Polyclonal Multidrug ESBL-Producing Klebsiella pneumoniae and Emergence of Susceptible Hypervirulent Klebsiella pneumoniae ST23 Isolates in Mozambique
Abstract
:1. Introduction
2. Results
2.1. Phenotypic and Genotypic Characterization of Klebsiella Isolates
2.1.1. Klebsiella Isolates and Antimicrobial Susceptibility Testing
2.1.2. Antimicrobial Resistance Determinants of Klebsiella Isolates
2.1.3. MLST and Virulence-Associated Genes Analysis of Klebsiella Isolates
2.1.4. Plasmid Content Analysis
3. Discussion
4. Materials and Methods
4.1. Sample Collection and Bacterial Identification
4.2. Antibiotic Susceptibility Testing
4.3. PCR Detection of β-Lactamase Genes
4.4. Whole Genome Sequencing (WGS) and Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, D.; Sharma, L.; Dela Cruz, C.S.; Zhang, D. Clinical Epidemiology, Risk Factors, and Control Strategies of Klebsiella pneumoniae Infection. Front. Microbiol. 2021, 12, 750662. [Google Scholar] [CrossRef]
- Singh, C.L.; Cariappa, M.P.; Kaur, M. Klebsiella oxytoca: An emerging pathogen? Med. J. Armed Forces India 2016, 72 (Suppl. 1), S59–S61. [Google Scholar] [CrossRef]
- Karampatakis, T.; Tsergouli, K.; Behzadi, P. Carbapenem-Resistant Klebsiella pneumoniae: Virulence Factors, Molecular Epidemiology and Latest Updates in Treatment Options. Antibiotics 2023, 12, 234. [Google Scholar] [CrossRef] [PubMed]
- Diallo, O.O.; Baron, S.A.; Abat, C.; Colson, P.; Chaudet, H.; Rolain, J. Antibiotic resistance surveillance systems: A review. J. Glob. Antimicrob. Resist. 2020, 23, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Ferrer, S.; Peñaloza, H.F.; Budnick, J.A.; Bain, W.G.; Nordstrom, H.R.; Lee, J.S.; Van Tyne, D. Finding Order in the Chaos: Outstanding Questions in Klebsiella pneumoniae Pathogenesis. Infect. Immun. 2021, 89, e00693-20. [Google Scholar] [CrossRef]
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef]
- Wyres, K.L.; Holt, K.E. Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr. Opin. Microbiol. 2018, 45, 131–139. [Google Scholar] [CrossRef]
- Bialek-Davenet, S.; Criscuolo, A.; Ailloud, F.; Passet, V.; Jones, L.; Delannoy-Vieillard, A.S.; Garin, B.; Le Hello, S.; Arlet, G.; Nicolas-Chanoine, M.H.; et al. Genomic Definition of Hypervirulent and Multidrug-Resistant Klebsiella pneumoniae Clonal Groups. Emerg. Infect. Dis. 2014, 20, 1813–1820. [Google Scholar] [CrossRef]
- Choby, J.E.; Howard-Anderson, J.; Weiss, D.S. Hypervirulent Klebsiella pneumoniae—Clinical and molecular perspectives. J. Intern. Med. 2020, 287, 283–300. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, T.; Chen, L.; Du, H. Virulence Factors in Hypervirulent Klebsiella pneumoniae. Front. Microbiol. 2021, 12, 642484. [Google Scholar] [CrossRef]
- Lam, M.M.C.; Wyres, K.L.; Duchêne, S.; Wick, R.R.; Judd, L.M.; Gan, Y.H.; Hoh, C.H.; Archuleta, S.; Molton, J.S.; Kalimuddin, S.; et al. Population genomics of hypervirulent Klebsiella pneumoniae clonal-group 23 reveals early emergence and rapid global dissemination. Nat. Commun. 2018, 9, 2703. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.; Yang, X.; Chan, E.W.; Zhang, R.; Chen, S. Klebsiella species: Taxonomy, hypervirulence and multidrug resistance. EBioMedicine 2022, 79, 103998. [Google Scholar] [CrossRef] [PubMed]
- Sigaúque, B.; Roca, A.; Mandomando, I.; Morais, L.; Quintó, L.; Sacarlal, J.; Macete, E.; Nhamposa, T.; Machevo, S.; Aide, P.; et al. Community-acquired bacteremia among children admitted to a rural hospital in Mozambique. Pediatr. Infect. Dis. J. 2009, 28, 108–113. [Google Scholar] [CrossRef]
- Mandomando, I.; Sigaúque, B.; Morais, L.; Espasa, M.; Vallès, X.; Sacarlal, J.; Macete, E.; Aide, P.; Quintò, L.; Nhampossa, T.; et al. Antimicrobial drug resistance trends of bacteremia isolates in a rural hospital in southern Mozambique. Am. J. Trop. Med. Hyg. 2010, 83, 152–157. [Google Scholar] [CrossRef] [PubMed]
- van der Meeren, B.T.; Chhaganlal, K.D.; Pfeiffer, A.; Gomez, E.; Ferro, J.J.; Hilbink, M.; Macome, C.; van der Vondervoort, F.J.; Steidel, K.; Wever, P.C. Extremely high prevalence of multi-resistance among uropathogens from hospitalized children in Beira, Mozambique. S. Afr. Med. J. 2013, 103, 382–386. [Google Scholar] [CrossRef]
- Pons, M.J.; Vubil, D.; Guiral, E.; Jaintilal, D.; Fraile, O.; Soto, S.M.; Sigaúque, B.; Nhampossa, T.; Aide, P.; Alonso, P.L.; et al. Characterisation of extended-spectrum β-lactamases among Klebsiella pneumoniae isolates causing bacteraemia and urinary tract infection in Mozambique. J. Glob. Antimicrob. Resist. 2015, 3, 19–25. [Google Scholar] [CrossRef]
- Chirindze, L.M.; Zimba, T.F.; Sekyere, J.O.; Govinden, U.; Chenia, H.Y.; Sundsfjiord, A.; Essack, S.Y.; Simonsen, G.S. Faecal colonization of E. coli and Klebsiella spp. producing extended-spectrum beta-lactamases and plasmid-mediated AmpC in Mozambican university students. BMC Infect. Dis. 2018, 18, 244. [Google Scholar] [CrossRef] [PubMed]
- Kenga, D.B.; Gebretsadik, T.; Simbine, S.; Maússe, F.E.; Charles, P.; Zaqueu, E.; Fernando, H.F.; Manjate, A.; Sacarlal, J.; Moon, T.D. Community-acquired bacteremia among HIV-infected and HIV-exposed uninfected children hospitalized with fever in Mozambique. Int. J. Infect. Dis. 2021, 109, 99–107. [Google Scholar] [CrossRef]
- Massinga, A.J.; Garrine, M.; Messa, A., Jr.; Nobela, N.A.; Boisen, N.; Massora, S.; Cossa, A.; Varo, R.; Sitoe, A.; Hurtado, J.C.; et al. Klebsiella spp. cause severe and fatal disease in Mozambican children: Antimicrobial resistance profile and molecular characterization. BMC Infect. Dis. 2021, 21, 526. [Google Scholar] [CrossRef]
- Villa, L.; Feudi, C.; Fortini, D.; García-Fernández, A.; Carattoli, A. Genomics of KPC-producing Klebsiella pneumoniae sequence type 512 clone highlights the role of RamR and ribosomal S10 protein mutations in conferring tigecycline resistance. Antimicrob. Agents Chemother. 2014, 58, 1707–1712. [Google Scholar] [CrossRef]
- Lu, P.L.; Hsieh, Y.J.; Lin, J.E.; Huang, J.W.; Yang, T.Y.; Lin, L.; Tseng, S.P. Characterisation of fosfomycin resistance mechanisms and molecular epidemiology in extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates. Int. J. Antimicrob. Agents 2016, 48, 564–568. [Google Scholar] [CrossRef]
- Wang, Y.P.; Chen, Y.H.; Hung, I.C.; Chu, P.H.; Chang, Y.H.; Lin, Y.T.; Yang, H.C.; Wang, J.T. Transporter Genes and fosA Associated with Fosfomycin Resistance in Carbapenem-Resistant Klebsiella pneumoniae. Front. Microbiol. 2022, 13, 816806. [Google Scholar] [CrossRef] [PubMed]
- Holt, K.E.; Wertheim, H.; Zadoks, R.N.; Baker, S.; Whitehouse, C.A.; Dance, D.; Jenney, A.; Connor, T.R.; Hsu, L.Y.; Severin, J.; et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc. Natl. Acad. Sci. USA 2015, 112, E3574–E3581. [Google Scholar] [CrossRef]
- Mbelle, N.M.; Feldman, C.; Sekyere, J.O.; Maningi, N.E.; Modipane, L.; Essack, S.Y. Pathogenomics and Evolutionary Epidemiology of Multi-Drug Resistant Clinical Klebsiella pneumoniae Isolated from Pretoria, South Africa. Sci. Rep. 2020, 10, 1232. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.M.; Mphasa, M.; Banda, R.; Beale, M.A.; Mallewa, J.; Heinz, E.; Thomson, N.R.; Feasey, N.A. Genomic and antigenic diversity of colonizing Klebsiella pneumoniae isolates mirrors that of invasive isolates in Blantyre, Malawi. Microb. Genom. 2022, 8, 000778. [Google Scholar] [CrossRef] [PubMed]
- Estaleva, C.E.L.; Zimba, T.F.; Sekyere, J.O.; Govinden, U.; Chenia, H.Y.; Simonsen, G.S.; Haldorsen, B.; Essack, S.Y.; Sundsfjord, A. High prevalence of multidrug resistant ESBL- and plasmid mediated AmpC-producing clinical isolates of Escherichia coli at Maputo Central Hospital, Mozambique. BMC Infect. Dis. 2021, 21, 16. [Google Scholar] [CrossRef] [PubMed]
- Santona, A.; Sumbana, J.J.; Fiamma, M.; Deligios, M.; Taviani, E.; Simbine, S.E.; Zimba, T.; Sacarlal, J.; Rubino, S.; Paglietti, B. High-risk lineages among extended-spectrum β-lactamase-producing Escherichia coli from extraintestinal infections in Maputo Central Hospital, Mozambique. Int. J. Antimicrob. Agents 2022, 60, 106649. [Google Scholar] [CrossRef]
- Sumbana, J.J.; Santona, A.; Fiamma, M.; Taviani, E.; Deligios, M.; Zimba, T.; Lucas, G.; Sacarlal, J.; Rubino, S.; Paglietti, B. Extraintestinal Pathogenic Escherichia coli ST405 Isolate Coharboring blaNDM-5 and blaCTXM-15: A New Threat in Mozambique. Microb. Drug Resist. 2021, 27, 1633–1640. [Google Scholar] [CrossRef]
- Sumbana, J.J.; Santona, A.; Fiamma, M.; Taviani, E.; Deligios, M.; Chongo, V.; Sacarlal, J.; Rubino, S.; Paglietti, B. Polyclonal emergence of MDR Enterobacter cloacae complex isolates producing multiple extended spectrum beta-lactamases at Maputo Central Hospital, Mozambique. Rend. Fis. Acc. Lincei 2022, 33, 39–45. [Google Scholar] [CrossRef]
- Zhao, W.H.; Hu, Z.Q. Epidemiology and genetics of CTX-M extended-spectrum β-lactamases in Gram-negative bacteria. Crit. Rev. Microbiol. 2013, 39, 79–101. [Google Scholar] [CrossRef]
- Yoon, E.J.; Gwon, B.; Liu, C.; Kim, D.; Won, D.; Park, S.G.; Choi, J.R.; Jeong, S.H. Beneficial Chromosomal Integration of the Genes for CTX-M Extended-Spectrum β-Lactamase in Klebsiella pneumoniae for Stable Propagation. mSystems 2020, 5, e00459-20. [Google Scholar] [CrossRef] [PubMed]
- Ngbede, E.O.; Adekanmbi, F.; Poudel, A.; Kalalah, A.; Kelly, P.; Yang, Y.; Adamu, A.M.; Daniel, S.T.; Adikwu, A.A.; Akwuobu, C.A.; et al. Concurrent Resistance to Carbapenem and Colistin Among Enterobacteriaceae Recovered From Human and Animal Sources in Nigeria Is Associated With Multiple Genetic Mechanisms. Front. Microbiol. 2021, 12, 740348. [Google Scholar] [CrossRef] [PubMed]
- Founou, R.C.; Founou, L.L.; Allam, M.; Ismail, A.; Essack, S.Y. Whole Genome Sequencing of Extended Spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae Isolated from Hospitalized Patients in KwaZulu-Natal, South Africa. Sci. Rep. 2019, 9, 6266. [Google Scholar] [CrossRef] [PubMed]
- Kibwana, U.O.; Manyahi, J.; Sandnes, H.H.; Blomberg, B.; Mshana, S.E.; Langeland, N.; Roberts, A.P.; Moyo, S.J. Fluoroquinolone resistance among fecal extended spectrum βeta lactamases positive Enterobacterales isolates from children in Dar es Salaam, Tanzania. BMC Infect. Dis. 2023, 23, 135. [Google Scholar] [CrossRef] [PubMed]
- Zemmour, A.; Dali-Yahia, R.; Maatallah, M.; Saidi-Ouahrani, N.; Rahmani, B.; Benhamouche, N.; Al-Farsi, H.M.; Giske, C.G. High-risk clones of extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolated from the University Hospital Establishment of Oran, Algeria (2011–2012). PLoS ONE 2021, 16, e0254805. [Google Scholar] [CrossRef]
- Struve, C.; Roe, C.C.; Stegger, M.; Stahlhut, S.G.; Hansen, D.S.; Engelthaler, D.M.; Andersen, P.S.; Driebe, E.M.; Keim, P.; Krogfelt, K.A. Mapping the Evolution of Hypervirulent Klebsiella pneumoniae. mBio 2015, 6, e00630. [Google Scholar] [CrossRef]
- Hijazi, S.M.; Fawzi, M.A.; Ali, F.M.; Abd El Galil, K.H. Prevalence and characterization of extended-spectrum beta-lactamases producing Enterobacteriaceae in healthy children and associated risk factors. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 3. [Google Scholar] [CrossRef]
- Pérez-Pérez, F.J.; Hanson, N.D. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 2002, 40, 2153–2162. [Google Scholar] [CrossRef]
- Dallenne, C.; Da Costa, A.; Decré, D.; Favier, C.; Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2010, 65, 490–495. [Google Scholar] [CrossRef]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef]
- Lam, M.M.C.; Wick, R.R.; Watts, S.C.; Cerdeira, L.T.; Wyres, K.L. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat. Commun. 2021, 12, 4188. [Google Scholar] [CrossRef] [PubMed]
- Wick, R.R.; Heinz, E.; Holt, K.E.; Wyres, K.L. Kaptive Web: User-friendly capsule and lipopolysaccharide serotype prediction for Klebsiella Genomes. J. Clin. Microbiol. 2018, 56, e00197-18. [Google Scholar] [CrossRef]
- Arredondo-Alonso, S.; Rogers, M.R.C.; Braat, J.C.; Verschuuren, T.D.; Top, J.; Corander, J.; Willems, R.J.L.; Schürch, A.C. mlplasmids: A user-friendly tool to predict plasmid- and chromosome-derived sequences for single species. Microb. Genom. 2018, 4, e000224. [Google Scholar] [CrossRef] [PubMed]
Isolates | Ward | Source | ST | Resistant Profile | oqxA/B | qnrB1 | qnrB6 | aac(6′)-Ib-cr | aac(3)-IIa | aac(3)-IId | aac(3)-IIe | aph(3″)-Ib | aph(6)-Id | aadA1 | aadA2 | aadA14 | aadA16 | TEM-1 | SHV | CTX-M-15 | OXA-1 | OXY-4-1 | catA1 | catA2 | catB3 | drA5 | dfrA7 | dfrA12 | dfrA14 | dfrA27 | sul1 | sul2 | mph(A) | tet(A) | tet(D) | fosA | ARR-3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SSM90 a | P | B | NC | AMC-CTX-CAZ-GEN-FOF-SXT | |||||||||||||||||||||||||||||||||
SSM35 | P | B | ST13 | AMC-TZP-CTX-CAZ-GEN-CIP-FOF-SXT | |||||||||||||||||||||||||||||||||
SSM79 | P | B | ST14 | AMC-TZP-CTX-CAZ-GEN-CIP-SXT | |||||||||||||||||||||||||||||||||
SSM63 | P | B | ST17 | AMC-FOF | |||||||||||||||||||||||||||||||||
SSM25L | P | C | ST23 | FOF | |||||||||||||||||||||||||||||||||
SSM56 | M | B | ST23 | FOF | |||||||||||||||||||||||||||||||||
SSM58P | M | P | ST394 | AMC-TZP-CTX-CAZ-GEN-CIP-TGC | |||||||||||||||||||||||||||||||||
SSM85 | M | B | ST48 | AMC-TZP-CTX-CAZ-GEN-CIP-SXT | |||||||||||||||||||||||||||||||||
SSM37 | na | B | ST607 | AMC-TZP-CTX-CAZ-GEN-CIP-SXT | |||||||||||||||||||||||||||||||||
SSM56P | M | P | ST607 | AMC-TZP-CTX-CAZ-GEN-CIP-SXT | |||||||||||||||||||||||||||||||||
SSM64 | P | B | ST607 | AMC-TZP-CTX-CAZ-GEN-CIP-SXT | |||||||||||||||||||||||||||||||||
SSM114 | P | B | ST607 | AMC-TZP-CTX-CAZ-GEN-CIP-SXT | |||||||||||||||||||||||||||||||||
SSM73 | M | B | ST711 | AMC-TZP-CTX-CAZ-GEN-CIP-FOF-SXT | |||||||||||||||||||||||||||||||||
SSM52A | na | B | ST831 | AMC-CTX-CAZ-CIP-SXT | |||||||||||||||||||||||||||||||||
SSM52B | na | B | ST831 | AMC-TZP-CTX-CAZ-GEN-SXT | |||||||||||||||||||||||||||||||||
SSM10P | na | P | ST985 | AMC-TZP-CTX-CAZ-GEN-CIP-SXT |
Isolates | ST | Beta-Lactamase Enzymes | Genetic Context of CTX-M-15 | Plasmids Replicons | IncF RST |
---|---|---|---|---|---|
SSM90 a | NC | CTX-M-15, TEM-1B, OXA-1, OXY-4-1 b | ISecp1-blaCTX-M-15-orf477 | IncHI2, IncHI2A | - |
SSM35 | ST13 | CTX-M-15, OXA-1, SHV-1 | ISecp1-blaCTX-M-15-orf477 | IncFII(K), Col, FIB, repB | [K5:A-:B-] |
SSM79 | ST14 | CTX-M-15, TEM-1B, OXA-1, SHV-28 | IS26-ΔISecp1-blaCTX-M-15-orf477 | IncFIB(K), Col, FII | [K9:A-:B-] |
SSM63 | ST17 | TEM-1B, SHV-11 | - | FIA, FIB, FII | [K8:A21:B-] |
SSM25L | ST23 | SHV-11 | - | repB, HI1B | - |
SSM56 | ST23 | SHV-11 | - | repB, HI1B | - |
SSM58P | ST394 | CTX-M-15, TEM-1B, SHV-11 | ISecp1-blaCTX-M-15-orf477 | IncFII(K), Col, FIB | [K13:A-:B-] |
SSM85 | ST48 | CTX-M-15, TEM-1B, SHV-1, OXA-1 | IS26-ΔISecp1-blaCTX-M-15-orf477 | IncFII(K), Col, FIB | [K5:A-:B-] |
SSM114 | ST607 | CTX-M-15, TEM-1B, SHV-1 | ISecp1-blaCTX-M-15-orf477 | IncFII(K), FIA, FIB, R | [K7:A13:B-] |
SSM37 | ST607 | CTX-M-15, TEM-1B, SHV-1 | ISecp1-blaCTX-M-15-orf477 | IncFII(K), FIA, FIB, R | [K13:A13:B-] |
SSM56P | ST607 | CTX-M-15, TEM-1B, SHV-1 | ISecp1-blaCTX-M-15-orf477 | IncFII(K), FIA, FIB, R | [K13:A13:B-] |
SSM64 | ST607 | CTX-M-15, TEM-1B, SHV-2 b | ISecp1-blaCTX-M-15-orf477 | IncFII(K), FIA, FIB, R | [K13:A13:B-] |
SSM73 | ST711 | CTX-M-15, TEM-1B, OXA-1, SHV187 b | ISecp1-blaCTX-M-15-orf477 | Col(BS512) | - |
SSM52A | ST831 | CTX-M-15, TEM-1B, OXA-1, SHV-11 | ISecp1-blaCTX-M-15-orf477 | IncFII(K), FIB, HI1B | [K5:A-:B-] |
SSM52B | ST831 | CTX-M-15, TEM-1B, OXA-1, SHV-11 | ISecp1-blaCTX-M-15-orf477 | IncFII(K), FIB, HI1B | [K5:A-:B-] |
SSM10P | ST985 | CTX-M-15, TEM-1C, OXA-1, SHV187 b | ISecp1-blaCTX-M-15-orf477 | IncFII(K), FIB, HI1B | [K5:A-:B-] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sumbana, J.J.; Santona, A.; Abdelmalek, N.; Fiamma, M.; Deligios, M.; Manjate, A.; Sacarlal, J.; Rubino, S.; Paglietti, B. Polyclonal Multidrug ESBL-Producing Klebsiella pneumoniae and Emergence of Susceptible Hypervirulent Klebsiella pneumoniae ST23 Isolates in Mozambique. Antibiotics 2023, 12, 1439. https://doi.org/10.3390/antibiotics12091439
Sumbana JJ, Santona A, Abdelmalek N, Fiamma M, Deligios M, Manjate A, Sacarlal J, Rubino S, Paglietti B. Polyclonal Multidrug ESBL-Producing Klebsiella pneumoniae and Emergence of Susceptible Hypervirulent Klebsiella pneumoniae ST23 Isolates in Mozambique. Antibiotics. 2023; 12(9):1439. https://doi.org/10.3390/antibiotics12091439
Chicago/Turabian StyleSumbana, José João, Antonella Santona, Nader Abdelmalek, Maura Fiamma, Massimo Deligios, Alice Manjate, Jahit Sacarlal, Salvatore Rubino, and Bianca Paglietti. 2023. "Polyclonal Multidrug ESBL-Producing Klebsiella pneumoniae and Emergence of Susceptible Hypervirulent Klebsiella pneumoniae ST23 Isolates in Mozambique" Antibiotics 12, no. 9: 1439. https://doi.org/10.3390/antibiotics12091439
APA StyleSumbana, J. J., Santona, A., Abdelmalek, N., Fiamma, M., Deligios, M., Manjate, A., Sacarlal, J., Rubino, S., & Paglietti, B. (2023). Polyclonal Multidrug ESBL-Producing Klebsiella pneumoniae and Emergence of Susceptible Hypervirulent Klebsiella pneumoniae ST23 Isolates in Mozambique. Antibiotics, 12(9), 1439. https://doi.org/10.3390/antibiotics12091439