Hydrogen Peroxide Fuel Cells and Self-Powered Electrochemical Sensors Based on the Principle of a Fuel Cell with Biomimetic and Nanozyme Catalysts
Abstract
:1. Introduction
2. Mechanism of HPFCs
3. Development of HPFCs
3.1. Two-Compartment Design of HPFCs
3.2. One-Compartment HPFC and the Use of Biomimetic and Nanozyme Catalysts
3.3. Photocatalytic HPFC
Anode | Cathode | pH, Electrolyte | H2O2, M Analyte, M | OCP, V | MPD, mW/cm2; (MCD, mA cm−2) a | Configuration, One-/Two-Compartment | Sensor Application: DL; LR; S a | Author, Year, Ref. |
---|---|---|---|---|---|---|---|---|
Pt | Pt | Anode: 1 M NaOH Cathode: 1.5 M H2SO4 | 0.75 | 0.7 | 23; (80) | 2 | – | Hasegawa et al., 2005 [46] |
Au | Ag | 1 M NaOH | 0.3 | 0.095 | – | 1 | – | Yamazaki et al., 2008 [62] |
Au | Ag-Pb NP | 1 M NaOH | 0.3 | 0.15 | 0.075 | 1 b | – | Yamada et al., 2010 [63] |
Ni/C-paper | Pt/C | Anode: 6 M KOH Cathode: 1.5 M H2SO4 | 1 2 | 0.9 | 3.75 | 2 | – | Sanli et al., 2011 [52] |
Ni | Protonated FePc | pH 3, Acetate | 0.3 | 0.5 | 10 µW cm−2 | 1 | – | Yamada et al., 2011 [64] |
Pt (H2O→O2) | PB NTs | pH 7, 0.1 M KCl Glucose | Up to 80 µM | – | About 30 µW cm−2 | 2, H2O2 in catholyte only | 0.1 µM; up to 80 µM 0.048 A M cm−2; LR 1–25 mM | Wong et al., 2012 [65] |
Ni Ag | PB | 0.1 M HCl | 0.5 | 0.6 0.53 | 1.55 0.8 | 1 | – | Shaegh et al., 2012 [66] |
d-Pd/CFC | d-Pd/CFC | Anode: 4 M KOH Cathode: 2 M H2SO4 | 1 2 | 0.9 0.9 | 14.3 (20 °C) 58.4 (60 °C) | 2 | – | Yang et al., 2012 [54] |
d-Au-Pd/CFC | d-Au-Pd/CFC | Anode: 4 M KOH Cathode: 2 M H2SO4 | 1 2 | 0.9 | 20.7 | 2 | – | Yang et al., 2013 [58] |
Ni | Fe(II)3[Co(III)(CN)6]2 on CC | pH 3 (HClO4, 1 M NaCl) pH 1 (HClO4, 1 M NaCl) | 0.3 0.3 | 0.68 0.78 | 0.45 1.2 | 1 | – | Yamada et al., 2013 [74] |
Ni/CFC | Pd/CFC | Anode: 4 M KOH Cathode: 2 M H2SO4 | 1 2 | 0.9 0.9 | 21.6 (20 °C) 53.8 (50 °C) | 2 | – | Yang et al., 2014 [55] |
Ni | Fe(II)[Pt(CN)6](pyz) FeII[Pd(CN)6](pyz) | pH 3, 1 M NaCl pH 1, 1 M NaCl pH 1, 1 M NaCl | 0.3 0.3 0.3 | 0.8 0.7 0.78 | 0.09 4.2 4.2 | 1 | – | Yamada et al., 2014 [75] |
Mg (reductant) | PB | 0.1 M HCl | 0.5 | 2.3 | 7.5 | 1 | – | Shaegh et al., 2014 [91] |
[FeII(H2O)2]3[Co(III)(CN)6]2 therm. treated 60 °C | pH 1, 1 M NaCl, 0.12 M Sc3+ | 0.3 | 0.81 | 9.9 | 1 | – | Yamada et al., 2015 [76] | |
Ni | FeIII(9-hydroxyphenalenone)3 | 0.1 M H2SO4 | 0.3 | 0.74 | 1.43 | 1 | – | Pariyar et al., 2015 [77] |
Ni NWA | Pd/CFC | Anode: 4 M KOH Cathode: 2 M H2SO4 | 0.9 2 | 0.9 | 48.7 | 2 | – | Ye et al., 2015 [56] |
Ni | Fe(II)3[Co(III)(CN)6]2 on CC | pH 1.3, seawater | 0.048 | 0.78 | 1.6 | 1 c | – | Mase et al., 2016 [105] |
Ni Al (reductant) | PB | 0.1 M HCl | 0.5 | 0.32 0.61 | 0.38 0.81 | 1, µ-fluidic, paper/SU-8 | – | Ehteshami et al., 2016 [80] |
Ni@TiC NWA | Au-Pd/CFC | Anode: 4 M KOH Cathode: 2.0 M H2SO4 | 1 2 | 0.9 | 30.2 | 2 | – | Wang et al., 2017 [57] |
TiO2/Au NP/g-C3N4 | PB | 0.1 M PBS, pH 7.4 Ascorbic acid as an electron donor | – | – | – | 1 d | 3.2 nM 0.005–200 µM | Wang et al., 2017 [106] |
Not specified | ITO/Cu2O/CoP-NC | 0.1 M PBS, pH 7.4 H2O is oxidized on anode | – | – | – | 1 d | 0.1 µM 1–220 µM | Tian et al., 2017 [107] |
FTO/mesoporous-TiO2 | GCE | pH 3, 0.1 M NaClO4 (UV light) | 0.1 | 0.72 | (0.24) | 1 | – | Fujiwara et al., 2017 [104] |
Ag/AgCl | PB/NiHCF | 0.05 M PB pH 6, 0.1 M KCl H2O2 Glucose Lactate | 0.2 µM–1 mM 5 µM–20 mM 0.5 µM–2 mM | – | – | 1 | A M cm−2 SH2O2 0.65 Sglu 0.043 Slact 0.18 | Komkova et al., 2017 [108] |
Ag NW | CNT-PB | 1.5 M H2SO4 | 2 | 0.58 | 0.88 | 1, paper µ-fluidics | – | Yan et al., 2018 [81] |
Ni | PEDOT | 0.05 M HCl | 0.1 | 0.56 | 0.31 | 1 | – | Miglbauer et al., 2018 [78] |
Bioanode from MFC | CoMn2O4 NPs/graphite | pH 7 300 Ohm | 1–1000 mM | – | – | 2 H2O2 in catholyte | 40.2 µM 1–1000 mM 0.0132 A M−1 | Liu et al., 2018 [109] |
Bioanode from MFC | Graphite | pH 7 300 Ohm | 1–2000 mM | – | – | 2 H2O2 in catholyte | 34.6 µM 1–2000 mM 0.011 A M−1 | Liu et al., 2019 [110] |
Pt | Au/PB | H2O H2O2 Glucose | Up to 0.2 mM 1–4 mM | 0.11 | 1.2 µW cm−2 in 10 mM H2O2 | 1, IDE | 0.02 µM up to 0.2 mM 0.035 A M cm−2 LR 1–4 mM | Ohnuki et al., 2019 [111] |
Ni foam | rGO-PB on CC | 0.67 M HCl | 0.3 | 0.6 | 2.22 | 1, flexible µ-fluidics | – | Yang et al., 2019 [82] |
CNT-Ni NPs | Biscrolled CNT-Fe(II)3[Co(III)(CN)6]2 | 0.1 M HClO4, 0.15 M NaCl | 0.3 | 0.88 | 6.28 | 1, wire-shaped biscrolled yarns, WFC, flexible | – | Zhou et al., 2019 [83] |
Ni | CoPc CuPc FePc FexN | 0.1 M HCl | 0.5 | 0.47 0.57 0.56 0.58 | 0.39 0.40 3.41 0.76 | 1 | – | Nguyen et al., 2020 [88] |
Ni | MWCNT-PB on CC | 0.1 M HCl; 100 Ohm | 0.5 0.25 | 0.66 | 5.5; (34.1) 2.7 | 1 | Microfl. sensor 1.44 mM 5–50 mM 0.0375 A M−1 | Liu et al., 2020 [84] |
CNT/Vit B12 | CNT/Hemin | 0.01 M PBS, pH 7.4 | 0.1 | 0.233 | 53.8 µW cm−2 | 1 | – | Ji et al., 2020 [92] |
rGO/PAA/CoIIPc | [CNT/PEI]Hemin | 0.01 M PBS, pH 7.4 | 0.1 | 0.260 | 72.1 µW cm−2 | 1 | – | Ji et al., 2020 [93] |
CNT/PEI/CoIIPc | CNT/PEI/Hemin (synthesis at 100 °C) | 0.01 M PBS, pH 7.4 | 0.1 | 0.340 | 129 µW cm−2 | 1, flow cell | – | Jeon et al., 2022 [94] |
H-CoNC | CNT/PEI/Hemin | 0.01 M PBS, pH 7.4 | 0.1 | 0.350 | 231.3 µW cm−2 | 1, flow cell | – | Ji et al., 2022 [95] |
Ni NP/CFT | MWCNT-PB/CFT | 0.3 M HCl | 0.5 | 0.63 | 14.41 | 1, CFT, flexible | – | Wang et al., 2022 [85] |
Ni | CNT-PB | Anode: 3 M KOH Cathode: 3 M HCl | 2 M | 1 | 10 | 2, paper, gel-aided dual-electrolyte | – | Luo et al., 2022 [87] |
Porous g-C3N4/Ni | g-C3N4/FePc on CP | 0.1 M HCl | 0.3 | 0.626 | 0.248 | 1 e | – | Li et al., 2022 [112] |
BP/PEI/CoIIPc | BP/PEI/Hemin/ | 0.01 M PBS, pH 7.4 | 0.1 | 0.308 | 373 µW cm−2 | 1, flow cell | Porous separator, turbulent flow | Jeon et al., 2022 [97] |
BP/CoIIPc | BP/Hemin/PEI/Hemin | 0.01 M PBS, pH 7.4 | 0.1 | 0.171 | 90.7 µW cm−2 | 1, flow cell, flexible electrode materials | – | Jeon et al., 2023 [96] |
W:BiVO4-V2O5 | Cu2O-CuO | 1 M NaCH3COO | 0.2 | 0.48 | 0.26; (3.4) | 1 | – | Andrade et al., 2023 [103] |
CNT-CoII chlorin | Fe(II)3[Co(III)(CN)6]2 | pH 1, HClO4; 1 M NaCl | 0.3 | 0.33 | 151 µW cm−2 | – | Hashimoto et al., 2024 [98] | |
Ni | GNP-FePc | 0.1 M PB pH 3 pH 7.4 pH 3, 10 kOhm | 0.003 | 0.58 | 66 µW cm−2 at 20 kOhm | 1 | 0.6 µM up to 3 mM 0.198 A M−1 cm−1 Blood Serum 0.2 µM up to 3 mM 0.197 A M−1 cm−1 0.8 µM up to 1 mM 0.350 A M−1 cm−1 | Zhang et al., 2024 [67] |
Ni Ag | C60-ancored Fe(II)3[Co(III)(CN)6]2 | 0.1 M HNO3, 0.15 M NaCl | 0.1 | 0.905 (Decline faster) 0.8 (Stable) | 15.01; (35) | CNT fiber yarn, flexible | – | Zhou et al., 2024 [86] |
Ni/PDI-Au NP | PDI/FePc | 0.1 M HCl | 0.2 | 0.7 | 1.07 | 1e | – | Li et al., 2024 [113] |
3.4. Hydrogen Peroxide Fuel Cell with Sustainable H2O2
4. H2O2 SPES or H2O2 SPPhotoES Based on HPFCs
4.1. H2O2 SPES
4.2. H2O2 Self-Powered Photoelectrochemical Sensors
5. Sensors Based on HPFCs or H2O2 SPESs
5.1. SPBioESs and Single-Enzyme SPBioESs Based on the Formation and Detection of H2O2
5.2. Wearable Systems Based on a Single-Enzyme SPBioES Using the Formation and Detection of H2O2 on Biomimetic Cathode Catalysts
5.3. Self-Powered Electrochromic Sensors Based on Hydrogen Peroxide Detection—Optical Readout
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ostwald, W. Die wissenschftliche Chemie der Gegenwart und die Technische der Zukunft. Z. Elektrotechnik Elektrochem. 1894, 1, 122–125. [Google Scholar] [CrossRef]
- Bagotsky, V.S.; Skundin, A.M.; Volfkovich, Y.M. Electrochemical Power Sources. Batteries, Fuel Cells, and Supercapacitors; Wiley: Hoboken, NJ, USA, 2015; 372p. [Google Scholar]
- Katz, E.; Buckmann, A.F.; Willner, I. Self-powered enzyme-based biosensors. J. Am. Chem. Soc. 2001, 123, 10752–10753. [Google Scholar] [CrossRef]
- Katz, E.; Willner, I.; Kotlyar, A.B. A non-compartmentalized glucose∣O2 biofuel cell by bioengineered electrode surfaces. J. Electroanal. Chem. 1999, 479, 64–68. [Google Scholar] [CrossRef]
- Freeman, C.J.; Ullah, B.; Islam, M.S.; Collinson, M.M. Potentiometric biosensing of ascorbic acid, uric acid, and cysteine in microliter volumes using miniaturized nanoporous gold electrodes. Biosensors 2021, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhuang, X.; Wei, H.; Liu, R.; Ji, W.; Yu, P.; Ma, W.; Mao, L. Enzymatic Galvanic Redox Potentiometry for In Vivo Biosensing. Anal. Chem. 2024, 96, 3672–3678. [Google Scholar] [CrossRef]
- Wu, F.; Yu, P.; Mao, L. New opportunities of electrochemistry for monitoring, modulating, and mimicking the brain signals. JACS Au 2023, 3, 2062–2072. [Google Scholar] [CrossRef]
- Wu, F.; Yu, P.; Mao, L. Self-powered electrochemical systems as neurochemical sensors: Toward self-triggered in vivo analysis of brain chemistry. Chem. Soc. Rev. 2017, 46, 2692–2704. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Krasnoslobodtsev, A.V. Fueling the future: The emergence of self-powered enzymatic biofuel cell biosensors. Biosensors 2024, 14, 316. [Google Scholar] [CrossRef]
- Xue, Z.; Wu, L.; Yuan, J.; Xu, G.; Wu, Y. Self-powered biosensors for monitoring human physiological changes. Biosensors 2023, 13, 236. [Google Scholar] [CrossRef]
- Sailapu, S.K.; Menon, C. Engineering self-powered electrochemical sensors using analyzed liquid sample as the sole energy source. Adv. Sci. 2022, 9, e2203690. [Google Scholar] [CrossRef]
- del Campo, F.J. Self-powered electrochemical sensors. Curr. Opin. Electrochem. 2023, 41, 101356. [Google Scholar] [CrossRef]
- Chen, H.; Simoska, O.; Lim, K.; Grattieri, M.; Yuan, M.; Dong, F.; Lee, Y.S.; Beaver, K.; Weliwatte, S.; Gaffney, E.M.; et al. Fundamentals, applications, and future directions of bioelectrocatalysis. Chem. Rev. 2020, 120, 12903–12993. [Google Scholar] [CrossRef]
- Grattieri, M.; Minteer, S.D. Self-powered biosensors. ACS Sens. 2018, 3, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Galstyan, V.; D’Onofrio, I.; Liboà, A.; De Giorgio, G.; Vurro, D.; Rovati, L.; Tarabella, G.; D’Angelo, P. Recent advances in self-powered electrochemical biosensors for early diagnosis of diseases. Adv. Mater. Technol. 2024, 9, 2400395. [Google Scholar] [CrossRef]
- Zhang, J.L.; Wang, Y.H.; Huang, K.; Huang, K.J.; Jiang, H.; Wang, X.M. Enzyme-based biofuel cells for biosensors and in vivo power supply. Nano Energy 2021, 84, 105853. [Google Scholar] [CrossRef]
- Chen, R.-S.; Gao, M.; Chu, D.; Cheng, W.; Lu, Y. Self-powered hydrogel wearable bioelectronics. Nano Energy 2024, 128, 109960. [Google Scholar] [CrossRef]
- Gu, C.; Gai, P.; Li, F. Construction of biofuel cells-based self-powered biosensors via design of nanocatalytic system. Nano Energy 2022, 93, 106806. [Google Scholar] [CrossRef]
- Banerjee, R.E. Redox Biochemistry; Wiley&Sons Inc.: Hoboken, NJ, USA, 2008; 317p. [Google Scholar]
- Gough, D.R.; Cotter, T.G. Hydrogen peroxide: A Jekyll and Hyde signalling molecule. Cell Death Dis. 2011, 2, e213. [Google Scholar] [CrossRef] [PubMed]
- Konno, T.; Melo, E.P.; Chambers, J.E.; Avezov, E. Intracellular sources of ROS/H2O2 in health and neurodegeneration: Spotlight on endoplasmic reticulum. Cells 2021, 10, 233. [Google Scholar] [CrossRef] [PubMed]
- Moßhammer, M.; Kühl, M.; Koren, K. Possibilities and challenges for quantitative optical sensing of hydrogen peroxide. Chemosensors 2017, 5, 28. [Google Scholar] [CrossRef]
- Lima, M.J.A.; Sasaki, M.K.; Marinho, O.R.; Freitas, T.A.; Faria, R.C.; Reis, B.F.; Rocha, F.R.P. Spot test for fast determination of hydrogen peroxide as a milk adulterant by smartphone-based digital image colorimetry. Microchem. J. 2020, 157, 105042. [Google Scholar] [CrossRef]
- Nikolaev, K.G.; Maybeck, V.; Neumann, E.; Ermakov, S.S.; Ermolenko, Y.E.; Offenhäusser, A.; Mourzina, Y.G. Bimetallic nanowire sensors for extracellular electrochemical hydrogen peroxide detection in HL-1 cell culture. J. Solid State Electrochem. 2017, 22, 1023–1035. [Google Scholar] [CrossRef]
- Chen, Y.; Ji, W.; Yan, K.; Gao, J.; Zhang, J. Fuel cell-based self-powered electrochemical sensors for biochemical detection. Nano Energy 2019, 61, 173–193. [Google Scholar] [CrossRef]
- Nikolaev, K.G.; Ermolenko, Y.E.; Offenhausser, A.; Ermakov, S.S.; Mourzina, Y.G. Multisensor systems by electrochemical nanowire assembly for the analysis of aqueous solutions. Front. Chem. 2018, 6, 256. [Google Scholar] [CrossRef]
- Vahidpour, F.; Alghazali, Y.; Akca, S.; Hommes, G.; Schöning, M.J. An Enzyme-based interdigitated electrode-type biosensor for detecting low concentrations of H2O2 vapor/aerosol. Chemosensors 2022, 10, 202. [Google Scholar] [CrossRef]
- An, L.; Zhao, T.; Yan, X.; Zhou, X.; Tan, P. The dual role of hydrogen peroxide in fuel cells. Sci. Bull. 2015, 60, 55–64. [Google Scholar] [CrossRef]
- McDonnell-Worth, C.J.; MacFarlane, D.R. Progress towards direct hydrogen peroxide fuel cells (DHPFCs) as an energy storage concept. Aust. J. Chem. 2018, 71, 781–788. [Google Scholar] [CrossRef]
- Abreu, C.; Nedellec, Y.; Ondel, O.; Buret, F.; Cosnier, S.; Le Goff, A.; Holzinger, M. Glucose oxidase bioanodes for glucose conversion and H2O2 production for horseradish peroxidase biocathodes in a flow through glucose biofuel cell design. J. Power Sources 2018, 392, 176–180. [Google Scholar] [CrossRef]
- Koposova, E.; Shumilova, G.; Ermolenko, Y.; Kisner, A.; Offenhäusser, A.; Mourzina, Y. Direct electrochemistry of cyt c and hydrogen peroxide biosensing on oleylamine- and citrate-stabilized gold nanostructures. Sens. Actuators B Chem. 2015, 207, 1045–1052. [Google Scholar] [CrossRef]
- Breslow, R. Artificial Enzymes; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005. [Google Scholar]
- Wang, X.; Guo, W.; Hu, Y.; Wu, J.; Wei, H. Nanozymes: Next Wave of Artificial Enzymes; Springer Briefs in Molecular Science; Springer: Berlin/Heidelberg, Germany, 2016; 127p. [Google Scholar]
- Manea, F.; Houillon, F.B.; Pasquato, L.; Scrimin, P. Nanozymes: Gold-nanoparticle-based transphosphorylation catalysts. Angew. Chem. Int. Ed. 2004, 43, 6165–6169. [Google Scholar] [CrossRef]
- Wei, H.; Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093. [Google Scholar] [CrossRef]
- Gooding, J.J. Can nanozymes have an impact on sensing? ACS Sens. 2019, 4, 2213–2214. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar] [CrossRef]
- Feng, Z.; Guo, Y.; Zhang, Y.; Zhang, A.; Jia, M.; Yin, J.; Shen, G. Nanozymes: A bibliometrics review. J. Nanobiotechnol. 2024, 22, 704. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, R.; Yan, X.; Fan, K. Structure and activity of nanozymes: Inspirations for de novo design of nanozymes. Mater. Today 2020, 41, 81–119. [Google Scholar] [CrossRef]
- Esan, O.C.; Shi, X.; Pan, Z.; Liu, Y.; Huo, X.; An, L.; Zhao, T.S. A high-performance H2O2-based fuel cell for air-free applications. J. Power Sources 2022, 548, 232114. [Google Scholar] [CrossRef]
- Bagotsky, V.S. Fundamentals of Electrochemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; 722p. [Google Scholar]
- Alberty, R.A. Calculating apparent equilibrium constants of enzyme-catalyzed reactions at pH 7. Biochem. Educ. 2000, 28, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Cracknell, J.A.; Vincent, K.A.; Armstrong, F.A. Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem. Rev. 2008, 108, 2439–2461. [Google Scholar] [CrossRef]
- Haque, S.U.; Duteanu, N.; Ciocan, S.; Nasar, A. Inamuddin A review: Evolution of enzymatic biofuel cells. J. Environ. Manag. 2021, 298, 113483. [Google Scholar] [CrossRef] [PubMed]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions; National Association of Corrosion Engineers: Houston, TX, USA, 1974; pp. 106–111. [Google Scholar]
- Hasegawa, S.; Shimotani, K.; Kishi, K.; Watanabe, H. Electricity generation from decomposition of hydrogen peroxide. Electrochem. Solid State Lett. 2005, 8, A119. [Google Scholar] [CrossRef]
- Venkatachalapathy, R.; Davila, G.P.; Prakash, J. Catalytic decomposition of hydrogen peroxide in alkaline solutions. Electrochem. Commun. 1999, 1, 614–617. [Google Scholar] [CrossRef]
- Fukuzumi, S. Artificial photosynthesis for production of hydrogen peroxide and its fuel cells. Biochim. Biophys. Acta 2016, 1857, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Fukuzumi, S.; Yamada, Y. Hydrogen peroxide used as a solar fuel in one-compartment fuel cells. ChemElectroChem 2016, 3, 1978–1989. [Google Scholar] [CrossRef]
- Zhu, S.-S.; Zhang, Z.; Li, Z.; Yue, H.; Liu, X. Progress and perspective on covalent organic frameworks for photo-catalytic hydrogen peroxide production. Chem. Catal. 2024, 4, 100963. [Google Scholar] [CrossRef]
- Disselkamp, R.S. Energy storage using aqueous hydrogen peroxide. Energy Fuels 2008, 22, 2771–2774. [Google Scholar] [CrossRef]
- Sanli, A.E.; Aytaç, A. Response to Disselkamp: Direct peroxide/peroxide fuel cell as a novel type fuel cell. Int. J. Hydrogen Energy 2011, 36, 869–875. [Google Scholar] [CrossRef]
- Shyu, J.-C.; Huang, C.-L. Characterization of bubble formation in microfluidic fuel cells employing hydrogen peroxide. J. Power Sources 2011, 196, 3233–3238. [Google Scholar] [CrossRef]
- Yang, F.; Cheng, K.; Liu, X.; Chang, S.; Yin, J.; Du, C.; Du, L.; Wang, G.; Cao, D. Direct peroxide–peroxide fuel cell—Part 2: Effects of conditions on the performance. J. Power Sources 2012, 217, 569–573. [Google Scholar] [CrossRef]
- Yang, F.; Cheng, K.; Xiao, X.; Yin, J.; Wang, G.; Cao, D. Nickel and cobalt electrodeposited on carbon fiber cloth as the anode of direct hydrogen peroxide fuel cell. J. Power Sources 2014, 245, 89–94. [Google Scholar] [CrossRef]
- Ye, K.; Guo, F.; Gao, Y.; Zhang, D.; Cheng, K.; Zhang, W.; Wang, G.; Cao, D. Three-dimensional carbon- and binder-free nickel nanowire arrays as a high-performance and low-cost anode for direct hydrogen peroxide fuel cell. J. Power Sources 2015, 300, 147–156. [Google Scholar] [CrossRef]
- Wang, X.; Ye, K.; Zhang, H.; Ma, X.; Zhu, K.; Cheng, K.; Wang, G.; Cao, D. Enhanced performance of direct peroxide–peroxide fuel cells by employing three-dimensional Ni and Co@TiC nanoarrays anodes. Int. J. Hydrogen Energy 2017, 42, 15044–15053. [Google Scholar] [CrossRef]
- Yang, F.; Cheng, K.; Wu, T.; Zhang, Y.; Yin, J.; Wang, G.; Cao, D. Dendritic palladium decorated with gold by potential pulse electrodeposition: Enhanced electrocatalytic activity for H2O2 electroreduction and electrooxidation. Electrochim. Acta 2013, 99, 54–61. [Google Scholar] [CrossRef]
- Chen, F.; Chang, M.-H.; Hsu, C.-W. Analysis of membraneless microfuel cell using decomposition of hydrogen peroxide in a Y-shaped microchannel. Electrochim. Acta 2007, 52, 7270–7277. [Google Scholar] [CrossRef]
- Kline, T.R.; Paxton, W.F.; Wang, Y.; Velegol, D.; Mallouk, T.E.; Sen, A. Catalytic micropumps: Microscopic convective fluid flow and pattern formation. J. Am. Chem. Soc. 2005, 127, 17150–17151. [Google Scholar] [CrossRef] [PubMed]
- Paxton, W.F.; Baker, P.T.; Kline, T.R.; Wang, Y.; Mallouk, T.E.; Sen, A. Catalytically induced electrokinetics for motors and micropumps. J. Am. Chem. Soc. 2006, 128, 14881–14888. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, S.-I.; Siroma, Z.; Senoh, H.; Ioroi, T.; Fujiwara, N.; Yasuda, K. A fuel cell with selective electrocatalysts using hydrogen peroxide as both an electron acceptor and a fuel. J. Power Sources 2008, 178, 20–25. [Google Scholar] [CrossRef]
- Yamada, Y.; Fukunishi, Y.; Yamazaki, S.; Fukuzumi, S. Hydrogen peroxide as sustainable fuel: Electrocatalysts for production with a solar cell and decomposition with a fuel cell. Chem. Commun. 2010, 46, 7334–7336. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Yoshida, S.; Honda, T.; Fukuzumi, S. Protonated iron–phthalocyanine complex used for cathode material of a hydrogen peroxide fuel cell operated under acidic conditions. Energy Environ. Sci. 2011, 4, 2822–2825. [Google Scholar] [CrossRef]
- Wong, L.P.; Wei, Y.; Toh, C.-S. Self-powering amperometric sensor and biosensor. J. Electroanal. Chem. 2012, 671, 80–84. [Google Scholar] [CrossRef]
- Shaegh, S.A.M.; Nguyen, N.-T.; Ehteshami, S.M.M.; Chan, S.H. A membraneless hydrogen peroxide fuel cell using Prussian Blue as cathode material. Energy Environ. Sci. 2012, 5, 8225–8228. [Google Scholar] [CrossRef]
- Zhang, Y.; Offenhausser, A.; Mourzina, Y. A study on the mechanism and properties of a self-powered H2O2 electrochemical sensor based on a fuel cell configuration with FePc and graphene cathode catalyst materials. Biosensors 2024, 14, 290. [Google Scholar] [CrossRef] [PubMed]
- Ware, M. Prussian blue: Artists’ pigment and chemists’ sponge. J. Chem. Educ. 2008, 85, 612. [Google Scholar] [CrossRef]
- Zhang, Y.; Kudriashov, D.; Pershina, L.; Offenhausser, A.; Mourzina, Y. Intrinsic multienzyme-like activities of the nanoparticles of Mn and Fe cyano-bridged assemblies. Nanomaterials 2022, 12, 2095. [Google Scholar] [CrossRef] [PubMed]
- Karyakin, A.A. Advances of Prussian blue and its analogues in (bio)sensors. Curr. Opin. Electrochem. 2017, 5, 92–98. [Google Scholar] [CrossRef]
- Abel, E. Über die Selbstzersetzung von Wasserstoffperoxide. Monatshefte Chem. Verwandte Teile Anderer Wiss. 1952, 83, 422–439. [Google Scholar] [CrossRef]
- Ricci, F.; Palleschi, G. Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens. Bioelectron. 2005, 21, 389–407. [Google Scholar] [CrossRef] [PubMed]
- Mourzina, Y.G.; Offenhäusser, A. Electrochemical properties and biomimetic activity of water-soluble meso-substituted Mn(III) porphyrin complexes in the electrocatalytic reduction of hydrogen peroxide. J. Electroanal. Chem. 2020, 866, 114159. [Google Scholar] [CrossRef]
- Yamada, Y.; Yoneda, M.; Fukuzumi, S. A robust one-compartment fuel cell with a polynuclear cyanide complex as a cathode for utilizing H2O2 as a sustainable fuel at ambient conditions. Chem. Eur. J. 2013, 19, 11733–11741. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Yoneda, M.; Fukuzumi, S. High power density of one-compartment H2O2 fuel cells using pyrazine-bridged Fe[M(C)(CN)4] (M(C) = Pt2+ and Pd2+) complexes as the cathode. Inorg. Chem. 2014, 53, 1272–1274. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Yoneda, M.; Fukuzumi, S. High and robust performance of H2O2 fuel cells in the presence of scandium ion. Energy Environ. Sci. 2015, 8, 1698–1701. [Google Scholar] [CrossRef]
- Pariyar, A.; Vijaykumar, G.; Bhunia, M.; Dey, S.K.; Singh, S.K.; Kurungot, S.; Mandal, S.K. Switching closed-shell to open-shell phenalenyl: Toward designing electroactive materials. J. Am. Chem. Soc. 2015, 137, 5955–5960. [Google Scholar] [CrossRef] [PubMed]
- Miglbauer, E.; Wo’jcik, P.J.; Głowacki, E.D. Single-compartment hydrogen peroxide fuel cells with poly(3,4-ethylenedioxythiophene) cathodes. Chem. Commun. 2018, 54, 11873–11876. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; He, N.; Fei, J.; Ma, Z.; Ji, Z.; Chen, Z.; Nie, N.; Huang, Y. Flexible and wearable fuel cells: A review of configurations and applications. J. Power Sources 2022, 551, 232190. [Google Scholar] [CrossRef]
- Mousavi Ehteshami, S.M.; Asadnia, M.; Tan, S.N.; Chan, S.H. Paper-based membraneless hydrogen peroxide fuel cell prepared by micro-fabrication. J. Power Sources 2016, 301, 392–395. [Google Scholar] [CrossRef]
- Yan, X.; Xu, A.; Zeng, L.; Gao, P.; Zhao, T. A paper-based microfluidic fuel cell with hydrogen peroxide as fuel and oxidant. Energy Technol. 2018, 6, 140–143. [Google Scholar] [CrossRef]
- Yang, Y.; Xue, Y.; Zhang, H.; Chang, H. Flexible H2O2 microfluidic fuel cell using graphene/Prussian blue catalyst for high performance. Chem. Eng. J. 2019, 369, 813–817. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, X.; Xu, J.; Dai, S.; Wang, X.; Hu, X.; Qiu, Y.; Yuan, N.; Ding, J. Wire-shaped and membrane-free fuel cell ased on biscrolled carbon nanotube yarn. Energy Technol. 2019, 7, 1900122. [Google Scholar] [CrossRef]
- Liu, Z.; Ye, D.; Wang, S.; Zhu, X.; Chen, R.; Liao, Q. Single-stream H2O2 membraneless microfluidic fuel cell and its application as a self-powered electrochemical sensor. Ind. Eng. Chem. Res. 2020, 59, 15447–15453. [Google Scholar] [CrossRef]
- Wang, S.; Ye, D.; Liu, Z.; Zhu, X.; Chen, R.; Liao, Q.; Yang, Y.; Liu, H. A flexible on-fiber H2O2 microfluidic fuel cell with high power density. Int. J. Hydrogen Energy 2022, 47, 4793–4803. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, X.; Li, M.; Fei, F.; Cao, X.; Dong, X.; Li, L.; Yuan, N.; Ding, J. Efficient power generation based-on carbon yarn in coaxial hydrogen peroxide fuel cells. Mater. Today Phys. 2024, 44, 101432. [Google Scholar] [CrossRef]
- Luo, S.; Pan, W.; Wang, Y.; Zhao, X.; Wah Leong, K.; Leung, D.Y.C. High-performance H2O2 paper fuel cell boosted via electrolyte toning and radical generation. Appl. Energy 2022, 323, 119610. [Google Scholar] [CrossRef]
- Nguyen, B.; Kuperman, N.; Goncher, G.; Solanki, R. Membraneless H2O2 fuel cells driven by metallophthalocyanine electrocatalysts. ECS J. Solid State Sci. Technol. 2020, 9, 061009. [Google Scholar] [CrossRef]
- Zhang, Y.; Pershina, L.; Kudriashov, D.; Offenhäusser, A.; Mourzina, Y. Influence of the chemically reduced graphene oxide interface on the antioxidant multienzyme properties of Prussian blue nanoparticles. Colloids Interface Sci. Commun. 2023, 52, 100689. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, W.; Liu, C.; Zeng, J.; He, Z.; Wang, C.; Yuan, W.; Wang, Q. Flower-like CoO nanowire-decorated Ni foam: A non-invasive electrochemical biosensor for glucose detection in human saliva. Appl. Mater. Today 2024, 36, 102083. [Google Scholar] [CrossRef]
- Mousavi Shaegh, S.A.; Mousavi Ehteshami, S.M.; Chan, S.H.; Nguyen, N.-T.; Tan, S.N. Membraneless hydrogen peroxide micro semi-fuel cell for portable applications. RSC Adv. 2014, 4, 37284–37287. [Google Scholar] [CrossRef]
- Ji, J.; Chung, Y.; Kwon, Y. The effect of a vitamin B12 based catalyst on hydrogen peroxide oxidation reactions and the performance evaluation of a membraneless hydrogen peroxide fuel cell under physiological pH conditions. J. Mater. Chem. C 2020, 8, 2749–2755. [Google Scholar] [CrossRef]
- Ji, J.; Chung, Y.; Kwon, Y. The effects of cobalt phthalocyanine and polyacrylic acid on the reactivity of hydrogen peroxide oxidation reaction and the performance of hydrogen peroxide fuel cell. J. Power Sources 2020, 480, 228860. [Google Scholar] [CrossRef]
- Jeon, S.; An, H.; Ji, J.; Kwon, Y.; Chung, Y. High temperature-induced myoglobin-mimic catalytic structure having high axial ligand content for one-compartment hydrogen peroxide fuel cells. Int. J. Energy Res. 2022, 46, 4142–4155. [Google Scholar] [CrossRef]
- Ji, J.; Im, K.; An, H.; Yoo, S.J.; Chung, Y.; Kim, J.; Kwon, Y. Spray pyrolysis-assisted synthesis of hollow cobalt nitrogen-doped carbon catalyst for the performance enhancement of membraneless fuel cells. Int. J. Energy Res. 2022, 46, 760–773. [Google Scholar] [CrossRef]
- Jeon, S.-M.; Ji, J.; Kwon, Y. Flow-type hydrogen peroxide fuel cells with hemin-modified buckypaper catalysts. J. Mater. Chem. C 2023, 11, 10292–10298. [Google Scholar] [CrossRef]
- Jeon, S.; An, H.; Chung, Y. High performance of the flow-type one-compartment hydrogen peroxide fuel cell using buckypaper and narrow fuel pathway under physiological conditions. Sustain. Energy Fuels 2022, 6, 841–850. [Google Scholar] [CrossRef]
- Hashimoto, K.; Nakazono, T.; Yamada, Y. High Power density of a hydrogen peroxide fuel cell using cobalt chlorin complex supported on carbon nanotubes as a noncorrosive anode. Inorg. Chem. 2024, 63, 1347–1355. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.Z.; Beddu, S.; Kamal, N.L.M.; Rafatullah, M.; Mohamad, D. A review on recent advancements in wearable microbial fuel cells. J. Environ. Chem. Eng. 2024, 12, 112977. [Google Scholar] [CrossRef]
- Serag, E.; El-Maghraby, A.; El Nemr, A. Recent developments in the application of carbon-based nanomaterials in implantable and wearable enzyme-biofuel cells. Carbon Lett. 2022, 32, 395–412. [Google Scholar] [CrossRef]
- Yu, Y.; Nassar, J.; Xu, C.; Min, J.; Yang, Y.; Dai, A.; Doshi, R.; Huang, A.; Song, Y.; Gehlhar, R.; et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci. Robot. 2020, 5, eaaz7946. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Sun, Q.; Wang, Z.L. Self-powered sensing in wearable electronics—A paradigm shift technology. Chem. Rev. 2023, 123, 12105–12134. [Google Scholar] [CrossRef]
- Andrade, T.S.; Sá, B.A.C.; Nogueira, F.G.E.; Oliveira, L.C.A.; Pereira, M.C. Unassisted photocatalytic hydrogen peroxide fuel cell based on dual photoelectrodes with high performance and stability. J. Appl. Electrochem. 2023, 53, 435–444. [Google Scholar] [CrossRef]
- Fujiwara, K.; Akita, A.; Kawano, S.; Fujishima, M.; Tada, H. Hydrogen peroxide-photofuel cell using TiO2 photoanode. Electrochem. Commun. 2017, 84, 71–74. [Google Scholar] [CrossRef]
- Mase, K.; Yoneda, M.; Yamada, Y.; Fukuzumi, S. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel. Nat. Commun. 2016, 7, 11470. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, C.; Ge, S.; Zhang, L.; Yu, J.; Yan, M. Self-powered sensing platform equipped with Prussian blue electrochromic display driven by photoelectrochemical cell. Biosens. Bioelectron. 2017, 89, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Zhu, H.; Chen, J.; Zheng, X.; Duan, H.; Pu, K.; Chen, P. Cobalt phosphide double-shelled nanocages: Broadband light-harvesting nanostructures for efficient photothermal therapy and self-powered photoelectrochemical biosensing. Small 2017, 13, 1700798. [Google Scholar] [CrossRef]
- Komkova, M.A.; Karyakina, E.E.; Karyakin, A.A. Noiseless performance of Prussian blue based (bio)sensors through power generation. Anal. Chem. 2017, 89, 6290–6294. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhou, Z.; Yin, L.; Zhu, Y.; Zhao, J.; Zhu, B.; Zheng, L.; Jin, Q.; Wang, L. A novel self-powered bioelectrochemical sensor based on CoMn2O4 nanoparticle modified cathode for sensitive and rapid detection of hydrogen peroxide. Sens. Actuators B Chem. 2018, 271, 247–255. [Google Scholar] [CrossRef]
- Liu, W.; Yin, L.; Jin, Q.; Zhu, Y.; Zhao, J.; Zheng, L.; Zhou, Z.; Zhu, B. Sensing performance of a self-powered electrochemical sensor for H2O2 detection based on microbial fuel cell. J. Electroanal. Chem. 2019, 832, 97–104. [Google Scholar] [CrossRef]
- Ohnuki, H.; Wako, T.; Mecheri, B.; Wu, H.; Tsuya, D.; Endo, H. Self-powered hydrogen peroxide sensor and its application as a biosensor. Jpn. J. Appl. Phys. 2019, 58, SBBG16. [Google Scholar] [CrossRef]
- Li, X.; Cong, H.; Wang, R.; Wang, Y.; Nie, Z.; Jing, Q.; Zhao, Y.; Song, H.; Wang, H. Ascorbic acid-induced structural defect in photocatalytic graphitic carbon nitride to boost H2O2 fuel cell performance. J. Power Sources 2022, 532, 231368. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Yang, M.; Wang, R.; Li, J.; Cui, G.; Zhao, Y.; Wang, H. Photocatalytic H2O2 production and fuel cell performance based on PDI nanobelts enhanced by surface plasmon resonance of gold nanoparticles. Electrochim. Acta 2024, 495, 144491. [Google Scholar] [CrossRef]
- Freese, T.; Meijer, J.T.; Feringa, B.L.; Beil, S.B. An organic perspective on photocatalytic production of hydrogen peroxide. Nat. Catal. 2023, 6, 553–558. [Google Scholar] [CrossRef]
- Moon, B.C.; Bayarkhuu, B.; Zhang, K.A.I.; Lee, D.K.; Byun, J. Solar-driven H2O2 production via cooperative auto- and photocatalytic oxidation in fine-tuned reaction media. Energy Environ. Sci. 2022, 15, 5082–5092. [Google Scholar] [CrossRef]
- Chen, Z.; Yao, D.; Chu, C.; Mao, S. Photocatalytic H2O2 production Systems: Design strategies and environmental applications. Chem. Eng. J. 2023, 451, 138489. [Google Scholar] [CrossRef]
- Yong, Z.; Ma, T. Solar-to-H2O2 catalyzed by covalent organic frameworks. Angew. Chem. Int. Ed. 2023, 62, e202308980. [Google Scholar] [CrossRef]
- Guo, Y.; Tong, X.; Yang, N. Photocatalytic and electrocatalytic generation of hydrogen peroxide: Principles, catalyst design and performance. Nano-Micro Lett. 2023, 15, 77. [Google Scholar] [CrossRef]
- Yahiro, A.T.; Lee, S.M.; Kimble, D.O. Bioelectrochemistry. I. Enzyme utilizing bio-fuel cell studies. Biochim. Biophys. Acta 1964, 88, 375–383. [Google Scholar]
- Parrilla, M.; Cánovas, R.; Andrade, F.J. Enhanced Potentiometric Detection of Hydrogen Peroxide Using a Platinum Electrode Coated with Nafion. Electroanalysis 2017, 29, 223–230. [Google Scholar] [CrossRef]
- Islam, M.S.; Collinson, M.M. Improved sensitivity and selectivity for the redox potentiometric measurement of biological redox molecules using nafion-coated platinum decorated nanoporous gold electrodes. J. Electrochem. Soc. 2022, 169, 057503. [Google Scholar] [CrossRef]
- Kalaiselvi, S.; Kumar, D.R.; Hasan, M.; Santhanalakshmi, J.; Manoj, D.; Khalid, M.; Shim, J.-J. Versatile electrode platform for determination of hydrogen peroxide in serum samples based on hemoglobin embedded in iron oxide/reduced graphene oxide nanocomposite. Electrochim. Acta 2023, 471, 143381. [Google Scholar] [CrossRef]
- Domínguez-Aragón, A.; Dominguez, R.B.; Peralta-Pérez, M.d.R.; Zaragoza-Contreras, E.A. Catalase biosensor based on the PAni/cMWCNT support for peroxide sensing. e-Polymers 2021, 21, 476–490. [Google Scholar] [CrossRef]
- Liang, H.; Wang, L.; Yang, Y.; Song, Y.; Wang, L. A novel biosensor based on multienzyme microcapsules constructed from covalent-organic framework. Biosens. Bioelectron. 2021, 193, 113553. [Google Scholar] [CrossRef] [PubMed]
- Lete, C.; Spinciu, A.-M.; Alexandru, M.-G.; Calderon Moreno, J.; Leau, S.-A.; Marin, M.; Visinescu, D. Copper(II) oxide nanoparticles embedded within a PEDOT matrix for hydrogen peroxide electrochemical sensing. Sensors 2022, 22, 8252. [Google Scholar] [CrossRef] [PubMed]
- Hussein, M.A.; Khan, A.; Alamry, K.A. A highly efficient electrochemical sensor containing polyaniline/cerium oxide nanocomposites for hydrogen peroxide detection. RSC Adv. 2022, 12, 31506–31517. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, M.; Zhou, H.; Du, X.; Du, X. Assessment of salt stress to Arabidopsis based on the detection of hydrogen peroxide released by leaves using an electrochemical sensor. Int. J. Mol. Sci. 2022, 23, 12502. [Google Scholar] [CrossRef]
- Lu, J.; Hu, Y.; Wang, P.; Liu, P.; Chen, Z.; Sun, D. Electrochemical biosensor based on gold nanoflowers-encapsulated magnetic metal-organic framework nanozymes for drug evaluation with in-situ monitoring of H2O2 released from H9C2 cardiac cells. Sens. Actuators B 2020, 311, 127909. [Google Scholar] [CrossRef]
- Li, Y.; Tang, L.; Deng, D.; He, H.; Yan, X.; Wang, J.; Luo, L. Hetero-structured MnO-Mn3O4@rGO composites: Synthesis and nonenzymatic detection of H2O2. Mater. Sci. Eng. C 2021, 118, 111443. [Google Scholar] [CrossRef] [PubMed]
- Komkova, M.A.; Pasquarelli, A.; Andreev, E.A.; Galushin, A.A.; Karyakin, A.A. Prussian Blue modified boron-doped diamond interfaces for advanced H2O2 electrochemical sensors. Electrochim. Acta 2020, 339, 135924. [Google Scholar] [CrossRef]
- Mourzina, Y.G.; Ermolenko, Y.E.; Offenhausser, A. Synthesizing electrodes into electrochemical sensor systems. Front. Chem. 2021, 9, 641674. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Xu, M.; Wang, L.; Liang, H.; Wang, L.; Song, Y. Iron-porphyrin-based covalent-organic frameworks for electrochemical sensing H2O2 and pH. Mater. Sci. Eng. C 2020, 112, 110864. [Google Scholar] [CrossRef] [PubMed]
- Sekretaryova, A.N.; Beni, V.; Eriksson, M.; Karyakin, A.A.; Turner, A.P.; Vagin, M.Y. Cholesterol self-powered biosensor. Anal. Chem. 2014, 86, 9540–9547. [Google Scholar] [CrossRef] [PubMed]
- Kausaite-Minkstimiene, A.; Kaminskas, A.; Gayda, G.; Ramanaviciene, A. Towards a self-powered amperometric glucose biosensor based on a single-enzyme biofuel cell. Biosensors 2024, 14, 138. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Hou, J.; Wang, K.; Ng, Y.H.; Chen, V. Single-enzyme biofuel cells. Angew. Chem. Int. Ed. 2017, 56, 9762–9766. [Google Scholar] [CrossRef] [PubMed]
- Veenuttranon, K.; Kaewpradub, K.; Jeerapan, I. Screen-printable functional nanomaterials for flexible and wearable single-enzyme-based energy-harvesting and self-powered biosensing devices. Nano-Micro Lett. 2023, 15, 85. [Google Scholar] [CrossRef]
- Wang, C.; Shim, E.; Chang, H.-K.; Lee, N.; Kim, H.R.; Park, J. Sustainable and high-power wearable glucose biofuel cell using long-term and high-speed flow in sportswear fabrics. Biosens. Bioelectron. 2020, 169, 112652. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, X.T.; Zhang, X.; Pan, J.; Thean, A.V. Hybrid integration of wearable devices for physiological monitoring. Chem. Rev. 2024, 124, 10386–10434. [Google Scholar] [CrossRef] [PubMed]
- Pellitero, M.A.; Guimera, A.; Kitsara, M.; Villa, R.; Rubio, C.; Lakard, B.; Doche, M.L.; Hihn, J.Y.; Javier Del Campo, F. Quantitative self-powered electrochromic biosensors. Chem. Sci. 2017, 8, 1995–2002. [Google Scholar] [CrossRef]
- Yu, Z.; Cai, G.; Ren, R.; Tang, D. A new enzyme immunoassay for alpha-fetoprotein in a separate setup coupling an aluminium/Prussian blue-based self-powered electrochromic display with a digital multimeter readout. Analyst 2018, 143, 2992–2996. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Yu, L.; Jiao, Z.; Xie, H.; Lou, X.W.; Wei Sun, X. A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nat. Commun. 2014, 5, 4921. [Google Scholar] [CrossRef]
- Zhao, C.; Park, J.; Root, S.E.; Bao, Z. Skin-inspired soft bioelectronic materials, devices and systems. Nat. Rev. Bioeng. 2024, 2, 671–690. [Google Scholar] [CrossRef]
Electrode | E, V | Linear Range, mM | Sensitivity, A/(M⋅cm2) | DL, µM | pH, Electrolyte | Application | Ref. |
---|---|---|---|---|---|---|---|
GCE/Fe3O4@rGO/Hemoglobin/Nafion | −0.28 | 0.0015–2.68 | 0.0181 A M−1 | 1.4 | pH 7.0 | Blood serum | [122] |
SPCE/MWCNT, Au NP, PAni/catalase | −0.4 | 0.01–6.8 | 0.0588 | 2.34 | pH 7.4 | Milk | [123] |
GCE/COF, HRP | −0.2 | 0.00953–0.007 | – | 0.00281 | pH 7.0 | – | [124] |
GCE/PEDOT/Cu(II)O NP | −0.4 | 0.04–10 | 4.6 A M−1 | 8.5 | 0.1 M NaOH | Milk | [125] |
Pd-Au NW | −0.05 | 0.001–1 | 18 µA M−1 | 0.3 | pH 7.2 | HL1 cells | [24] |
GCE/PAni, CeO2 NP | >0.7 | 0.002–0.1 | – | 0.15 | pH 5.7 | Milk, water | [126] |
GCE/MWCNT-Ti3C2Tx-Pd NP | 0 | 0.05–18 | 0.294 | 3.83 | PBS | Arabidopsis | [127] |
GCE/Fe3O4 NP @ZIF-8-MoS2, Au NS, Nafion | −0.55 | 0.005–15 15–120 | 0.0171 A M−1 0.00417 A M−1 | 0.9 | pH 7.4 | H9C2 cells | [128] |
GCE/MnO-Mn3O4 MP @rGO | −0.45 | 0.004–17 | 247.15 | 0.1 | 0.2 M NaOH | Tomato sauce | [129] |
BDD/PB | 0 | 10−4–1 | 0.14 | – | pH 6, 0.1 M KCl | – | [130] |
GCE/Mn-PB NS/Nafion | −0.05 | 0.002–10 0.003–0.7 | 0.12 0.14 | 2 3 | pH 3 pH 7.4 | – | [69] |
GCE/rGO, PB NP/Nafion | 0 | 0.0012–5 0.006–1 | 0.09 0.06 | 1.2 6 | pH 3 pH 7 | – | [89] |
Au ND/rGO/MnTMPyP/Nafion | −0.45 | 3.4⋅10−4–0.015 0.015–0.08 | 0.384 0.07 | 0.3 | pH 7.4 | Plant leaves | [131] |
GCE/COF based on porphyrin and Fe2+ | −0.2 | 6.85⋅10−6–0.007 | 7.3 | 0.002 | pH 7 | – | [132] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, Y.; Offenhäusser, A.; Mourzina, Y. Hydrogen Peroxide Fuel Cells and Self-Powered Electrochemical Sensors Based on the Principle of a Fuel Cell with Biomimetic and Nanozyme Catalysts. Biosensors 2025, 15, 124. https://doi.org/10.3390/bios15020124
Zhang Y, Liu Y, Offenhäusser A, Mourzina Y. Hydrogen Peroxide Fuel Cells and Self-Powered Electrochemical Sensors Based on the Principle of a Fuel Cell with Biomimetic and Nanozyme Catalysts. Biosensors. 2025; 15(2):124. https://doi.org/10.3390/bios15020124
Chicago/Turabian StyleZhang, Yunong, Yuxin Liu, Andreas Offenhäusser, and Yulia Mourzina. 2025. "Hydrogen Peroxide Fuel Cells and Self-Powered Electrochemical Sensors Based on the Principle of a Fuel Cell with Biomimetic and Nanozyme Catalysts" Biosensors 15, no. 2: 124. https://doi.org/10.3390/bios15020124
APA StyleZhang, Y., Liu, Y., Offenhäusser, A., & Mourzina, Y. (2025). Hydrogen Peroxide Fuel Cells and Self-Powered Electrochemical Sensors Based on the Principle of a Fuel Cell with Biomimetic and Nanozyme Catalysts. Biosensors, 15(2), 124. https://doi.org/10.3390/bios15020124