Antimicrobial Stewardship: Leveraging the “Butterfly Effect” of Hand Hygiene
Abstract
:1. Introduction
2. Leveraging the “Butterfly Effect” of Hand Hygiene
3. Coordinating and Integrating Infection Prevention Control and Antimicrobial Stewardship
- Firstly, to ensure a hospital-wide culture that promotes behavioral change through recognition that by reducing AMR bacteria together, patient safety is improved.
- Secondly, to neutralize and amalgamate the clinical, microbiology, and IPC operational ‘silos’ within institutions.
- Thirdly, to facilitate system-wide, interdependent, and coordinated interventions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brink, A.J.; Richards, G.A. Best practice: Antibiotic decision-making in ICUs. Curr. Opin Crit Care 2020, 26, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Brink, A.J.; Richards, G.A.; Tootla, H.; Prentice, E. Epidemiology of gram-negative bacteria during COVID-19. What is the real pandemic? Curr. Opin. Infect. Dis. 2022. (In print) [Google Scholar]
- Kadri, S.S.; Lai, Y.L.E.; Ricotta, E.E.; Strich, J.R.; Babiker, A.; Rhee, C.; Klompas, M.L.; Dekker, J.P.; Powers, J.H.; Danner, R.; et al. External validation of difficult-to-treat resistance prevalence and mortality risk in gram-negative bloodstream infection using electronic health record data from 140 US hospitals. Open Forum Infect. Dis. 2019, 6, ofz110. [Google Scholar] [CrossRef] [Green Version]
- Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2021; World Health Organization: Geneva, Switzerland, 2021; Available online: https://apps.who.int/iris/handle/10665/341666 (accessed on 15 September 2022).
- Tomczyk, S.; Taylor, A.; Brown, A.; de Kraker, M.E.A.; El-Saed, A.; Alshamrani, M.; Hendriksen, R.S.; Jacob, M.; Löfmark, S.; Perovic, O.; et al. Impact of the Covid-19 pandemic on the surveillance, prevention and control of antimicrobial resistance: A global survey. J. Antimicrobial. Chemother. 2021, 76, 3045–3058. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic prescribing in patients with Covid-19: Rapid review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef]
- Thoma, R.; Seneghini, M.; Seiffert, S.N.; Gysin, D.V.; Scanferla, G.; Haller, S.; Flury, D.; Boggian, K.; Kleger, G.; Filipovicet, M.; et al. The challenge of preventing and containing outbreaks of multidrug-resistant organisms and Candida auris during the Coronavirus disease 2019 pandemic: Report of a carbapenem-resistant Acinetobacter baumannii outbreak and a systematic review of the literature. Antimicrobial. Res. Infect. Control. 2022, 11, 12. [Google Scholar]
- Puzniak, L.; Bauer, K.A.; Yu, K.C.; Moise, P.; Finelli, L.; Ye, G.; De Anda, C.; Vankeepuram, L.; Gupta, V. Effect of inadequate empiric antibacterial therapy on hospital outcomes in SARS-CoV-2-positive and -negative US patients with a positive bacterial culture: A multicenter evaluation from March to November 2020. Open Forum Infect. Dis. 2021, 8, ofab232. [Google Scholar] [CrossRef]
- Bassetti, M.; Magnasco, L.; Vena, A.; Portunato, F.; Giacobbe, D.R. Methicillin-resistant Staphylococcus aureus lung infection in Coronavirus disease 2019: How common? Curr. Opin. Infect. Dis. 2022, 35, 149–162. [Google Scholar] [CrossRef]
- Timsit, J.F.; Bassetti, M.; Cremer, O.; Daikos, G.; de Waele, J.; Kallil, A.; Kipnis, E.; Kollef, M.; Laupland, K.; Paiva, J.; et al. Rationalizing antimicrobial therapy in the ICU: A narrative review. Intensive Care Med. 2019, 45, 172–189. [Google Scholar] [CrossRef]
- Manning, M.L.; Septimus, E.J.; Dodds Ashley, E.S.; Cosgrove, S.E.; Fakih, M.G.; Schweon, S.J.; Myers, F.E.; Moody, J.A. Antimicrobial stewardship and infection prevention—Leveraging the synergy: A position paper update. Am. J. Infect. Control. 2018, 46, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, E.D. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Baur, D.; Gladstone, B.P.; Burkert, F.; Carrara, E.; Foschi, F.; Döbele, S.; Tacconelli, E. Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: A systematic review and meta-analysis. Lancet Infect. Dis. 2017, 17, 990–1001. [Google Scholar] [CrossRef]
- Lee, C.F.; Cowling, B.J.; Feng, S.; Aso, H.; Wu, P.; Fukuda, K.; Seto, W.H. Impact of antibiotic stewardship programmes in Asia: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2018, 73, 844–851. [Google Scholar] [CrossRef] [Green Version]
- Teerawattanapong, N.; Kengkla, K.; Dilokthornsakul, P.; Saokaew, S.; Apisarnthanarak, A.; Chaiyakunapruk, N. Prevention and control of multidrug-resistant Gram-negative bacteria in adult intensive care units: A systematic review and network meta-analysis. Clin Infect. Dis. 2017, 64, S51–S60. [Google Scholar] [CrossRef]
- Okeah, B.O.; Morrison, V.; Huws, J.C. Antimicrobial stewardship and infection prevention interventions targeting healthcare-associated Clostridioides difficile and carbapenem-resistant Klebsiella pneumoniae infections: A scoping review. BMJ Open 2021, 11, e051983. [Google Scholar] [CrossRef]
- Rizk, N.A.; Zahreddine, N.; Haddad, N.; Ahmadieh, R.; Hannun, A.; Bou Harb, S.; Haddad, S.F.; Zeenny, R.M.; Kanj, S.S. The impact of antimicrobial stewardship and infection control interventions on Acinetobacter baumannii resistance rates in the ICU of a tertiary care center in Lebanon. Antibiotics 2022, 11, 911. [Google Scholar] [CrossRef]
- Van den Bergh, D.; Brink, A.J. A commitment and call to strengthen and expand qualitative research efforts to improve the impact of antimicrobial stewardship. JAC-AMR 2021, 3, dlab151. [Google Scholar] [CrossRef]
- Moody, J.; Cosgrove, S.E.; Olmsted, R.; Septimus, E.; Aureden, K.; Oriola, S.; Patel, G.W.; Trivedi, K.K. Antimicrobial stewardship: A collaborative partnership between infection preventionists and health care epidemiologists. Am. J. Infect. Control. 2012, 40, 94–95. [Google Scholar] [CrossRef]
- Zhou, S.; Nagel, J.L.; Kaye, K.S.; LaPlante, K.L.; Albin, O.R.; Pogue, J.M. Antimicrobial stewardship and the infection control practitioner: A natural alliance. Infect. Dis. Clin. North Am. 2021, 35, 771–787. [Google Scholar] [CrossRef]
- Tartari, E.; Tomczyk, S.; Pires, D.; Zayed, B.; Coutinho Rehse, A.P.; Kariyo, P.; Stempliuk, V.; Zingg, W.; Pittet, D.; Allegranzi, B. Implementation of the infection prevention and control core components at the national level: A globalsituational analysis. J. Hosp. Infect. 2021, 108, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Brink, A.J.; Messina, A.P.; Maslo, C.; Swart, K.; Chunnilall, D.; van den Bergh, D. Implementing a multi-faceted framework for proprietorship of hand hygiene compliance in a network of South African hospitals: Leveraging the Ubuntu philosophy. J. Hosp. Infect. 2020, 104, 404–413. [Google Scholar] [CrossRef] [PubMed]
Identifying, defining, and clarifying the synergistic role of IPC |
Developing effective teams and imbedding multi-disciplinary collaboration |
Developing synergistic goals and strategies |
Developing robust data-driven institutional action plans |
Defining optimal evidence-based strategies for cooperative management of patients |
Defining optimal outcome metrics of these combined efforts |
Tailoring educational strategies to suit all disciplines simultaneously |
Utilizing advanced IT tools to support ASP and IPC monitoring and implementation. e.g., multi-dimensional dashboards |
Providing system-wide performance and outcome feedback utilizing IT tools |
Translation of generated outcomes via enhanced communication strategies to sustain awareness and engagement |
Studying the benefits and costs of different combined interventional strategies to provide scientific data that support allocation of increased resources |
Establishing universal quantitative end points for IPC and ASP control efforts for AMR organisms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brink, A.J.; Richards, G.A. Antimicrobial Stewardship: Leveraging the “Butterfly Effect” of Hand Hygiene. Antibiotics 2022, 11, 1348. https://doi.org/10.3390/antibiotics11101348
Brink AJ, Richards GA. Antimicrobial Stewardship: Leveraging the “Butterfly Effect” of Hand Hygiene. Antibiotics. 2022; 11(10):1348. https://doi.org/10.3390/antibiotics11101348
Chicago/Turabian StyleBrink, Adrian John, and Guy Antony Richards. 2022. "Antimicrobial Stewardship: Leveraging the “Butterfly Effect” of Hand Hygiene" Antibiotics 11, no. 10: 1348. https://doi.org/10.3390/antibiotics11101348
APA StyleBrink, A. J., & Richards, G. A. (2022). Antimicrobial Stewardship: Leveraging the “Butterfly Effect” of Hand Hygiene. Antibiotics, 11(10), 1348. https://doi.org/10.3390/antibiotics11101348