Review of Pulsation Signal Detection and Applications in Dynamic Photoacoustic Imaging
Abstract
1. Introduction
1.1. Background of Pulsatile Signal Detection
1.2. Existing Detection Approaches of Pulsatile Signals
1.3. Introduction to Photoacoustic Imaging
2. Photoacoustic Pulsatile Signal Extraction and Applications
2.1. PAM-Based Dynamic Photoacoustic Imaging
2.1.1. Measurement of Heart Rate Waveform and Vascular Dynamics
2.1.2. Measurement of Dynamics in Blood Oxygenation
2.1.3. Measurement of Pulse Wave Velocity
2.2. PACT-Based Dynamic Photoacoustic Imaging
2.2.1. Measurement of Cardiac Dynamics with Volumetric PACT in an Isolated Heart
2.2.2. Real-Time Measurement of Pulsatile Dynamics in Human
2.2.3. Quantification of Arteries and Veins in Human Breast Based on Pulsatile Signal
2.2.4. Measurement of Pulsatile Signals Using Dual Modal Ultrasound and Photoacoustic Computed Tomography
3. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2D | Two-dimensional |
3D | Three-dimensional |
AR-PAM | Acoustic-resolution photoacoustic microscopy |
CBP | Central blood pressure |
DSPF | Diffuse speckle pulsatile flowmetry |
ECG | Electrocardiogram |
FOV | Field of view |
HR | Heart rate |
iPPG | Imaging photoplethysmography |
LDPE | Low-density polyethylene |
LEDs | Light emitting diodes |
NIR | Near-infrared |
OR-PAM | Optical-resolution photoacoustic microscopy |
PA | Photoacoustic |
PACT | Photoacoustic computed tomography |
PAD | Peripheral artery disease |
PAI | Photoacoustic imaging |
PAM | Photoacoustic microscopy |
PCB | Printed circuit board |
PPG | Photoplethysmography |
PRF | Pulse repetition frequency |
PWV | Pulse wave velocity |
SBH-PACT | Single-breast-hold photoacoustic tomography |
sO2 | Oxygen saturation |
US | Ultrasound |
WBHUS | Wide-beam harmonic ultrasound |
References
- Rajendra Acharya, U.; Paul Joseph, K.; Kannathal, N.; Lim, C.M.; Suri, J.S. Heart rate variability: A review. Med. Biol. Eng. Comput. 2006, 44, 1031–1051. [Google Scholar] [CrossRef] [PubMed]
- Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007, 28, R1. [Google Scholar] [CrossRef] [PubMed]
- Moraes, J.L.; Rocha, M.X.; Vasconcelos, G.G.; Vasconcelos Filho, J.E.; de Albuquerque, V.H.C.; Alexandria, A.R. Advances in Photopletysmography signal analysis for biomedical applications. Sensors 2018, 18, 1894. [Google Scholar] [CrossRef] [PubMed]
- Zaunseder, S.; Trumpp, A.; Wedekind, D.; Malberg, H. Cardiovascular assessment by imaging photoplethysmography–a review. Biomed. Eng. Biomed. Tech. 2018, 63, 617–634. [Google Scholar] [CrossRef]
- Kim, C.S.; Ober, S.L.; McMurtry, M.S.; Finegan, B.A.; Inan, O.T.; Mukkamala, R.; Hahn, J.O. Ballistocardiogram: Mechanism and potential for unobtrusive cardiovascular health monitoring. Sci. Rep. 2016, 6, 31297. [Google Scholar] [CrossRef]
- Blazek, V.; Wu, T.; Hoelscher, D. Near-infrared CCD imaging: Possibilities for noninvasive and contactless 2D mapping of dermal venous hemodynamics. In Proceedings of the Optical Diagnostics of Biological Fluids V, San Jose, CA, USA, 22–28 January 2000; pp. 2–9. [Google Scholar]
- Abay, T.Y.; Kyriacou, P.A. Reflectance Photoplethysmography as Noninvasive Monitoring of Tissue Blood Perfusion. IEEE Trans. Biomed. Eng. 2015, 62, 2187–2195. [Google Scholar] [CrossRef]
- Amelard, R.; Hughson, R.L.; Greaves, D.K.; Pfisterer, K.J.; Leung, J.; Clausi, D.A.; Wong, A. Non-contact hemodynamic imaging reveals the jugular venous pulse waveform. Sci. Rep. 2017, 7, 40150. [Google Scholar] [CrossRef]
- Madhav, K.V.; Ram, M.R.; Krishna, E.H.; Komalla, N.R.; Reddy, K.A. Robust extraction of respiratory activity from PPG signals using modified MSPCA. IEEE Trans. Instrum. Meas. 2013, 62, 1094–1106. [Google Scholar] [CrossRef]
- Hasanin, A.; Mukhtar, A.; Nassar, H. Perfusion indices revisited. J. Intensive Care 2017, 5, 24. [Google Scholar] [CrossRef]
- Demeestere, J.; Wouters, A.; Christensen, S.; Lemmens, R.; Lansberg, M.G. Review of perfusion imaging in acute ischemic stroke: From time to tissue. Stroke 2020, 51, 1017–1024. [Google Scholar] [CrossRef]
- Tranmer, B.I.; Gross, C.E.; Kindt, G.W.; Adey, G.R. Pulsatile versus nonpulsatile blood flow in the treatment of acute cerebral ischemia. Neurosurgery 1986, 19, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Alian, A.A.; Shelley, K.H. Photoplethysmography: Analysis of the Pulse Oximeter Waveform. In Monitoring Technologies in Acute Care Environments; Springer: Berlin/Heidelberg, Germany, 2014; pp. 165–178. [Google Scholar]
- Castaneda, D.; Esparza, A.; Ghamari, M.; Soltanpur, C.; Nazeran, H. A review on wearable photoplethysmography sensors and their potential future applications in health care. Int. J. Biosens. Bioelectron. 2018, 4, 195. [Google Scholar] [CrossRef] [PubMed]
- Kao, Y.-H.; Chao, P.C.-P.; Wey, C.-L. Design and validation of a new PPG module to acquire high-quality physiological signals for high-accuracy biomedical sensing. IEEE J. Sel. Top. Quantum Electron. 2018, 25, 69000210. [Google Scholar] [CrossRef]
- Lai, M.; van der Stel, S.D.; Groen, H.C.; van Gastel, M.; Kuhlmann, K.F.; Ruers, T.J.; Hendriks, B.H. Imaging PPG for in vivo human tissue perfusion assessment during surgery. J. Imaging 2022, 8, 94. [Google Scholar] [CrossRef]
- Bi, R.; Zhang, R.; Meng, L.; Du, Y.; Low, J.; Qi, Y.; Rajarahm, P.; Lai, A.Y.F.; Tan, V.S.Y.; Ho, P. A portable optical pulsatile flowmetry demonstrates strong clinical relevance for diabetic foot perfusion assessment. APL Bioeng. 2024, 8, 016109. [Google Scholar] [CrossRef]
- Valdes, C.P.; Varma, H.M.; Kristoffersen, A.K.; Dragojevic, T.; Culver, J.P.; Durduran, T. Speckle contrast optical spectroscopy, a non-invasive, diffuse optical method for measuring microvascular blood flow in tissue. Biomed. Opt. Express 2014, 5, 2769–2784. [Google Scholar] [CrossRef]
- Fine, J.; Branan, K.L.; Rodriguez, A.J.; Boonya-Ananta, T.; Ajmal; Ramella-Roman, J.C.; McShane, M.J.; Cote, G.L. Sources of Inaccuracy in Photoplethysmography for Continuous Cardiovascular Monitoring. Biosensors 2021, 11, 126. [Google Scholar] [CrossRef]
- Jimenez, R.; Yurk, D.; Dell, S.; Rutledge, A.C.; Fu, M.K.; Dempsey, W.P.; Abu-Mostafa, Y.; Rajagopal, A.; Brinley Rajagopal, A. Resonance sonomanometry for noninvasive, continuous monitoring of blood pressure. Proc. Natl. Acad. Sci. USA Nexus 2024, 3, pgae252. [Google Scholar] [CrossRef]
- Wang, C.; Li, X.; Hu, H.; Zhang, L.; Huang, Z.; Lin, M.; Zhang, Z.; Yin, Z.; Huang, B.; Gong, H. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2018, 2, 687–695. [Google Scholar] [CrossRef]
- Oglat, A.A.; Matjafri, M.; Suardi, N.; Oqlat, M.A.; Abdelrahman, M.A.; Oqlat, A.A. A review of medical doppler ultrasonography of blood flow in general and especially in common carotid artery. J. Med. Ultrasound 2018, 26, 3–13. [Google Scholar] [CrossRef]
- Li, L.; Wang, L.V. Recent advances in photoacoustic tomography. BME Front. 2021, 2021, 9823268. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Yao, J.; Wang, L.V. Photoacoustic tomography: Principles and advances. Electromagn. Waves 2014, 147, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.V.; Yao, J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 2016, 13, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.V.; Gao, L. Photoacoustic microscopy and computed tomography: From bench to bedside. Annu. Rev. Biomed. Eng. 2014, 16, 155–185. [Google Scholar] [CrossRef]
- Jeon, S.; Kim, J.; Lee, D.; Baik, J.W.; Kim, C. Review on practical photoacoustic microscopy. Photoacoustics 2019, 15, 100141. [Google Scholar] [CrossRef]
- Yao, J.; Wang, L.V. Photoacoustic tomography: Fundamentals, advances and prospects. Contrast Media Mol. Imaging 2011, 6, 332–345. [Google Scholar] [CrossRef]
- Yao, J.; Wang, L.V. Perspective on fast-evolving photoacoustic tomography. J. Biomed. Opt. 2021, 26, 060602. [Google Scholar] [CrossRef]
- Wang, L.V.; Hu, S. Photoacoustic tomography: In vivo imaging from organelles to organs. Science 2012, 335, 1458–1462. [Google Scholar] [CrossRef]
- Park, J.; Choi, S.; Knieling, F.; Clingman, B.; Bohndiek, S.; Wang, L.V.; Kim, C. Clinical translation of photoacoustic imaging. Nat. Rev. Bioeng. 2025, 3, 193–212. [Google Scholar] [CrossRef]
- Ahn, J.; Kim, J.Y.; Choi, W.; Kim, C. High-resolution functional photoacoustic monitoring of vascular dynamics in human fingers. Photoacoustics 2021, 23, 100282. [Google Scholar] [CrossRef]
- Song, L.; Maslov, K.; Shung, K.K.; Wang, L.V. Ultrasound-array-based real-time photoacoustic microscopy of human pulsatile dynamics in vivo. J. Biomed. Opt. 2010, 15, 021303. [Google Scholar] [CrossRef]
- Ahn, J.; Baik, J.W.; Kim, Y.; Choi, K.; Park, J.; Kim, H.; Kim, J.Y.; Kim, H.H.; Nam, S.H.; Kim, C. Fully integrated photoacoustic microscopy and photoplethysmography of human in vivo. Photoacoustics 2022, 27, 100374. [Google Scholar] [CrossRef]
- Li, Q.; Yu, T.; Li, L.; Chai, X.; Zhou, C. Measuring Blood Oxygenation of Pulsatile Arteries Using Photoacoustic Microscopy. In Proceedings of the Optics in Health Care and Biomedical Optics VII, Beijing, China, 12–14 October 2016; pp. 320–326. [Google Scholar]
- Hu, S.; Maslov, K.; Wang, L.V. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. Opt. Lett. 2011, 36, 1134–1136. [Google Scholar] [CrossRef]
- Horecker, B.L. The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red regions. J. Biol. Chem. 1943, 148, 173–183. [Google Scholar] [CrossRef]
- Hu, S.; Maslov, K.; Tsytsarev, V.; Wang, L. Functional transcranial brain imaging by optical-resolution photoacoustic microscopy. J. Biomed. Opt. 2009, 14, 040503. [Google Scholar] [CrossRef] [PubMed]
- Yeh, C.; Hu, S.; Maslov, K.; Wang, L.V. Photoacoustic microscopy of blood pulse wave. J. Biomed. Opt. 2012, 17, 070504. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.A.; Dean-Ben, X.L.; Reiss, M.; Schottle, V.; Wahl-Schott, C.A.; Efimov, I.R.; Razansky, D. Ultrafast Volumetric Optoacoustic Imaging of Whole Isolated Beating Mouse Heart. Sci. Rep. 2018, 8, 14132. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Hu, P.; Shi, J.; Appleton, C.M.; Maslov, K.; Li, L.; Zhang, R.; Wang, L.V. Single-breath-hold photoacoustic computed tomography of the breast. Nat. Commun. 2018, 9, 2352. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Lai, P.; Wang, L. Video-rate dual-modal wide-beam harmonic ultrasound and photoacoustic computed tomography. IEEE Trans. Med. Imaging 2021, 41, 727–736. [Google Scholar] [CrossRef]
- Chen, L.L.; Zhao, L.; Wang, Z.G.; Liu, S.L.; Pang, D.W. Near-Infrared-II Quantum Dots for In Vivo Imaging and Cancer Therapy. Small 2022, 18, e2104567. [Google Scholar] [CrossRef]
- Wang, C.; Xia, Y.; Duan, W.; Yu, Y.; Yang, Q.; Jie, J.; Zhang, X.; Jie, J. In situ fabrication of self-filtered near-infrared Ti3C2Tx/n-Si Schottky-barrier photodiodes for a continuous non-invasive photoplethysmographic system. Nanoscale 2025, 17, 1021–1030. [Google Scholar] [CrossRef] [PubMed]
- Iskander-Rizk, S.; Visscher, M.; Moerman, A.M.; Korteland, S.A.; Van der Heiden, K.; Van der Steen, A.F.W.; Van Soest, G. Micro Spectroscopic Photoacoustic (musPA) imaging of advanced carotid atherosclerosis. Photoacoustics 2021, 22, 100261. [Google Scholar] [CrossRef] [PubMed]
- Karlas, A.; Kallmayer, M.; Bariotakis, M.; Fasoula, N.A.; Liapis, E.; Hyafil, F.; Pelisek, J.; Wildgruber, M.; Eckstein, H.H.; Ntziachristos, V. Multispectral optoacoustic tomography of lipid and hemoglobin contrast in human carotid atherosclerosis. Photoacoustics 2021, 23, 100283. [Google Scholar] [CrossRef]
- Lin, L.; Tong, X.; Hu, P.; Invernizzi, M.; Lai, L.; Wang, L.V. Photoacoustic computed tomography of breast cancer in response to neoadjuvant chemotherapy. Adv. Sci. 2021, 8, 2003396. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, E.; Zheng, W.; Huang, C.; Xi, Y.; Cheng, Y.; Yu, S.; Chakraborty, S.; Bonaccio, E.; Takabe, K. OneTouch automated photoacoustic and ultrasound imaging of breast in standing pose. IEEE Trans. Med. Imaging 2025. online ahead of print. [Google Scholar] [CrossRef]
- Zhu, X.; Huang, Q.; DiSpirito, A.; Vu, T.; Rong, Q.; Peng, X.; Sheng, H.; Shen, X.; Zhou, Q.; Jiang, L. Real-time whole-brain imaging of hemodynamics and oxygenation at micro-vessel resolution with ultrafast wide-field photoacoustic microscopy. Light Sci. Appl. 2022, 11, 138. [Google Scholar] [CrossRef]
- Na, S.; Russin, J.J.; Lin, L.; Yuan, X.; Hu, P.; Jann, K.B.; Yan, L.; Maslov, K.; Shi, J.; Wang, D.J. Massively parallel functional photoacoustic computed tomography of the human brain. Nat. Biomed. Eng. 2022, 6, 584–592. [Google Scholar] [CrossRef]
- Lin, L.; Tong, X.; Cavallero, S.; Zhang, Y.; Na, S.; Cao, R.; Hsiai, T.K.; Wang, L.V. Non-invasive photoacoustic computed tomography of rat heart anatomy and function. Light Sci. Appl. 2023, 12, 12. [Google Scholar] [CrossRef]
- Zheng, W.; Lee, D.; Xia, J. Photoacoustic tomography of fingerprint and underlying vasculature for improved biometric identification. Sci. Rep. 2021, 11, 17536. [Google Scholar] [CrossRef]
- Huang, C.; Cheng, Y.; Zheng, W.; Bing, R.W.; Zhang, H.; Komornicki, I.; Harris, L.M.; Arany, P.R.; Chakraborty, S.; Zhou, Q. Dual-scan photoacoustic tomography for the imaging of vascular structure on foot. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2023, 70, 1703–1713. [Google Scholar] [CrossRef]
- Choi, W.; Park, E.-Y.; Jeon, S.; Yang, Y.; Park, B.; Ahn, J.; Cho, S.; Lee, C.; Seo, D.-K.; Cho, J.-H. Three-dimensional multistructural quantitative photoacoustic and US imaging of human feet in vivo. Radiology 2022, 303, 467–473. [Google Scholar] [CrossRef]
- Menozzi, L.; Yao, J. Deep tissue photoacoustic imaging with light and sound. npj Imaging 2024, 2, 44. [Google Scholar] [CrossRef]
- Yang, J.; Choi, S.; Kim, C. Practical review on photoacoustic computed tomography using curved ultrasound array transducer. Biomed. Eng. Lett. 2022, 12, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Wang, L.V. The emerging role of photoacoustic imaging in clinical oncology. Nat. Rev. Clin. Oncol. 2022, 19, 365–384. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; A’dawiah, R.t.; Choo, T.W.J.; Li, X.; Balasundaram, G.; Qi, Y.; Goh, Y.; Bi, R.; Olivo, M. Navigating challenges and solutions in quantitative photoacoustic imaging. Appl. Phys. Rev. 2024, 11, 031308. [Google Scholar] [CrossRef]
- Singh, M.K.A.; Sato, N.; Ichihashi, F.; Xia, W.; Sankai, Y. The evolution of led-based photoacoustic imaging: From labs to clinics. In Biomedical Photoacoustics: Technology and Applications; Springer: Berlin/Heidelberg, Germany, 2024; pp. 573–608. [Google Scholar]
- Joseph, J.; Singh, M.K.A.; Sato, N.; Bohndiek, S.E. Technical validation studies of a dual-wavelength LED-based photoacoustic and ultrasound imaging system. Photoacoustics 2021, 22, 100267. [Google Scholar] [CrossRef]
- Van der Burg, S. Imagining the future of photoacoustic mammography. Sci. Eng. Ethics 2009, 15, 97–110. [Google Scholar] [CrossRef]
- Bohndiek, S. Addressing photoacoustics standards. Nat. Photonics 2019, 13, 298. [Google Scholar] [CrossRef]
- Assi, H.; Cao, R.; Castelino, M.; Cox, B.; Gilbert, F.J.; Gröhl, J.; Gurusamy, K.; Hacker, L.; Ivory, A.M.; Joseph, J. A review of a strategic roadmapping exercise to advance clinical translation of photoacoustic imaging: From current barriers to future adoption. Photoacoustics 2023, 32, 100539. [Google Scholar] [CrossRef]
- Zhu, Y.; Feng, T.; Cheng, Q.; Wang, X.; Du, S.; Sato, N.; Kuniyil Ajith Singh, M.; Yuan, J. Towards Clinical Translation of LED-Based Photoacoustic Imaging: A Review. Sensors 2020, 20, 2484. [Google Scholar] [CrossRef]
- Bulsink, R.; Kuniyil Ajith Singh, M.; Xavierselvan, M.; Mallidi, S.; Steenbergen, W.; Francis, K.J. Oxygen Saturation Imaging Using LED-Based Photoacoustic System. Sensors 2021, 21, 283. [Google Scholar] [CrossRef]
- Su, J.L.; Wang, B.; Wilson, K.E.; Bayer, C.L.; Chen, Y.-S.; Kim, S.; Homan, K.A.; Emelianov, S.Y. Advances in clinical and biomedical applications of photoacoustic imaging. Expert. Opin. Med. Diagn. 2010, 4, 497–510. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, H.; Huang, C.; Shijo, V.; Xu, C.; Xu, W.; Xia, J. Deep learning enhanced volumetric photoacoustic imaging of vasculature in human. Adv. Sci. 2023, 10, 2301277. [Google Scholar] [CrossRef]
Modality | Imaging Depth | Sensitivity | System Cost | System Size | Field of View | Temporal Resolution |
---|---|---|---|---|---|---|
Photoplethysmography | Low | Medium | Low | Low | Low–High | High |
Ultrasound imaging | High | Low | Medium | Medium–High | High | Medium |
Photoacoustic microscopy | Medium | High | High | Medium | Medium | Medium–High |
Photoacoustic computed tomography | High | High | High | High | High | Low–Medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, W.; Huang, C.; Xia, J. Review of Pulsation Signal Detection and Applications in Dynamic Photoacoustic Imaging. Biosensors 2025, 15, 591. https://doi.org/10.3390/bios15090591
Zheng W, Huang C, Xia J. Review of Pulsation Signal Detection and Applications in Dynamic Photoacoustic Imaging. Biosensors. 2025; 15(9):591. https://doi.org/10.3390/bios15090591
Chicago/Turabian StyleZheng, Wenhan, Chuqin Huang, and Jun Xia. 2025. "Review of Pulsation Signal Detection and Applications in Dynamic Photoacoustic Imaging" Biosensors 15, no. 9: 591. https://doi.org/10.3390/bios15090591
APA StyleZheng, W., Huang, C., & Xia, J. (2025). Review of Pulsation Signal Detection and Applications in Dynamic Photoacoustic Imaging. Biosensors, 15(9), 591. https://doi.org/10.3390/bios15090591