira, O.N.O., Jr. Machine Learning to Treat Data for the Design and Improvement of Electrochemical Sensors: Application for a Cancer Biomarker. J. Braz. Chem. Soc. 2025. [Google Scholar] [CrossRef]
- Xu, J.; Luo, X.; Chen, H.; Guo, B.; Wang, Z.; Wang, F. Machine Learning-Aided Intelligent Monitoring of Multivariate miRNA Biomarkers Using Bipolar Self-powered Sensors. ACS Nano 2025, 19, 8812–8825. [Google Scholar] [CrossRef]
- Sunil, N.; Unnathpadi, R.; Seenivasagam, R.K.; T, A.; R, L.; Sheen, S.; Devi, K.; Pullithadathil, B. 3D-Printed Microfluidic-Integrated SERS Salivary Biosensor Utilizing Fe@Ag/Carbon Nanofibers for Advanced Machine Learning-Driven Noninvasive, Label-Free Mass Screening of Lung Cancer. ACS Appl. Nano Mater. 2025, 8, 15558–15571. [Google Scholar] [CrossRef]
- Marengo, A.; Pagano, A.; Santamato, V. An efficient cardiovascular disease prediction model through AI-driven IoT technology. Comput. Biol. Med. 2024, 183, 109330. [Google Scholar] [CrossRef]
- Yashudas, A.; Gupta, D.; Prashant, G.C.; Dua, A.; AlQahtani, D.; Reddy, A.S.K. DEEP-CARDIO: Recommendation System for Cardiovascular Disease Prediction Using IoT Network. IEEE Sensors J. 2024, 24, 14539–14547. [Google Scholar] [CrossRef]
- Islam, M.N.; Raiyan, K.R.; Mitra, S.; Mannan, M.M.R.; Tasnim, T.; Putul, A.O.; Mandol, A.B. Predictis: An IoT and machine learning-based system to predict risk level of cardio-vascular diseases. BMC Heal. Serv. Res. 2023, 23, 171. [Google Scholar] [CrossRef]
- Kanza, R.A.; Al Rasyid, M.U.H.; Sukaridhoto, S. Efficient Early Detection of Patient Diagnosis and Cardiovascular Disease using an IoT System with Machine Learning and Fuzzy Logic. Int. J. Comput. Digit. Syst. 2024, 15, 183–199. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Yu, W.; Liu, S.; Huang, Y. Machine Learning-Driven Wearable Sweat Sensors with AgNW/MXene for Non-Invasive SERS-Based Cardiovascular Disease Detection. ACS Appl. Nano Mater. 2025, 8, 5602–5610. [Google Scholar] [CrossRef]
- Jain, P.; Gupta, R.; Joshi, A.; Kuzmin, A. Enhanced cardiovascular diagnostics using wearable ECG and bioimpedance monitoring with LightGBM classifier. Biosens. Bioelectron. X 2025, 24, 100617. [Google Scholar] [CrossRef]
- Dong, Y.; An, W.; Zhang, Y.; Kang, Z.; Gao, B.; Lv, J.; Jiang, Y.; Niu, C.; Mao, Y.; Zhang, D. An artificial intelligence-assisted, kilometer-scale wireless and wearable biochemical sensing platform for monitoring of key biomarkers in urine. Biosens. Bioelectron. 2025, 288, 117844. [Google Scholar] [CrossRef]
- Kumar, A.; Jain, D.; Bahuguna, J.; Bhaiyya, M.; Dubey, S.K.; Javed, A.; Goel, S. Machine learning assisted and smartphone integrated homogeneous electrochemiluminescence biosensor platform for sample to answer detection of various human metabolites. Biosens. Bioelectron. 2023, 238, 115582. [Google Scholar] [CrossRef]
- Chellamani, N.; Albelwi, S.A.; Shanmuganathan, M.; Amirthalingam, P.; Paul, A. Diabetes: Non-Invasive Blood Glucose Monitoring Using Federated Learning with Biosensor Signals. Biosensors 2025, 15, 255. [Google Scholar] [CrossRef]
- Gragnaniello, M.; Marrazzo, V.R.; Borghese, A.; Maresca, L.; Breglio, G.; Riccio, M. Edge-AI Enabled Wearable Device for Non-Invasive Type 1 Diabetes Detection Using ECG Signals. Bioengineering 2024, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Chenani, H.; Razaghi, Z.; Saeidi, M.; Aghaii, A.H.; Rastkhiz, M.A.; Orouji, M.; Ekrami, A.; Simchi, A. A stretchable, adhesive, and wearable hydrogel-based patches based on a bilayer PVA composite for online monitoring of sweat by artificial intelligence-assisted smartphones. Talanta 2025, 287, 127640. [Google Scholar] [CrossRef]
- Kavungal, D.; Magalhães, P.; Kumar, S.T.; Kolla, R.; Lashuel, H.A.; Altug, H. Artificial intelligence–coupled plasmonic infrared sensor for detection of structural protein biomarkers in neurodegenerative diseases. Sci. Adv. 2023, 9, eadg9644. [Google Scholar] [CrossRef]
- Kim, M.; Huh, S.; Park, H.J.; Cho, S.H.; Lee, M.-Y.; Jo, S.; Jung, Y.S. Surface-functionalized SERS platform for deep learning-assisted diagnosis of Alzheimer’s disease. Biosens. Bioelectron. 2024, 251, 116128. [Google Scholar] [CrossRef]
- Xu, L.; Wang, H.; Xu, Y.; Cui, W.; Ni, W.; Chen, M.; Huang, H.; Stewart, C.; Li, L.; Li, F.; et al. Machine Learning-Assisted Sensor Array Based on Poly(amidoamine) (PAMAM) Dendrimers for Diagnosing Alzheimer’s Disease. ACS Sensors 2022, 7, 1315–1322. [Google Scholar] [CrossRef]
- Wang, S.; Deng, R.; Chen, Z.; Huang, L.; Song, Y.; Yuan, D.; Li, Y.; Liu, H.; Yang, F.; Fan, B.; et al. High-Performance Plasma Biomarker Panel for Alzheimer’s Disease Screening Using a Femtomolar-Level Label-Free Biosensing System. ACS Nano 2024, 18, 2117–2130. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, W.; Wang, Z.; Yang, W.; Li, E.; Xia, X.; Yan, F.; Chiu, S. Emerging and reemerging infectious diseases: Global trends and new strategies for their prevention and control. Signal Transduct. Target. Ther. 2024, 9, 223. [Google Scholar] [CrossRef]
- Wang, C.; Liu, M.; Wang, Z.; Li, S.; Deng, Y.; He, N. Point-of-care diagnostics for infectious diseases: From methods to devices. Nano Today 2021, 37, 101092. [Google Scholar] [CrossRef] [PubMed]
- Kabay, G.; DeCastro, J.; Altay, A.; Smith, K.; Lu, H.; Capossela, A.M.; Moarefian, M.; Aran, K.; Dincer, C. Emerging Biosensing Technologies for the Diagnostics of Viral Infectious Diseases. Adv. Mater. 2022, 34, e2201085. [Google Scholar] [CrossRef]
- Srivastava, V.; Kumar, R.; Wani, M.Y.; Robinson, K.; Ahmad, A. Role of artificial intelligence in early diagnosis and treatment of infectious diseases. Infect. Dis. 2024, 57, 1–26. [Google Scholar] [CrossRef]
- Singh, R.; Gupta, R.; Bansal, D.; Bhateria, R.; Sharma, M. A Review on Recent Trends and Future Developments in Electrochemical Sensing. ACS Omega 2024, 9, 7336–7356. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Kumar, A.; Verma, S.; Bhattacharya, P.; Ghimire, D.; Kim, S.-H.; Hosen, A.S.M.S. Healthcare Internet of Things (H-IoT): Current Trends, Future Prospects, Applications, Challenges, and Security Issues. Electronics 2023, 12, 2050. [Google Scholar] [CrossRef]
- Maheshwari, V.; Mahmood, R.; Sravanthi, S.; Arivazhagan, N.; ParimalaGandhi, A.; Srihari, K.; Sagayaraj, R.; Udayakumar, E.; Natarajan, Y.; Bachanna, P.; et al. Nanotechnology-Based Sensitive Biosensors for COVID-19 Prediction Using Fuzzy Logic Control. J. Nanomater. 2021, 2021, 1–8. [Google Scholar] [CrossRef]
- Obafemi, F.A. A Review of Global Cancer Prevalence and Therapy. J. Cancer Res. Treat. Prev. 2023. [Google Scholar] [CrossRef] [PubMed]
- Crosby, D.; Bhatia, S.; Brindle, K.M.; Coussens, L.M.; Dive, C.; Emberton, M.; Esener, S.; Fitzgerald, R.C.; Gambhir, S.S.; Kuhn, P.; et al. Early detection of cancer. Science 2022, 375, eaay9040. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Hazra, S.; Patra, S.; Gogoi, M. Biosensors for cancer detection: A review. TrAC Trends Anal. Chem. 2024, 180, 117978. [Google Scholar] [CrossRef]
- Kokabi, M.; Tahir, M.N.; Singh, D.; Javanmard, M. Advancing Healthcare: Synergizing Biosensors and Machine Learning for Early Cancer Diagnosis. Biosensors 2023, 13, 884. [Google Scholar] [CrossRef]
- Maddox, K.E.J.; Elkind, M.S.; Aparicio, H.J.; Commodore-Mensah, Y.; de Ferranti, S.D.; Dowd, W.N.; Hernandez, A.F.; Khavjou, O.; Michos, E.D.; Palaniappan, L.; et al. Forecasting the Burden of Cardiovascular Disease and Stroke in the United States Through 2050—Prevalence of Risk Factors and Disease: A Presidential Advisory From the American Heart Association. Circulation 2024, 150, e65–e88. [Google Scholar] [CrossRef]
- Tique, M.R.; Araque, O.; Sanchez-Echeverri, L.A. Technological Advances in the Diagnosis of Cardiovascular Disease: A Public Health Strategy. Int. J. Environ. Res. Public Heal. 2024, 21, 1083. [Google Scholar] [CrossRef]
- Huang, J.-D.; Wang, J.; Ramsey, E.; Leavey, G.; Chico, T.J.A.; Condell, J. Applying Artificial Intelligence to Wearable Sensor Data to Diagnose and Predict Cardiovascular Disease: A Review. Sensors 2022, 22, 8002. [Google Scholar] [CrossRef]
- Kim, J.; Campbell, A.S.; de Ávila, B.E.-F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406. [Google Scholar] [CrossRef]
- Shajari, S.; Kuruvinashetti, K.; Komeili, A.; Sundararaj, U. The Emergence of AI-Based Wearable Sensors for Digital Health Technology: A Review. Sensors 2023, 23, 9498. [Google Scholar] [CrossRef]
- Talaat, F.M.; Elnaggar, A.R.; Shaban, W.M.; Shehata, M.; Elhosseini, M. CardioRiskNet: A Hybrid AI-Based Model for Explainable Risk Prediction and Prognosis in Cardiovascular Disease. Bioengineering 2024, 11, 822. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.; Hamayun, S.; Wahab, A.; Khan, S.U.; Rehman, M.U.; Haq, Z.U.; Rehman, K.U.; Ullah, A.; Mehreen, A.; Awan, U.A.; et al. Smart Technologies used as Smart Tools in the Management of Cardiovascular Disease and their Future Perspective. Curr. Probl. Cardiol. 2023, 48, 101922. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zhu, R.; Peng, I.; Xu, Z.; Jiang, Y. Wearable and implantable biosensors: Mechanisms and applications in closed-loop therapeutic systems. J. Mater. Chem. B 2024, 12, 8577–8604. [Google Scholar] [CrossRef] [PubMed]
- Vrahatis, A.G.; Skolariki, K.; Krokidis, M.G.; Lazaros, K.; Exarchos, T.P.; Vlamos, P. Revolutionizing the Early Detection of Alzheimer’s Disease through Non-Invasive Biomarkers: The Role of Artificial Intelligence and Deep Learning. Sensors 2023, 23, 4184. [Google Scholar] [CrossRef]
- Lee, A.Y.; Yanagihara, R.T.; Lee, C.S.; Blazes, M.; Jung, H.C.; Chee, Y.E.; Gencarella, M.D.; Gee, H.; Maa, A.Y.; Cockerham, G.C.; et al. Multicenter, Head-to-Head, Real-World Validation Study of Seven Automated Artificial Intelligence Diabetic Retinopathy Screening Systems. Diabetes Care 2021, 44, 1168–1175. [Google Scholar] [CrossRef]
- Kort, S.; Brusse-Keizer, M.; Schouwink, H.; Citgez, E.; de Jongh, F.H.; van Putten, J.W.; Borne, B.v.D.; Kastelijn, E.A.; Stolz, D.; Schuurbiers, M.; et al. Diagnosing Non-Small Cell Lung Cancer by Exhaled Breath Profiling Using an Electronic Nose. Chest 2023, 163, 697–706. [Google Scholar] [CrossRef]
- Schee, M.; Allsworth, M.; Chen, Y.; de Saedeleer, A.; Leal, M.; Dragonieri, S.; Wirtz, H.; Gaga, M.; Scherpereel, A.; Prasad, A.; et al. P1.13-04 The LuCID Study: Detection of Lung Cancer Breath Biomarkers via Breath Biopsy in a Multi-Centre Trial. J. Thorac. Oncol. 2023, 18, S213. [Google Scholar] [CrossRef]
- Lopez-Jimenez, F.; Deshmukh, A.; Bisognano, J.; Boehmer, J.; Ramasamy, M.; Kumar, P.S.; Kapa, S.; Varadan, V.; Varadan, V.; Fudim, M. Development and Internal Validation of an AI-Enabled Cuff-less, Non-invasive Continuous Blood Pressure Monitor Across All Classes of Hypertension. J. Cardiovasc. Transl. Res. 2025, 18, 280–290. [Google Scholar] [CrossRef]
- Wen, J.; Zhang, Z.; Lan, Y.; Cui, Z.; Cai, J.; Zhang, W. A survey on federated learning: Challenges and applications. Int. J. Mach. Learn. Cybern. 2023, 14, 513–535. [Google Scholar] [CrossRef]
- Rancea, A.; Anghel, I.; Cioara, T. Edge Computing in Healthcare: Innovations, Opportunities, and Challenges. Futur. Internet 2024, 16, 329. [Google Scholar] [CrossRef]
- Williamson, S.M.; Prybutok, V. Balancing Privacy and Progress: A Review of Privacy Challenges, Systemic Oversight, and Patient Perceptions in AI-Driven Healthcare. Appl. Sci. 2024, 14, 675. [Google Scholar] [CrossRef]
- Bouderhem, R. Shaping the future of AI in healthcare through ethics and governance. Humanit. Soc. Sci. Commun. 2024, 11, 416. [Google Scholar] [CrossRef]






| Disease | Target Analyte | Detection Device | AI Algorithm | Performances | Ref. |
|---|---|---|---|---|---|
| COVID-19 | Protein/virus RNA/antigen/Ab/blood pressure | Various sensors | SSO-GDCFN | Accuracy: 99.99%; precision: 99.98%; sensitivity: 100%; specificity: 95%; kappa: 0.965; AUC: 0.98 | [71] |
| COVID-19 | Spike protein’s RBD | Bio-inspired peptide based electrochemical sensor | SVM | Accuracy: 90%; sensitivity: 100%; specificity: 80% | [73] |
| COVID-19 | Virus RNA | Chemiresistive biochip | SVC/RBF | Accuracy: 95.2% and 100% (for extracted and non-extracted RNA samples) | [74] |
| Sexually transmitted diseases | Sexually transmitted viruses | 2D photonic crystal-based optical sensor | KNN | Accuracy: 97.12%; sensitivity: 998 nm; quality factors: 3988 | [75] |
| COVID-19 | Nucleoprotein | SERS sensor | DL | Accuracy: 94.52% and 100% (for testing and training set) | [76] |
| COVID-19 | S protein, N protein, VLP protein, Streptavidin | SERS sensor | DeepATsers (based on CNN and GAN) | Accuracy: 97.5% | [77] |
| Dengue fever | Protein | Optoelectronic biosensor | ANN (trained by Salp swarm algorithm) | - | [78] |
| Malaria | Malaria parasite | Tunable terahertz metasurface biosensor | ML (XGBoost) | Sensitivity: 429 GHzRIU−1; detection accuracy: 25.6; a figure of merit: 10.989 RIU−1; R2 > 99% | [60] |
| Tuberculosis | Mycobacterium tuberculosis | Graphene-based terahertz metamaterial biosensor | ML (XGBoost) | Sensitivity: 1000 GHzRIU−1; accuracy: 100%; R2: 98.825% | [79] |
| COVID-19 | Six SARS-CoV-2 antigens | Nanoplasmonic biosensor | RF | - | [80] |
| Zika virus disease | Zika virus | MIP-based electrochemical sensor | SVM | Accuracy: 91% | [81] |
| Breast cancer | miRNA-21, miRNA-96 | Lateral flow chip sensor | SVR, GPR | Detection time: <5 min; LOD: 10−15 M level; R2: 99.16% | [82] |
| Cancers | Cancer cells | 2D-photonic crystal biosensor | ANN | Sensitivity: 55%-89%; highest accuracy: 81% | [83] |
| Prostate cancer | Exosomal TMEM256, flotillin-2, PSMA | DGFET biosensor | XAI | Accuracy: 66.7% (PI-RADS 3); AUC: 0.93 | [84] |
| Cancers | HeLa, PC12, MDA, MCF, and Jurkat cells | 2D photonic crystal biosensor | MLR, SVM | R2: 99% (SVM), 88% (MLR) | [85] |
| Cervical cancer | Cervical cancer tissues | Metasurface SPR sensor | SVR with polynomial kernel | Sensitivities: 400 GHzRIU−1; figures of merit: 5.882 RIU−1; quality factors: 9.206-9.950; R2: 100% | [86] |
| Oral cancer | Cystatin B, leukotriene A 4 hydrolase, and collagen type VI alpha 1 chain in human saliva | Electrochemical sensor | ML-based AdaBoost model | LOD: 0.4 ng/mL; accuracy: 76% | [87] |
| Cancer | CEA | Split-ring resonator microwave biosensor | CNN | LOD: 39 pg/mL; sensitivity: 27.5 MHz/(ng/mL); R2: 99.9% | [88] |
| Breast cancer | ECM1 | Electrochemical immunosensor | ANN | Linear range: (0.1-7.5) ×10−9 M; LOD: 1.2×10−11 M; current retention over 1 h: 98.6% | [89] |
| Cancer | p53 | Electrochemical immunosensor | ML | - | [90] |
| Breast cancer | miRNA-451, miRNA-145 | Bipolar self-powered electrical sensor | RF | Linear range: 10−15–10−10 M; LOD: 2.4 × 10−16 M and 3.17 × 10−16 M | [91] |
| Lung cancer | Salivary biomarkers | 3D-printed microfluidic SERS sensor | SVM | Accuracy: 94%; sensitivity: 93.5%; specificity: 88% | [92] |
| Cardiovascular disease | - | Medical sensors and wearable devices | Shuffled Frog leaping-tuned iterative improved adaptive boosting algorithm | Accuracy: 95.37%; precision: 93.51%; sensitivity: 94.3%; specificity: 96.31%; F-measure: 95.72% | [93] |
| Cardiovascular disease | - | Various sensors | Bidirectional-gated recurrent unit attention model | Accuracy: 99.90% | [94] |
| Cardiovascular disease | Blood pressure, ECG, heart rate | Wearable sensors | ML with stacking classifier | F1 score: 80.4% and 91% (3-level and 2-level system) | [95] |
| Cardiovascular disease | - | Various sensors and sources | ML and fuzzy logic | Accuracy: 82.6%; precision: 81.5%; recall: 83.7%; F1 score: 82.5% | [96] |
| Cardiovascular disease | Cholesterol | SERS sensor | RF | Accuracy: 83.5%; LOD: 10−8 M | [97] |
| Cardiovascular disease | - | Wearable ECG and bioimpedance device | ML with LightGBM classifier | Accuracy: 94.49% | [98] |
| Metabolic disorders | Dimethylamine, creatinine, glucose, and H+ | MIP-based wearable sensor | MLP | Accuracy: >98% | [99] |
| Diabetes | Glucose, lactate | Electrochemiluminescence biosensor | ML | LOD: 1.42 × 10−4 M (glucose), 3.42 × 10−4 M (lactate) | [100] |
| Diabetes | Glucose | Photosensitive sensor | Federated learning | Root mean square error: 19.1 mg/dL | [101] |
| Diabetes | ECG | Wearable sensor | Edge-AI | Accuracy: 89.52% | [102] |
| Diabetes | Sweat pH and glucose | Wearable sensor | RF, CNN | R2: 99% | [103] |
| Neurodegenerative diseases | Proteins | Immuno-nano-plasmonic infrared metasurface sensor | DNN | Accuracy: 94.66% | [104] |
| Alzheimer’s disease | Amyloid β (1–42) and metabolites | SERS sensor | DL | Accuracy: 96–100% | [105] |
| Alzheimer’s disease | Aβ40/Aβ42 aggregates | Fluorescent sensor | ML | Accuracy: 100% | [106] |
| Alzheimer’s disease | Aβ40, Aβ42, P-tau181, P-tau217, NfL | Graphene FET sensor | ML | AUC: 0.94 | [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, S. Artificial Intelligence-Assisted Nanosensors for Clinical Diagnostics: Current Advances and Future Prospects. Biosensors 2025, 15, 656. https://doi.org/10.3390/bios15100656
Yin S. Artificial Intelligence-Assisted Nanosensors for Clinical Diagnostics: Current Advances and Future Prospects. Biosensors. 2025; 15(10):656. https://doi.org/10.3390/bios15100656
Chicago/Turabian StyleYin, Shuo. 2025. "Artificial Intelligence-Assisted Nanosensors for Clinical Diagnostics: Current Advances and Future Prospects" Biosensors 15, no. 10: 656. https://doi.org/10.3390/bios15100656
APA StyleYin, S. (2025). Artificial Intelligence-Assisted Nanosensors for Clinical Diagnostics: Current Advances and Future Prospects. Biosensors, 15(10), 656. https://doi.org/10.3390/bios15100656

