Incidence and Risk Factors of Colistin-Induced Nephrotoxicity Associated with The International Consensus Guidelines for the Optimal Use of the Polymyxins: A Retrospective Study in a Tertiary Care Hospital, Saudi Arabia
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. Incidence of AKI
3.3. Predictors of AKI
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karaiskos, I.; Lagou, S.; Pontikis, K.; Rapti, V.; Poulakou, G. The “Old” and the “New” Antibiotics for MDR Gram-Negative Pathogens: For Whom, When, and How. Front. Public Health 2019, 7, 151. [Google Scholar] [CrossRef] [Green Version]
- Kengkla, K.; Kongpakwattana, K.; Saokaew, S.; Apisarnthanarak, A.; Chaiyakunapruk, N. Comparative efficacy and safety of treatment options for MDR and XDR Acinetobacter baumannii infections: A systematic review and network meta-analysis. J. Antimicrob. Chemother. 2018, 73, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.J.; Kim, E.S. Exploring New Predictors of Colistin-Associated Nephrotoxicity. Infect. Chemother. 2018, 50, 283–285. [Google Scholar] [CrossRef]
- Koksal, I.; Kaya, S.; Gencalioglu, E.; Yilmaz, G. Evaluation of Risk Factors for Intravenous Colistin Use-related Nephrotoxicity. Oman Med. J. 2016, 31, 318–321. [Google Scholar] [CrossRef]
- Ozel, A.S.; Ergönül, Ö.; Korten, V. Colistin nephrotoxicity in critically ill patients after implementation of a new dosing strategy. J. Infect. Dev. Ctries. 2019, 13, 877–885. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, Q. Clinical efficacy and safety of colistin treatment in patients with pulmonary infection caused by Pseudomonas aeruginosa or Acinetobacter baumannii: A meta-analysis. Arch. Med. Sci. AMS 2015, 11, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Özkarakaş, H.; Köse, I.; Zincircioğlu, Ç.; Ersan, S.; Ersan, G.; Şenoğlu, N.; Köse, S.; Erbay, R.H. Risk factors for colistin-associated nephrotoxicity and mortality in critically ill patients. Turk. J. Med. Sci. 2017, 47, 1165–1172. [Google Scholar] [CrossRef]
- Miano, T.A.; Lautenbach, E.; Wilson, F.P.; Guo, W.; Borovskiy, Y.; Hennessy, S. Attributable Risk and Time Course of Colistin-Associated Acute Kidney Injury. Clin. J. Am. Soc. Nephrol. 2018, 13, 542. [Google Scholar] [CrossRef] [Green Version]
- Viehman, J.A.; Nguyen, M.H.; Doi, Y. Treatment options for carbapenem-resistant and extensively drug-resistant Acinetobacter baumannii infections. Drugs 2014, 74, 1315–1333. [Google Scholar] [CrossRef]
- Forrest, A.; Garonzik, S.M.; Thamlikitkul, V.; Giamarellos-Bourboulis, E.J.; Paterson, D.L.; Li, J.; Silveira, F.P.; Nation, R.L. Pharmacokinetic/Toxicodynamic Analysis of Colistin-Associa ted Acute Kidney Injury in Critically Ill Patients. Antimicrob. Agents Chemother. 2017, 61, e01367-17. [Google Scholar] [CrossRef] [Green Version]
- Nation, R.L.; Li, J.; Cars, O.; Couet, W.; Dudley, M.N.; Kaye, K.S.; Mouton, J.W.; Paterson, D.L.; Tam, V.H.; Theuretzbacher, U.; et al. Framework for optimisation of the clinical use of colistin and polymyxin B: The Prato polymyxin consensus. Lancet Infect. Dis. 2015, 15, 225–234. [Google Scholar] [CrossRef]
- Sorlí, L.; Luque, S.; Grau, S.; Berenguer, N.; Segura, C.; Montero, M.M.; Álvarez-Lerma, F.; Knobel, H.; Benito, N.; Horcajada, J.P. Trough colistin plasma level is an independent risk factor for nephrotoxicity: A prospective observational cohort study. BMC Infect. Dis. 2013, 13, 380. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, B.T.; Pogue, J.M.; Zavascki, A.P.; Paul, M.; Daikos, G.L.; Forrest, A.; Giacobbe, D.R.; Viscoli, C.; Giamarellou, H.; Karaiskos, I.; et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy 2019, 39, 10–39. [Google Scholar]
- Chen, Z.; Chen, Y.; Fang, Y.; Wang, X.; Chen, Y.; Qi, Q.; Huang, F.; Xiao, X. Meta-analysis of colistin for the treatment of Acinetobacter baumannii infection. Sci. Rep. 2015, 5, 17091. [Google Scholar] [CrossRef] [Green Version]
- Ngamprasertchai, T.; Boonyasiri, A.; Charoenpong, L.; Nimitvilai, S.; Lorchirachoonkul, N.; Wattanamongkonsil, L.; Thamlikitkul, V. Effectiveness and safety of polymyxin B for the treatment of infections caused by extensively drug-resistant Gram-negative bacteria in Thailand. Infect. Drug Resist. 2018, 11, 1219–1224. [Google Scholar] [CrossRef] [Green Version]
- Nation, R.L.; Rigatto, M.H.P.; Falci, D.R.; Zavascki, A.P. Polymyxin Acute Kidney Injury: Dosing and Other Strategies to Reduce Toxicity. Antibiotics 2019, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Gai, Z.; Samodelov, S.L.; Kullak-Ublick, G.A.; Visentin, M. Molecular Mechanisms of Colistin-Induced Nephrotoxicity. Molecules 2019, 24, 653. [Google Scholar] [CrossRef] [Green Version]
- Shields, R.K.; Anand, R.; Clarke, L.G.; Paronish, J.A.; Weirich, M.; Perone, H.; Kieserman, J.; Freedy, H.; Andrzejewski, C.; Bonilla, H. Defining the incidence and risk factors of colistin-induced acute kidney injury by KDIGO criteria. PLoS ONE 2017, 12, e0173286. [Google Scholar] [CrossRef] [Green Version]
- Omrani, A.S.; Alfahad, W.A.; Shoukri, M.M.; Baadani, A.M.; Aldalbahi, S.; Almitwazi, A.A.; Albarrak, A.M. High dose intravenous colistin methanesulfonate therapy is associated with high rates of nephrotoxicity; a prospective cohort study from Saudi Arabia. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 3. [Google Scholar] [CrossRef] [Green Version]
- Paul, M.; Daikos, G.L.; Durante-Mangoni, E.; Yahav, D.; Carmeli, Y.; Benattar, Y.D.; Skiada, A.; Andini, R.; Eliakim-Raz, N.; Nutman, A.; et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: An open-label, randomised controlled trial. Lancet Infect. Dis. 2018, 18, 391–400. [Google Scholar] [CrossRef]
- Yun, B.; Azad, M.A.K.; Wang, J.; Nation, R.L.; Thompson, P.E.; Roberts, K.D.; Velkov, T.; Li, J. Imaging the distribution of polymyxins in the kidney. J. Antimicrob. Chemother. 2014, 70, 827–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliota, A.F.; Penteado, S.T.; Tonin, F.S.; Fernandez-Llimos, F.; Sanches, A.C. Nephrotoxicity prevalence in patients treated with polymyxins: A systematic review with meta-analysis of observational studies. Diagn. Microbiol. Infect. Dis. 2019, 94, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Palevsky, P.M.; Liu, K.; Brophy, P.D.; Chawla, L.; Parikh, C.R.; Thakar, C.V.; Tolwani, A.J.; Waikar, S.S.; Weisbord, S.D. KDOQI US Commentary on the 2012 KDIGO Clinical Practice Guideline for Acute Kidney Injury. Am. J. Kidney Dis. 2013, 61, 649–672. [Google Scholar] [CrossRef] [PubMed]
- Lodise, T.P.; Fan, W.; Griffith, D.C.; Dudley, M.N.; Sulham, K.A. A Retrospective Cohort Analysis Shows that Coadministration of Minocycline with Colistin in Critically Ill Patients Is Associated with Reduced Frequency of Acute Renal Failure. Antimicrob. Agents Chemother. 2018, 62, e01165-17. [Google Scholar] [CrossRef] [Green Version]
- White, I.R.; Royston, P.; Wood, A.M. Multiple imputation using chained equations: Issues and guidance for practice. Stat. Med. 2011, 30, 377–399. [Google Scholar] [CrossRef]
- StataCorp. Stata Statistical Software: Release 16; StataCorp LLC: College Station, TX, USA, 2019. [Google Scholar]
- Almutairy, R.; Aljrarri, W.; Noor, A.; Elsamadisi, P.; Shamas, N.; Qureshi, M.; Ismail, S. Impact of Colistin Dosing on the Incidence of Nephrotoxicity in a Tertiary Care Hospital in Saudi Arabia. Antibiotics 2020, 9, 485. [Google Scholar] [CrossRef]
- Temocin, F.; Erdinc, S.; Tulek, N.; Demirelli, M.; Bulut, C.; Ertem, G. Incidence and Risk Factors for Colistin-Associated Nephrotoxicity. Jpn. J. Infect. Dis. 2015, 68, 318–320. [Google Scholar] [CrossRef] [Green Version]
- Al-Abdulkarim, D.A.; Alzuwayed, O.A.; Al Ammari, M.; Al Halwan, S.; Al Maklafi, N.; Thomas, A. Colistin-induced Nephrotoxicity in a Tertiary Teaching Hospital. Saudi J. Kidney Dis. Transplant. 2020, 31, 1057. [Google Scholar] [CrossRef]
- Pan, H.C.; Chien, Y.S.; Jenq, C.C.; Tsai, M.H.; Fan, P.C.; Chang, C.H.; Chang, M.Y.; Tian, Y.C.; Fang, J.T.; Yang, C.W.; et al. Acute Kidney Injury Classification for Critically Ill Cirrhotic Patients: A Comparison of the KDIGO, AKIN, and RIFLE Classifications. Sci. Rep. 2016, 6, 23022. [Google Scholar] [CrossRef]
Variables | Total n (%) | Incidence n (%) | Unadjusted HR * (95% CI) | p-Value ** |
---|---|---|---|---|
Age (in years) | ||||
24–45 | 36 (28.1%) | 10 (27.8%) | ref. | |
46–65 | 47 (36.7%) | 26 (55.3%) | 3.39 (1.62–7.12) | 0.001 |
66–80 | 18 (14.1%) | 10 (55.6%) | 3.60 (1.48–8.77) | 0.005 |
above 80 | 27 (21.1%) | 20 (74.1%) | 4.17 (1.93–9.01) | 0.000 |
Gender | ||||
F | 47 (36.7%) | 23 (48.9%) | ref. | |
M | 81 (63.3%) | 43 (53.1%) | 1.01 (0.61–1.68) | 0.972 |
BMI | ||||
<25 | 35 (27.3%) | 18 (51.4%) | ref. | |
25–29.9 | 36 (28.1%) | 21 (58.3%) | 1.28 (0.66–2.46) | 0.467 |
30 or above | 29 (22.7%) | 18 (62.1%) | 1.17 (0.6–2.28) | 0.643 |
DM | ||||
No | 45 (35.2%) | 15 (33.3%) | ref. | |
Yes | 69 (53.9%) | 43 (62.3%) | 2.51 (1.4–4.49) | 0.002 |
HTN | ||||
No | 50 (39.1%) | 20 (40%) | ref. | |
Yes | 69 (53.9%) | 42 (60.9%) | 2.0 (1.17–3.42) | 0.012 |
Charlson Comorbidity index (CCI) | ||||
mean (SD) 1 | 3 (3) | 3 (2) vs. 4 (3) | 1.11 (1.02–1.21) | 0.011 |
No 0 | 21 (16.4%) | 7 (33.3%) | ref. | |
Mild 1–2 | 28 (21.9%) | 13 (46.4%) | 1.75 (0.73–4.21) | 0.214 |
Moderate 3–4 | 31 (24.2%) | 18 (58.1%) | 2.13 (0.98–4.63) | 0.055 |
Severe 5 or above | 40 (31.3%) | 25 (62.5%) | 2.74 (1.31–5.71) | 0.007 |
eCrCl range | ||||
10–29 | 8 (6.3%) | 3 (37.5%) | ||
30–49 | 19 (14.8%) | 16 (84.2%) | 3.9 (1.13–13.49) | 0.032 |
50–59 | 12 (9.4%) | 10 (83.3%) | 3.39 (0.93–12.34) | 0.064 |
60–79 | 11 (8.6%) | 3 (27.3%) | 1.05 (0.21–5.16) | 0.950 |
≥80 | 71 (55.5%) | 32 (45.1%) | 1.25 (0.38–4.06) | 0.715 |
Previous AKI | ||||
No | 80 (62.5%) | 31 (38.8%) | ref. | |
Yes | 46 (35.9%) | 33 (71.7%) | 2.93 (1.78–4.8) | 0.000 |
Recent hospital admission within 90 days | ||||
No | 84 (65.6%) | 35 (41.7%) | ref. | |
Yes | 42 (32.8%) | 29 (69%) | 1.71 (1.04–2.79) | 0.033 |
Level of care | ||||
Critical | 101 (79) | 53 (52.48) | ref. | 0.4839 |
Non-critical | 25 (19) | 12 (52.17) | 0.619 (0.145–2.642) | |
Length of hospitalization Mean (SD) | 70 days (61) | 80 (67) vs. 58 (53) | 0.998 (0.995–1.00) | 0.2005 |
Duration of therapy with Colistin | ||||
Mean (SD) | 12 (7.8) | 14 (8) vs. 10 (8) | 0.966 (0.940–0.993) | 0.0144 |
Inotropic Support | ||||
No | 60 (46.9%) | 25 (41.7%) | ref. | |
Yes | 56 (43.8%) | 38 (67.9%) | 1.82 (1.09–3.03) | 0.022 |
CRRT | ||||
No | 101 (78.9%) | 50 (49.5%) | ref. | |
Yes | 15 (11.7%) | 13 (86.7%) | 2.55 (1.33–4.91) | 0.005 |
Appropriateness of the dose | ||||
No | 52 (40.6%) | 34 (65.4%) | ref. | |
Yes | 68 (53.1%) | 29 (42.6%) | 0.44 (0.27–0.73) | 0.001 |
Loop diuretics | ||||
No | 70 (54.7%) | 32 (45.7%) | ref. | |
Yes | 57 (44.5%) | 34 (59.6%) | 1.82 (1.11–2.99) | 0.018 |
NSAIDs | ||||
No | 98 (76.6%) | 46 (46.9%) | ref. | |
Yes | 29 (22.7%) | 20 (69%) | 2.2 (1.3–3.75) | 0.004 |
Vancomycin | ||||
No | 94 (74.0%) | 48 (51.1%) | ref. | |
Yes | 33 (26.0%) | 18 (54.6%) | 1.03 (0.59–1.77) | 0.928 |
Meropenem | ||||
No | 48 (37.8%) | 29 (60.4%) | ref. | |
Yes | 79 (62.2%) | 37 (46.8%) | 0.63 (0.39–1.04) | 0.071 |
UTI Infection | ||||
No | 68 (53.1%) | 31 (45.6%) | ref. | |
Yes | 59 (46.1%) | 35 (59.3%) | 1.33 (0.82–2.17) | 0.245 |
Pnumonia Infection | ||||
No | 34 (26.5) | 17 (50) | Ref. | |
Yes | 93 (72.66) | 49 (52.69) | 0.928 (0.625–1.378) | 0.7125 |
Wound Infection | ||||
No | 88 (68.75) | 39 (44.32) | ref | |
Yes | 39 (30.47) | 27 (70) | 0.628 (0.425–0.929) | 0.019 |
Bacteremia | ||||
No | 50 (39.37) | 24 (48) | Ref | |
Yes | 77 (60.63) | 42 (54.55) | 0.971 (0.678–1.390) | 0.8717 |
A Baumannii | ||||
No | 31 (24.2%) | 13 (41.9%) | ref. | |
Yes | 96 (75%) | 53 (55.2%) | 1.0 (0.54–1.85) | 0.989 |
K Pneumoniae | ||||
No | 59 (46.1%) | 26 (44.1%) | ref. | |
Yes | 68 (53.1%) | 40 (58.8%) | 1.36 (0.83–2.23) | 0.223 |
Albumin level | ||||
mean (SD) 1 | 2.64 (0.6) | 2.71 (0.6) vs. 2.57 (0.7) | 0.87 (0.58–1.31) | 0.516 |
Number of agents | ||||
mean (SD) 1 | 9 (5) | 9 (5) vs. 9 (5) | 1.0 (0.95–1.04) | 0.856 |
Variables | Adjusted HR (95% CI) * | p-Value ** | |
---|---|---|---|
Age | |||
24–45 | |||
46–65 | 7.72 (1.88–31.68) | 0.005 | |
66–80 | 1.47 (0.13–16.27) | 0.751 | |
above 80 | 7.01 (0.99–49.71) | 0.051 | |
Interaction between Age & CCI | |||
24–45#CCI | 1.21 (0.71–2.08) | 0.481 | |
46–65#CCI | 0.58 (0.4–0.85) | 0.005 | |
66–80#CCI | 0.93 (0.61–1.41) | 0.732 | |
above 80#CCI | 0.71 (0.54–0.94) | 0.017 | |
DM | |||
No | |||
Yes | 1.82 (0.85–3.92) | 0.124 | |
HTN | |||
No | |||
Yes | 1.4 (0.71–2.79) | 0.334 | |
eCrCl range | |||
10–29 | |||
30–49 | 4.34 (1–18.82) | 0.050 | |
50–59 | 8.95 (1.74–46.03) | 0.009 | |
60–79 | 1.11 (0.18–6.88) | 0.914 | |
≥80 | 2.7 (0.48–15.32) | 0.262 | |
Previous AKI | |||
No | |||
Yes | 2.13 (1.03–4.41) | 0.041 | |
Recent hospital admission within 90 days | |||
No | |||
Yes | 1.24 (0.66–2.32) | 0.496 | |
Inotropic Support | |||
No | |||
Yes | 2.02 (1.05–3.88) | 0.036 | |
CRRT | |||
No | |||
Yes | 2.9 (1.25–6.73) | 0.013 | |
appropriateness of the dose | |||
No | |||
Yes | 0.5 (0.16–1.55) | 0.228 | |
Loop diuretics | |||
No | |||
Yes | 1.26 (0.69–2.28) | 0.453 | |
NSAIDs | |||
No | |||
Yes | 2.57 (1.26–5.24) | 0.009 | |
Vancomycin | |||
No | |||
Yes | 0.99 (0.41–2.39) | 0.979 | |
Meropenem | |||
No | |||
Yes | 0.64 (0.32–1.27) | 0.200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, F.M.; Alshehail, B.M.; Al Jamea, Z.A.H.; Joseph, R.; Alanazi, A.H.; Alhamed, N.A.; Alqarni, R.S. Incidence and Risk Factors of Colistin-Induced Nephrotoxicity Associated with The International Consensus Guidelines for the Optimal Use of the Polymyxins: A Retrospective Study in a Tertiary Care Hospital, Saudi Arabia. Antibiotics 2022, 11, 1569. https://doi.org/10.3390/antibiotics11111569
Alotaibi FM, Alshehail BM, Al Jamea ZAH, Joseph R, Alanazi AH, Alhamed NA, Alqarni RS. Incidence and Risk Factors of Colistin-Induced Nephrotoxicity Associated with The International Consensus Guidelines for the Optimal Use of the Polymyxins: A Retrospective Study in a Tertiary Care Hospital, Saudi Arabia. Antibiotics. 2022; 11(11):1569. https://doi.org/10.3390/antibiotics11111569
Chicago/Turabian StyleAlotaibi, Fawaz M., Bashayer M. Alshehail, Zainab A. H. Al Jamea, Royes Joseph, Amal H. Alanazi, Najla A. Alhamed, and Reyouf S. Alqarni. 2022. "Incidence and Risk Factors of Colistin-Induced Nephrotoxicity Associated with The International Consensus Guidelines for the Optimal Use of the Polymyxins: A Retrospective Study in a Tertiary Care Hospital, Saudi Arabia" Antibiotics 11, no. 11: 1569. https://doi.org/10.3390/antibiotics11111569
APA StyleAlotaibi, F. M., Alshehail, B. M., Al Jamea, Z. A. H., Joseph, R., Alanazi, A. H., Alhamed, N. A., & Alqarni, R. S. (2022). Incidence and Risk Factors of Colistin-Induced Nephrotoxicity Associated with The International Consensus Guidelines for the Optimal Use of the Polymyxins: A Retrospective Study in a Tertiary Care Hospital, Saudi Arabia. Antibiotics, 11(11), 1569. https://doi.org/10.3390/antibiotics11111569