Polyphenolic Composition and Antimicrobial, Antioxidant, Anti-Inflammatory, and Antihyperglycemic Activity of Different Extracts of Teucrium montanum from Ozren Mountain
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Polyphenol and Flavonoid Content of T. montanum Extracts
2.2. Composition of T. montanum Extracts Obtained by UHPLC-DAD-MS/MS Analysis
2.3. The Antimicrobial Activity of the T. montanum Extracts
2.4. Antioxidative Activity, Anti-Inflammatory Activity, and α-Glucosidase Inhibitory Potential of T. montanum Extracts
3. Materials and Methods
3.1. Plant Material
3.2. Extract Preparation
3.3. Determination of Total Polyphenol and Flavonoid Content
3.4. UHPLC Analysis of the T. montanum Extracts
3.5. Determination of Antimicrobial Activity of T. montanum Extracts
3.6. Determination of Antioxidant Activity of T. montanum Extracts
3.7. Determination of Anti-Inflammatory and α-Glucosidase Inhibitory Potential of T. montanum Extracts
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitreski, I.; Stanoeva, J.P.; Stefova, M.; Stefkov, G.; Kulevanova, S. Polyphenols in Representative Teucrium Species in the Flora of R. Macedonia: LC/DAD/ESI-MSn Profile and Content. Nat. Prod. Commun. 2014, 9, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Mandura Jarić, A.; Šeremet, D.; Vojvodić Cebin, A.; Jokić, S.; Komes, D. The multiple-response modeling of heat-assisted, microwave-assisted and subcritical water extraction on selected phenolicsfrom traditional plant species Teucrium montanum. Prep. Biochem. Biotechnol. 2022, 52, 809–822. [Google Scholar] [CrossRef] [PubMed]
- Ersoy, E.; Süvari, G.; Ercan, S.; Eroğlu Özkan, E.; Karahan, S.; Aygün Tuncay, E.; Yeşil Cantürk, Y.; Mataracı Kara, E.; Zengin, G.; Bŏga, M. Towards a better understanding of commonly used medicinal plants from Turkiye: Detailed phytochemical screening and biological activity studies of two Teucrium L. species with in vitro and in silico approach. J. Ethnopharmacol. 2023, 312, 116482. [Google Scholar] [CrossRef] [PubMed]
- Čanadanović-Brunet, J.; Djilas, S.; Ćetković, G.; Tumbas, V.; Mandić, A.; Čanadanović, V. Antioxidant activities of different Teucrium montanum L. Extracts. Int. J. Food Sci. Technol. 2006, 41, 667–673. [Google Scholar] [CrossRef]
- Oalđe, M.M.; Kolarević, M.S.; Živković, C.J.; Vuković-Gačić, S.B.; Jovanović Marić, M.J.; Kračun Kolarević, J.M.; Đorđević, Z.J.; Alimpić Aradski, Z.A.; Marin, D.P.; Šavikin, P.K.; et al. The impact of different extracts of six Lamiaceae species on deleterious effects of oxidative stress assessed in acellular, prokaryotic and eukaryotic models in vitro. Saudi Pharm. J. 2020, 28, 1592–1604. [Google Scholar] [CrossRef] [PubMed]
- Panovska, K.T.; Kulevanova, S.; Stefova, M. In vitro antioxidant activity of some Teucrium species. Acta Pharm. 2005, 55, 207–214. [Google Scholar]
- Šeremet, D.; Vojvodić Cebin, A.; Mandura, A.; Komes, D. Valorisation of Teucrium montanum as a Source of Valuable Natural Compounds: Bioactive Content, Antimicrobial and Biological Activity—A Review. Pharmacogn. Rev. 2021, 15, 191–198. [Google Scholar] [CrossRef]
- Bektasevic, M.; Juri, M.; Roje, M.; Politeo, O. Phytochemical Profile, Antioxidant Activity and Cholinesterase Inhibition Potential of Essential Oil and Extracts of Teucrium montanum from Bosnia and Herzegovina. Separations 2023, 10, 421. [Google Scholar] [CrossRef]
- Juranović Cindrić, I.; Zeiner, M.; Glamuzina, E.; Stingeder, G. Elemental characterisation of the medical herbs Salvia officinalis L. And Teucrium montanum L. grown in Croatia. Microchem. J. 2013, 107, 185–189. [Google Scholar] [CrossRef]
- Milošević-Djordjević, O.; Stošić, I.; Stanković, M.; Grujičić, D. Comparative study of genotoxicity and antimutagenicity of methanolic extracts from Teucrium chamaedrys and Teucrium montanum in human lymphocytes using micronucleus assay. Cytotechnology 2013, 65, 863–869. [Google Scholar] [CrossRef]
- Kremer, D.; Stabentheiner, E.; Jurišić Grubešić, R.; Oberländer, A.; Vladimir-Knežević, S.; Kosalec, I.; Ballian, D. A morphological and chemotaxonomic study of Teucrium arduini L. in Croatia, and Bosnia and Herzegovina. Plant Biosyst. 2012, 146, 402–412. [Google Scholar] [CrossRef]
- Katalinic, V.; Milos, M.; Kulisic, T.; Jukic, M. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem. 2006, 94, 550–557. [Google Scholar] [CrossRef]
- Stankovic, M.; Niciforovic, N.; Topuzovic, M.; Solujic, S. Total Phenolic Content, Flavonoid Concentrations and Antioxidant Activity, of The Whole Plant and Plant Parts Extracts from Teucrium montanum L. Var. Montanum, F. Supinum (L.) Reichenb. Biotechnol. Biotechnol. Equip. 2011, 25, 2222–2227. [Google Scholar] [CrossRef]
- Zlatić, N.; Stanković, M.; Simić, Z. Secondary metabolites and metal content dynamics in Teucrium montanum L. and Teucrium chamaedrys L. from habitats with serpentine and calcareous substrate. Environ. Monit. Assess. 2017, 189, 110. [Google Scholar] [CrossRef] [PubMed]
- Nastić, N.; Švarc-Gajić, J.; Delerue-Matos, C.; Morais, S.; Barroso, M.F.; Moreira, M.M. Subcritical water extraction of antioxidants from mountain germander (Teucrium montanum L.). J. Supercrit. Fluids 2018, 138, 200–206. [Google Scholar] [CrossRef]
- UNESCO Intangible Cultural Heritage. Picking of Iva Grass on Ozren Mountain. Available online: https://ich.unesco.org/en/RL/picking-of-iva-grass-on-ozren-mountain-01289 (accessed on 10 January 2024).
- Vujanović, M.; Zengin, G.; Đurović, S.; Mašković, P.; Cvetanović, A.; Radojković, M. Biological activity of extracts of traditional wild medicinal plants from the Balkan Peninsula. S. Afr. J. Bot. 2019, 120, 213–218. [Google Scholar] [CrossRef]
- Djilas, S.M.; Markov, S.L.; Cvetković, D.D.; Čanadanović-Brunet, J.M.; Ćetković, G.S.; Tumbas, V.T. Antimicrobial and free radical scavenging activities of Teucrium montanum. Fitoterapia 2006, 77, 401–403. [Google Scholar] [CrossRef] [PubMed]
- Stanković, M.; Stefanović, O.; Čomić, L.; Topuzović, M.; Radojević, I.; Solujić, S. Antimicrobial activity, total phenolic content and flavonoid concentrations of Teucrium species. Cent. Eur. J. Biol. 2012, 7, 664–671. [Google Scholar] [CrossRef]
- Borges, A.; José, H.; Homem, V.; Simões, M. Comparison of Techniques and Solvents on the Antimicrobial and Antioxidant Potential of Extracts from Acacia dealbata and Olea europaea. Antibiotics 2020, 9, 48. [Google Scholar] [CrossRef]
- Masike, K.; Mhlongo, M.I.; Mudau, S.P.; Nobela, O.; Ncube, E.N.; Tugizimana, F.; George, M.J.; Madala, N.E. Highlighting mass spectrometric fragmentation differences and similarities between hydroxycinnamoyl-quinic acids and hydroxycinnamoyl-isocitric acids. Chem. Cent. J. 2017, 11, 29. [Google Scholar] [CrossRef]
- Grzegorczyk-Karolak, I.; Kiss, A.A. Determination of the Phenolic Profile and Antioxidant Properties of Salvia viridis L. Shoots: A Comparison of Aqueous and Hydroethanolic Extracts. Molecules 2018, 23, 1468. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, M.A.; Al-Gendy, A.A.; Hamdan, D.I.; El-Shazly, A.M. Phytoconstituents, LC-ESI-MS Profile, Antioxidant and Antimicrobial Activities of Citrus x limon L. Burm. f. Cultivar Variegated Pink Lemon. Int. J. Pharm. Sci. Res. 2017, 9, 375–391. [Google Scholar]
- Torres-Vega, J.; Gómez-Alonso, S.; Pérez-Navarro, J.; Alarcón-Enos, J.; Pastene-Navarrete, E. Polyphenolic Compounds Extracted and Purified from Buddleja Globosa Hope (Buddlejaceae) Leaves Using Natural Deep Eutectic Solvents and Centrifugal Partition Chromatography. Molecules 2021, 26, 2192. [Google Scholar] [CrossRef] [PubMed]
- Cardinali, A.; Pati, S.; Minervini, F.; D’Antuono, I.; Linsalata, V.; Lattanzio, V. Verbascoside, Isoverbascoside, and Their Derivatives Recoveredfrom Olive Mill Wastewater as Possible Food Antioxidants. J. Agric. Food Chem. 2012, 60, 1822–1829. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xiong, H.; Xu, X.; Xue, X.; Liu, M.; Xu, S.; Liu, H.; Gao, Y.; Zhang, H.; Li, X. Compounds identification in semen cuscutae by ultra-high-performance liquid chromatography (UPLCs) coupled to electrospray ionization mass spectrometry. Molecules 2018, 23, 1199. [Google Scholar] [CrossRef]
- Ricciutelli, M.; Di Martino, P.; Barboni, L.; Martelli, S. Evaluation of rapamycin chemical stability in volatile-organic solvents by HPLC. J. Pharm. Biomed. Anal. 2006, 41, 1070–1074. [Google Scholar] [CrossRef] [PubMed]
- Šeremet, D.; Vugrinec, K.; Petrović, P.; Butorac, A.; Kuzmić, S.; Vojvodić Cebin, A.; Mandura, A.; Lovrić, M.; Pjanović, R.; Komes, D. Formulation and characterization of liposomal encapsulated systems of bioactive ingredients from traditional plant mountain germander (Teucrium montanum L.) for the incorporation into coffee drinks. Food Chem. 2022, 370, 131257. [Google Scholar] [CrossRef]
- Xue, Z.; Yang, B. Phenylethanoid Glycosides: Research Advances in Their Phytochemistry, Pharmacological Activity and Pharmacokinetics. Molecules 2016, 21, 991. [Google Scholar] [CrossRef]
- Huang, J.; Zhao, D.; Cui, C.; Hao, J.; Zhang, Z.; Guo, L. Research Progress and Trends of Phenylethanoid Glycoside Delivery Systems. Foods 2022, 11, 769. [Google Scholar] [CrossRef]
- Gálvez, M.; Martin-Cordero, C.; Ayuso, M.J. Pharmacological Activities of Phenylpropanoids Glycosides. In Studies in Natural Products Chemistry, Bioactive Natural Products (Part M), 1st ed.; Rahman, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 675–718. [Google Scholar]
- Khalaf, H.A.A.; Jasim, R.A.; Ibrahim, I.T. Verbascoside—A Review of Its Antitumor Activities. Pharmacol. Pharm. 2021, 12, 109–126. [Google Scholar] [CrossRef]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.C.; Tsakris, Z.; Rozos, G.; Tsigalou, C.; Bezirtzoglou, E. Interactions between Medical Plant-Derived Bioactive Compounds: Focus on Antimicrobial Combination Effects. Antibiotics 2022, 11, 1014. [Google Scholar] [CrossRef] [PubMed]
- Eren, T.; Baysal, G.; Doğan, F. Biocidal Activity of Bone Cements Containing Curcumin and Pegylated Quaternary Polyethylenimine. J. Polym. Environ. 2020, 28, 2469–2480. [Google Scholar] [CrossRef]
- Korukluoglu, M.; Sahan, Y.; Yigit, A.; Ozer, E.T.; Gücer, S. Antibacterial activity and chemicaL constitutions of Olea europaea L. leaf extracts. J. Food Process. Preserv. 2010, 34, 383–396. [Google Scholar] [CrossRef]
- Aćimović, M.; Šeregelj, V.; Šovljanski, O.; Tumbas Šaponjac, V.; Švarc Gajić, J.; Brezo-Borjan, Т.; Pezo, L. In vitro antioxidant, antihyperglycemic, anti-inflammatory, and antimicrobial activity of Satureja kitaibelii Wierzb. ex Heuff. subcritical water extract. Ind. Crops Prod. 2021, 169, 113672. [Google Scholar] [CrossRef]
- Dharmadeva, S.; Sandaruwan Galgamuwa, L.; Prasadinie, C.; Kumarasinghe, N. In vitro anti-inflammatory activity of Ficus racemosa L. bark using albumin denaturation method. Int. J. Ayurveda Res. 2018, 39, 239–242. [Google Scholar] [CrossRef]
- Banerjee, S.; Chanda, A.; Adhikari, A.; Das, A.K.; Biswas, S. Evaluation of Phytochemical Screening and Anti Inflammatory Activity of Leaves and Stem of Mikania scandens (L.) Wild. Ann. Med. Health Sci. Res. 2014, 4, 532–536. [Google Scholar] [CrossRef]
- Wu, T.; Luo, J.; Xu, B. In vitro antidiabetic effects of selected fruits and vegetables against glycosidase and aldose reductase. Food Sci. Nutr. 2015, 3, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Saleem, F.; Sarkar, D.; Ankolekar, C.; Shetty, K. Phenolic bioactives and associated antioxidant and anti-hyperglycemic functions of select species of Apiaceae family targeting for type 2 diabetes relevant nutraceuticals. Ind. Crops Prod. 2017, 107, 518–525. [Google Scholar] [CrossRef]
- Proença, C.; Freitas, M.; Ribеiro, D.; Oliveira, F.T.E.; Sousa, L.C.J.; Tomé, M.S.; Ramos, J.M.; Silva, M.S.A.; Fernandes, A.P.; Fernandes, E. α-Glucosidase inhibition by flavonoids: An in vitro and in silico structure–activity relationship study. J. Enzym. Inhib. Med. Chem. 2017, 32, 1216–1228. [Google Scholar] [CrossRef]
- Kidane, Y.; Bokrezion, T.; Mebrahtu, Ј.; Mehari, M.; Berhane Gebreab, Y.; Fessehaye, N.; Okoth Achila, O. In Vitro Inhibition of α-Amylase and α-Glucosidase by Extracts from Psiadia punctulata and Meriandra bengalensis. Evid. Based Complement. Alternat. Med. 2018, 2018, 2164345. [Google Scholar] [CrossRef]
- Pavlović, M.O.; Lunič, T.; Graovac, S.; Mandić, M.; Repac, J.; Gašić, U.; Nedeljković, B.B.; Božić, B. Extracts of selected Lamiaceae species as promising antidiabetics: Chemical profiling, in vitro and in silico approach combined with dynamical modeling. Ind. Crops. Prod. 2022, 186, 115200. [Google Scholar] [CrossRef]
- Odžaković, B.; Sailović, P.; Bodroža, D.; Kojić, V.; Jakimov, D.; Kukrić, Z. Bioactive components and antioxidant, antiproliferative, and antihyperglycemic activities of wild cornelian cherry (Cornus mas L.). Maced. J. Chem. Chem. Eng. 2021, 40, 221–230. [Google Scholar] [CrossRef]
- Orsavová, J.; Hlaváčová, I.; Mlček, J.; Snopek, L.; Mišurcová, L. Contribution of phenolic compounds, ascorbic acid and vitamin E to antioxidant activity of currant (Ribes L.) and gooseberry (Ribes uva-crispa L.) fruits. Food Chem. 2019, 284, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Zvezdanović, J. UHPLC–DAD–ESI–MS/MS characterization of St. John’s wort infusions from Serbia origin. Chem. Pap. 2021, 76, 1329–1347. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.M.; Zaman, S.; Juhara, F.; Akter, L.; Tareq, S.M.; Masum, E.H.; Bhattacharjee, R. Evaluation of antinociceptive, in vivo & in vitro anti-inflammatory activity of ethanolic extract of Curcuma zedoaria rhizome. BMC Complement. Med. Ther. 2014, 14, 346–358. [Google Scholar] [CrossRef]
- Tumbas Šaponjac, V.; Girones-Vilaplana, A.; Djilas, S.; Mena, P.; Ćetković, G.; Moreno, D.A.; Čanadanović Brunet, J.; Vulić, J.; Stajčić, S.; Krunić, M. Anthocyanin profiles and biological properties of caneberry (Rubus spp.) press residues. J. Sci. Food Agric. 2014, 94, 2393–2400. [Google Scholar] [CrossRef]
Samples | TPC (mg GAE/g DW) | TFC (mg QE/g DW) |
---|---|---|
Aqueous extract | 109.11 b ± 4.41 | 14.37 c ± 0.45 |
Acetone extract | 134.81 a ± 2.31 | 20.76 a ± 0.51 |
Ethanol extract | 129.20 a ± 4.72 | 18.78 b ± 0.44 |
Peak No. | tR, Min | UV/Vis Data from UHPLC-DAD Signal Absorb. Max., nm | Molecular Ion [M–H]−m/z | MS/MS Fragment Ions | Assignment (Reference) | Sample | ||
---|---|---|---|---|---|---|---|---|
Aq | Ac | Et | ||||||
1 | 0.79 | - | 191 | 173,127,111, 85 (100%) | quinic acid [21] | + | + | + |
2 | 0.92 | - | 191 | 173,111 (100%) | citric acid (standard) | + | + | + |
3 | 1.64 | - | 191 | 129,101 (100%) | (n.i.) | + | + | + |
4 | 1.80 | - | 191 | 129,101 (100%) | (n.i.) | + | + | + |
5 | 3.42 | 331 300 sh | 623 | 477/478 (100%), 461 | forsythoside A [22] | + | + | + |
6 | 5.30 | - | 535 | 489,327,309,179,163 (100%) | n.i. phenolic acid derivative | + | + | + |
7 | 5.50 | - | 325 | 265,163 (100%), 119 | p-coumaric acid hexoside [23] | + | + | + |
8 | 5.83 | - | 607 | 461 (100%), 315 | lipedoside A [22,24] | + | + | + |
9 | 6.10 | - | 299 | 153 (100%)/152,109 | n.i. protocatechuic acid-glycoside | + | + | + |
10 | 7.09 | 331 294 sh | 639 | 621 (100%), 529,459 | β-hydroxyverbascoside diastereoisomer [25] | + | + | + |
11 | 7.10 | 332 290 sh | 785 | 623 (100%), 477,461,315 | caerulescenoside [1] | + | + | + |
12 | 7.33 | 332 295 sh | 785 | 623 (100%), 477,461,315 | echinacoside [1] | + | + | + |
13 | 7.74 | 330 289 sh | 639 | 621 (100%), 529,459 | β-hydroxyverbascoside diastereoisomer [25] | + | + | + |
14 | 7.91 | 327 300 sh | 639 | 621 (100%), 529,459 | β-hydroxyverbascoside diastereoisomer [25] | + | + | + |
15 | 8.01 | 332 296 sh | 799 | 623 (100%), 605,477,305 | castanoside [1] | + | + | + |
16 | 8.51 | 332 292 sh | 623 | 461 (100%), 315 | verbascoside [22,25] | + | + | + |
17 | 8.68 | 266 357 | 593 | 447,285 (100%) | luteolin-rutinoside [22] | + | + | + |
18 | 8.70 | 262 354 | 477 | - | luteolin-7-O-glucoside (standard) | - | + | + |
19 | 8.96 | - | 463 | 300/301 (100%), 271,255,179,151 | isoquercitrin (quercetin-3-O-glucoside) (standard) | + | + | + |
20 | 8.98 | - | 609 | 591,463,343, 300/301 (100%), 271 | rutin (quercetin-3-O-rutinoside) (standard) | + | + | + |
21 | 9.03 | 257 351 | 593 | 447,327,285 (100%) | kaempferol-rutinoside [26] | + | + | + |
22 | 9.25 | 331 290 sh | 623 | 461 (100%), 315 | isoverbascoside [22,25] | + | + | + |
23 | 9.91 | 251 340 | 607 | 299 (100%), 284 | diosmin (* MB: FIO01056) | + | + | + |
24 | 11.46 | - | 285 | 267,243,217 (100%) | luteolin (standard) | - | + | + |
25 | 12.14 | 273 348 | 329 | 314 (100%)/315/313,299/300,285 | tricin (* MB: FIO00745) | + | + | + |
26 | 13.39 | - | 329 | 314,293,229 (100%), 211,171 | trihydroxy-octadecenoic acid [15] | - | + | + |
27 | 15.40 | - | 295 | 277 (100%), 195,183,171 | hydroxy-octadecadienoic acid [15] | - | + | + |
Antimicrobial Activity, mg/mL | Aqueous Extract | Ethanol Extract | Acetone Extract | |||
---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | |
Gram-positive bacteria | ||||||
Staphylococcus aureus ATCC 25923 | 1.25 | 10 | 5 | 20 | 5 | 20 |
Bacillus cereus ATCC 11778 | 5 | 20 | 2.5 | 20 | 2.5 | 20 |
Listeria monocytogenes ATCC 15313 | 1.25 | 5 | 2.5 | 20 | 1.25 | >20 |
Bacillus subtilis ATCC 6633 | 5 | >20 | 5 | 20 | 5 | 20 |
Gram-negative bacteria | ||||||
Escherichia coli ATCC 25922 | 5 | 20 | 5 | 10 | 5 | 20 |
Proteus vulgaris ATCC 8427 | 2.5 | 5 | 2.5 | 20 | 2.5 | >20 |
Pseudomonas aeruginosa ATCC 27853 | 2.5 | 20 | 2.5 | 5 | 2.5 | >20 |
Klebsiella pneumoniae ATCC 700603 | 1.25 | 20 | 1.25 | 10 | 1.25 | 20 |
Fungus | ||||||
Candida albicans ATCC 2091 | 5 | 10 | 5 | 20 | 5 | 20 |
Aspergillus niger | 2.5 | 20 | 2.5 | 20 | 2.5 | 20 |
Penicillium sp. | 1.25 | 20 | 2.5 | 20 | 2.5 | 20 |
Samples | DPPH (IC50 (µg/mL)) | AIA (%) | α-GIP (%) |
---|---|---|---|
Aqueous extract | 35.70 a ± 0.02 | 13.12 c ± 2.12 | 10.97 b ± 1.04 |
Acetone extract | 28.13 c ± 0.01 | 44.82 b ± 3.23 | 31.52 a ± 2.37 |
Ethanol extract | 28.22 b ± 0.05 | 58.01 a ± 3.66 | 32.54 a ± 2.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sailović, P.; Odžaković, B.; Bodroža, D.; Vulić, J.; Čanadanović-Brunet, J.; Zvezdanović, J.; Danilović, B. Polyphenolic Composition and Antimicrobial, Antioxidant, Anti-Inflammatory, and Antihyperglycemic Activity of Different Extracts of Teucrium montanum from Ozren Mountain. Antibiotics 2024, 13, 358. https://doi.org/10.3390/antibiotics13040358
Sailović P, Odžaković B, Bodroža D, Vulić J, Čanadanović-Brunet J, Zvezdanović J, Danilović B. Polyphenolic Composition and Antimicrobial, Antioxidant, Anti-Inflammatory, and Antihyperglycemic Activity of Different Extracts of Teucrium montanum from Ozren Mountain. Antibiotics. 2024; 13(4):358. https://doi.org/10.3390/antibiotics13040358
Chicago/Turabian StyleSailović, Pero, Božana Odžaković, Darko Bodroža, Jelena Vulić, Jasna Čanadanović-Brunet, Jelena Zvezdanović, and Bojana Danilović. 2024. "Polyphenolic Composition and Antimicrobial, Antioxidant, Anti-Inflammatory, and Antihyperglycemic Activity of Different Extracts of Teucrium montanum from Ozren Mountain" Antibiotics 13, no. 4: 358. https://doi.org/10.3390/antibiotics13040358
APA StyleSailović, P., Odžaković, B., Bodroža, D., Vulić, J., Čanadanović-Brunet, J., Zvezdanović, J., & Danilović, B. (2024). Polyphenolic Composition and Antimicrobial, Antioxidant, Anti-Inflammatory, and Antihyperglycemic Activity of Different Extracts of Teucrium montanum from Ozren Mountain. Antibiotics, 13(4), 358. https://doi.org/10.3390/antibiotics13040358