Harnessing Bacteriophages to Combat Antibiotic-Resistant Infections in Africa: A Comprehensive Review
Abstract
:1. Introduction
2. Results
2.1. Analysis of Primary Data
2.2. Current State of Bacteriophage Biocontrol of Bacteria in West Africa
2.3. Current State of Bacteriophage Biocontrol of Bacteria in the Rest of the African Continent
2.4. Challenges in Implementing Phage Therapy in Africa
2.4.1. Research and Training Challenges
2.4.2. Institutional and Socio-Economic Challenges
2.4.3. Socio-Cultural Challenges
- Regulatory hurdles: The lack of clear regulatory frameworks for phage therapy in many African countries poses a significant barrier. This makes it difficult to conduct clinical trials and obtain approval for phage-based treatments [45].
- Infrastructure limitations: Limited laboratory infrastructure and resources hinder the isolation, characterization, and production of bacteriophages. This challenge is particularly pronounced in resource-poor settings [36].
- Standardization issues: The high specificity and variability of bacteriophages require standardized protocols for their use in therapy. However, the lack of standardized research methodologies and quality control measures complicates the development and implementation of phage therapy [46].
- Public awareness and acceptance: There is a general lack of awareness and understanding of phage therapy among healthcare providers and the public. This can lead to resistance to adopting phage therapy as a viable treatment option [47].
- Funding constraints: Limited funding for research and development of phage therapy is a major obstacle. Most research initiatives are reliant on external funding, which can be inconsistent and insufficient [48].
2.5. Opportunities for Integrating Phage Therapy
3. Methods
3.1. Search Method and Selection Criteria
3.2. Inclusion Criteria
3.3. Exclusion Criteria
3.4. Screening and Selection of Studies
3.5. Data Extraction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tacconelli, E.; Sifakis, F.; Harbarth, S.; Schrijver, R.; Mourik, M.; van Voss, A.; Sharland, M.; Rajendran, N.B.; Rodríguez-Baño, J.; Bielicki, J.; et al. Surveillance for control of antimicrobial resistance. Lancet Infect. Dis. 2018, 18, e99–e106. [Google Scholar] [CrossRef]
- Zinai, B. Etude Épidémiologique de Bactéries Multi-Résistantes (BMR) cas des BLSE et SARM. Master’s Thesis, Université Oum El Bouaghi, Oum El Bouaghi, Algeria, 2021. [Google Scholar]
- Ouedraogo, A.S.; Jean Pierre, H.; Bañuls, A.L.; Ouédraogo, R.; Godreuil, S. Emergence and spread of antibiotic resistance in West Africa: Contributing factors and threat assessment. Med. Santé Trop. 2017, 27, 147–154. [Google Scholar] [CrossRef] [PubMed]
- WHO. Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 18 July 2024).
- O’Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations; Review on Antimicrobial Resistance; Wellcome Trust: London, UK, 2016. [Google Scholar]
- Salah, A.; El-Housseiny, G.; Elleboudy, N.; Yassien, M. Antimicrobial Stewardship Programs: A Review. Arch. Pharm. Sci. Ain Shams Univ. 2021, 5, 143–157. [Google Scholar] [CrossRef]
- Haines, M.E.K.; Hodges, F.E.; Nale, J.Y.; Mahony, J.; van Sinderen, D.; Kaczorowska, J.; Alrashid, B.; Akter, M.; Brown, N.; Sauvageau, D.; et al. Analysis of Selection Methods to Develop Novel Phage Therapy Cocktails against Antimicrobial Resistant Clinical Isolates of Bacteria. Front. Microbiol. 2021, 12, 613529. [Google Scholar] [CrossRef] [PubMed]
- Furfaro, L.L.; Payne, M.S.; Chang, B.J. Bacteriophage Therapy: Clinical Trials and Regulatory Hurdles. Front. Cell. Infect. Microbiol. 2018, 8, 376. [Google Scholar] [CrossRef] [PubMed]
- Jordan, B. Chroniques génomiques-Cent ans après, le retour de la phagothérapie? M/S. In Forum; EDP Sciences: Yulisi, France, 2019; Volume 35, pp. 806–809. [Google Scholar]
- Ravat, F.; Jault, P.; Gabard, J. Bactériophages et phagothérapie: Utilisation de virus naturels pour traiter les infections bactériennes. Ann. Burns Fire Disasters 2015, 28, 13–20. [Google Scholar] [PubMed]
- Sime-Ngando, T. Environmental bacteriophages: Viruses of microbes in aquatic ecosystems. Front. Microbiol. 2014, 5, 355. [Google Scholar] [CrossRef]
- Addablah, A.A.; Kakou-Ngazoa, S.; Akpa, E.E.; Adioumani, E.; Ndombi, F.M.; Aoussi, S.; Dosso, M. RAPD-based evaluation revealed genetically diverse populations of Pseudomonas aeruginosa and Staphylococcus aureus lytic bacteriophages isolated in urban sewage and Ebrie Lagoon, Cte dIvoire. Afr. J. Microbiol. Res. 2021, 15, 522–528. [Google Scholar]
- Akremi, I.; Merabishvili, M.; Jlidi, M.; Haj Brahim, A.; Ben Ali, M.K.A.; Lavigne, R.; Wagemans, J.; Pirnay, J.P.; Ben Ali, M. Isolation and Characterization of Lytic Pseudomonas aeruginosa Bacteriophages Isolated from Sewage Samples from Tunisia. Viruses 2022, 14, 2339. [Google Scholar] [CrossRef]
- Amankwah, S.; Adisu, M.; Gorems, K.; Abdella, K.; Kassa, T. Assessment of Phage-Mediated Inhibition and Removal of Multidrug-Resistant Pseudomonas aeruginosa Biofilm on Medical Implants. Infect. Drug Resist. 2022, 15, 2797–2811. [Google Scholar] [CrossRef]
- Dapuliga, C.; Okareh, O.T. Application of phage cocktail for control of shiga toxin-producing Escherichia coli in foods and food contact surfaces. Int. J. Infect. Dis. 2020, 101, 318. [Google Scholar] [CrossRef]
- Michodigni, N.F.; Nyachieo, A.; Akhwale, J.K.; Magoma, G.; Ouédraogo, A.-S.; Kimang’a, A.N. Formulation of phage cocktails and evaluation of their interaction with antibiotics in inhibiting carbapenemase-producing Klebsiella pneumoniae in vitro in Kenya. Afr. J. Lab. Med. 2022, 11, 1–8. [Google Scholar]
- Montso, P.K.; Mlambo, V.; Ateba, C.N. Efficacy of novel phages for control of multi-drug resistant Escherichia coli O177 on artificially contaminated beef and their potential to disrupt biofilm formation. Food Microbiol. 2021, 94, 103647. [Google Scholar] [CrossRef] [PubMed]
- Kolsi, A.; Haukka, K.; Dougnon, V.; Agbankpè, A.J.; Fabiyi, K.; Virta, M.; Skurnik, M.; Kantele, A.; Kiljunen, S. Isolation and characterization of three novel Acinetobacter baumannii phages from Beninese hospital wastewater. Arch. Virol. 2023, 168, 228. [Google Scholar] [CrossRef]
- Koko, A.S.; Ackermann, H.W.; Taiwo, M.A.; Omilabu, S.A. Nigerian phages: The first bacteriophages from Tropical Africa. Afr. J. Microbiol. Res. 2011, 5, 2207–2210. [Google Scholar]
- Ngene, A.C.; Aguiyi, J.C.; Uzal, U.; Egbere, J.O.; Onyimba, I.A.; Umera, A.E.; Nnadi, N.E. Bacteriophages as Bio-control agent against Food-Borne Pathogen E. coli O157: H7. IOSR JPBS 2020, 15, 23–36. [Google Scholar]
- Al-Mustapha, A.I.; Raufu, I.A.; Ogundijo, O.A.; Odetokun, I.A.; Tiwari, A.; Brouwer, M.S.M.; Adetunji, V.; Heikinheimo, A. Antibiotic resistance genes, mobile elements, virulence genes, and phages in cultivated ESBL-producing Escherichia coli of poultry origin in Kwara State, North Central Nigeria. Int. J. Food Microbiol. 2023, 389, 110086. [Google Scholar] [CrossRef]
- Emencheta, S.C.; Eze, C.C.; Attama, A.A.; Agbo, D.E.; Onuigbo, E.B. Isolation of Pseudomonas Aeruginosa phages from Residential Waste Waters. Health Sci. J. 2021, 15, 1–4. [Google Scholar]
- Emencheta, S.C.; Attama, A.A.; Ezeibe, E.N.; Agubata, A.A.; Onuigbo, E.B. Isolation of Escherichia coli phages from waste waters. Hosts Viruses 2022, 9, 12–18. [Google Scholar] [CrossRef]
- Kakou, S.N.; Addablah, A.A.; Koudou, A.; Mbomro, F.; Adioumani, E.; Aoussi, S.; Dosso, M. Multiple adaptations of bacteriophages in Lagoon Ebrie: Indicators of permanence microbiological pollution in the environment, Côte d’Ivoire, West Africa. Afr. J. Microbiol. Res. 2023, 17, 151–155. [Google Scholar]
- Koudou, A.A.; Kakou-Ngazoa, S.; Addablah, A.; Allali, K.B.; Aoussi, S.; Diallo, H.A.; Dosso, M. Biocontrôle de l’infection à Pseudomonas aeruginosa multi-résistant par les bactériophages en aquaculture en Côte d’Ivoire. J. Appl. Biosci. 2020, 154, 15940–15949. [Google Scholar] [CrossRef]
- Ngazoa-Kakou, S.; Shao, Y.; Rousseau, G.M.; Addablah, A.A.; Tremblay, D.M.; Hutinet, G.; Lemire, N.; Plante, P.-L.; Corbeil, J.; Koudou, A.; et al. Complete Genome Sequence of Escherichia coli Siphophage BRET. Microbiol. Resour. Announc. 2019, 8, e01644-18. [Google Scholar] [CrossRef]
- Ndiaye, I.; Debarbieux, L.; Diagne, M.M.; Sow, O.; Cissé, A.; Ba, B.S.; Fall, C.; Dieye, Y.; Dia, N.; Seck, A.; et al. Complete genome sequences of two Klebsiella pneumoniae phages from Dakar, Senegal. Microbiol. Resour. Announc. 2024, 13, e0004724. [Google Scholar] [CrossRef] [PubMed]
- Brovko, L.Y.; Anany, H.; Griffiths, M.W. Bacteriophages for detection and control of bacterial pathogens in food and food-processing environment. Adv. Food Nutr. Res. 2012, 67, 241–288. [Google Scholar] [PubMed]
- Hitchcock, N.M.; Devequi Gomes Nunes, D.; Shiach, J.; Valeria Saraiva Hodel, K.; Dantas Viana Barbosa, J.; Alencar Pereira Rodrigues, L.; Coler, B.S.; Botelho Pereira Soares, M.; Badaró, R. Current Clinical Landscape and Global Potential of Bacteriophage Therapy. Viruses 2023, 15, 1020. [Google Scholar] [CrossRef]
- Kassa, T. Bacteriophages Against Pathogenic Bacteria and Possibilities for Future Application in Africa. Infect. Drug Resist. 2021, 14, 17–31. [Google Scholar] [CrossRef]
- Strathdee, S.; Patterson, T. The Perfect Predator: A Scientist’s Race to Save Her Husband from a Deadly Superbug: A Memoir; Hachette Books: New York, NY, USA, 2019. [Google Scholar]
- Yang, Q.; Le, S.; Zhu, T.; Wu, N. Regulations of phage therapy across the world. Front. Microbiol. 2023, 14, 1250848. [Google Scholar] [CrossRef] [PubMed]
- Makumi, A.; Mhone, A.L.; Odaba, J.; Guantai, L.; Svitek, N. Phages for Africa: The Potential Benefit and Challenges of Phage Therapy for the Livestock Sector in Sub-Saharan Africa. Antibiotics 2021, 10, 1085. [Google Scholar] [CrossRef]
- Wenham, C.; Wouters, O.; Jones, C.; Juma, P.A.; Mijumbi-Deve, R.M.; Sobngwi-Tambekou, J.L.; Parkhurst, J. Measuring health science research and development in Africa: Mapping the available data. Health Res. Policy Syst. 2021, 19, 142. [Google Scholar] [CrossRef]
- Leptihn, S.; Loh, B. Complexity, Challenges and Costs of Implementing Phage Therapy. Future Microbiol. 2022, 17, 643–646. [Google Scholar] [CrossRef]
- Jones, J.D.; Trippett, C.; Suleman, M.; Clokie, M.R.J.; Clark, J.R. The Future of Clinical Phage Therapy in the United Kingdom. Viruses 2023, 15, 721. [Google Scholar] [CrossRef] [PubMed]
- Munro, P.G.; Schiffer, A. Ethnographies of electricity scarcity: Mobile phone charging spaces and the recrafting of energy poverty in Africa. Energy Build. 2019, 188, 175–183. [Google Scholar] [CrossRef]
- El Haddad, L.; Harb, C.P.; Gebara, M.A.; Stibich, M.A.; Chemaly, R.F. A systematic and critical review of bacteriophage therapy against multidrug-resistant ESKAPE organisms in humans. Clin. Infect. Dis. 2019, 69, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Hamer, D.H.; Herlihy, J.M.; Musokotwane, K.; Banda, B.; Mpamba, C.; Mwangelwa, B.; Pilingana, P.; Thea, D.M.; Simon, J.L.; Yeboah-Antwi, K. Engagement of the community, traditional leaders, and public health system in the design and implementation of a large community-based, cluster-randomized trial of umbilical cord care in Zambia. Am. J. Trop. Med. Hyg. 2015, 92, 666. [Google Scholar] [CrossRef]
- Pires, D.; Costa, A.; Pinto, G.; Meneses, L.; Azeredo, J. Current challenges and future opportunities of phage therapy. FEMS Microbiol. Rev. 2020, 44, 684–700. [Google Scholar] [CrossRef]
- Torres-Barceló, C. Phage Therapy Faces Evolutionary Challenges. Viruses 2018, 10, 323. [Google Scholar] [CrossRef]
- Hibstu, Z.; Belew, H.; Akelew, Y.; Mengist, H.M. Phage Therapy: A Different Approach to Fight Bacterial Infections. Biologics 2022, 6, 173–186. [Google Scholar] [CrossRef]
- Fernández, L.; Gutiérrez, D.; García, P.; Rodríguez, A. The Perfect Bacteriophage for Therapeutic Applications—A Quick Guide. Antibiotics 2019, 8, 126. [Google Scholar] [CrossRef]
- Sacher, J.C.; Zheng, J. Phage Therapy Collaboration and Compassionate Use. In Bacteriophages; Harper, D.R., Abedon, S.T., Burrowes, B.H., McConville, M.L., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Kingwell, K. Bacteriophage Therapies Re-Enter Clinical Trials. Nat. Rev. Drug Dis. 2021, 14, 515–516. [Google Scholar] [CrossRef]
- Caflisch, K.M.; Suh, G.A.; Patel, R. Biological challenges of phage therapy and proposed solutions: A literature review. Expert. Rev. Anti-Infect. Ther. 2019, 17, 1011–1041. [Google Scholar] [CrossRef]
- Jonathan, A. The Future of Phage: Ethical Challenges of Using Phage Therapy to Treat Bacterial Infections. Public Health Ethics 2020, 13, 82–88. [Google Scholar] [CrossRef]
- Brives, C.; Pourraz, J. Phage therapy as a potential solution in the fight against AMR: Obstacles and possible futures. Palgrave Commun. 2020, 6, 100. [Google Scholar] [CrossRef]
- Willy, C.; Bugert, J.J.; Classen, A.Y.; Deng, L.; Düchting, A.; Gross, J.; Hammerl, J.A.; Korf, I.H.E.; Kühn, C.; Lieberknecht-Jouy, S.; et al. Phage Therapy in Germany—Update 2023. Viruses 2023, 15, 588. [Google Scholar] [CrossRef] [PubMed]
- Abedon, S.T. Phage-Antibiotic Combination Treatments: Antagonistic Impacts of Antibiotics on the Pharmacodynamics of Phage Therapy? Antibiotics 2019, 8, 182. [Google Scholar] [CrossRef] [PubMed]
N° | Countries | Years | Samples | Bacteria Host for Phage | Title of the study | Phage Family | Authors |
---|---|---|---|---|---|---|---|
1. | Benin | 2023 | Hospital wastewater | Acinetobacter baumannii | Isolation and characterization of three novel Acinetobacter baumannii phages from Beninese hospital wastewater | Autographiviridae | [18] |
2. | 2022 | Sewage and surface water | Bacillus spp., Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Xanthomonas sp. | Nigerian phages: The first bacteriophages from Tropical Africa | Myoviridae, Siphoviridae or Podoviridae | [19] | |
3. | Effluent water | Escherichia coli O157:H7 | Identification of Escherichia coli O157:H7, Characterization, and Host Range Analysis of Bacteriophages Infecting Some Selected Pathogenic Bacteria from Jos, Nigeria | - | [20] | ||
4. | 2023 | Poultry | ESBL-E. coli | Antibiotic resistance genes, mobile elements, virulence genes, and phages in cultivated ESBL-producing Escherichia coli of poultry origin in Kwara State, North Central Nigeria | Myoviridae Siphoviridae Inoviridae and Podoviridae | [21] | |
5. | 2022 | Wastewater | Pseudomonas aeruginosa | Isolation of Pseudomonas aeruginosa Phages from Wastewaters | - | [22] | |
6. | 2022 | Wastewater | Shiga toxin-producing E. coli O157:H7 | Isolation of Escherichia coli phages from wastewater | - | [23] | |
7. | Ivory Coast | 2021 | Wastewater | E. coli, Enterobacter cloacae | Investigation of phages infecting E. coli and Enterobacter cloacae in sewage | - | [12] |
8. | 2017 | Water and fishes | P. aeruginosa, Enterobacter aerogenes, K. pneumoniae, and E. coli | New identification of phages and their application for multidrug strains in Abidjan | - | [24] | |
9. | 2020 | Water | P. aeruginosa | Biocontrol of multidrug-resistant P. aeruginosa infection by phages in aquaculture | - | [25] | |
10. | 2020 | Rodent intestines | E. coli | First novel phages from rodents with lytic activity on clinical Enterobacterales strains | Myoviridae | [26] | |
11. | 2023 | Lake water | E. coli, P. aeruginosa, and E. cloacae | Multiple adaptations of bacteriophages in Lagoon Ebrie: Indicators of permanence microbiological pollution in the environment, Ivory Coast, West Africa | - | [24] | |
12. | Ghana | 2020 | Irrigation ponds and streams | Shiga toxin-producing E. coli | Application of phage cocktail for control of shiga toxin-producing E. coli in foods and food contact surfaces | - | [15] |
13. | Senegal | 2024 | Sewage water | Klebsiella pneumoniae | Complete genome sequences of two Klebsiella pneumoniae phages from Dakar | - | [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabiyi, K.; Sintondji, K.; Agbankpe, J.; Assogba, P.; Koudokpon, H.; Lègba, B.; Gbotche, E.; Baba-Moussa, L.; Dougnon, V. Harnessing Bacteriophages to Combat Antibiotic-Resistant Infections in Africa: A Comprehensive Review. Antibiotics 2024, 13, 795. https://doi.org/10.3390/antibiotics13090795
Fabiyi K, Sintondji K, Agbankpe J, Assogba P, Koudokpon H, Lègba B, Gbotche E, Baba-Moussa L, Dougnon V. Harnessing Bacteriophages to Combat Antibiotic-Resistant Infections in Africa: A Comprehensive Review. Antibiotics. 2024; 13(9):795. https://doi.org/10.3390/antibiotics13090795
Chicago/Turabian StyleFabiyi, Kafayath, Kevin Sintondji, Jerrold Agbankpe, Phenix Assogba, Hornel Koudokpon, Boris Lègba, Elodie Gbotche, Lamine Baba-Moussa, and Victorien Dougnon. 2024. "Harnessing Bacteriophages to Combat Antibiotic-Resistant Infections in Africa: A Comprehensive Review" Antibiotics 13, no. 9: 795. https://doi.org/10.3390/antibiotics13090795
APA StyleFabiyi, K., Sintondji, K., Agbankpe, J., Assogba, P., Koudokpon, H., Lègba, B., Gbotche, E., Baba-Moussa, L., & Dougnon, V. (2024). Harnessing Bacteriophages to Combat Antibiotic-Resistant Infections in Africa: A Comprehensive Review. Antibiotics, 13(9), 795. https://doi.org/10.3390/antibiotics13090795