Bioactive Compounds as Alternative Approaches for Preventing Urinary Tract Infections in the Era of Antibiotic Resistance
Abstract
:1. Urinary Tract Infections and Antibiotic Resistance
2. Supplementations Cited in the European Association of Urology Guidelines for Urinary Tract Infections Management
3. Promising Roles of Medical Plants and Vitamins in Urinary Tract Infection Management
3.1. Medicinal Plants
3.2. Vitamins
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Available online: https://uroweb.org/guidelines/urological-infections (accessed on 27 September 2024).
- Bonkat, G.; Cai, T.; Galeone, C.; Koves, B.; Bruyere, F. Adherence to European Association of Urology Guidelines and State of the Art of Glycosaminoglycan Therapy for the Management of Urinary Tract Infections: A Narrative Review and Expert Meeting Report. Eur. Urol. Open Sci. 2022, 44, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary Tract Infections: Epidemiology, Mechanisms of Infection and Treatment Options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Gambrill, B.; Pertusati, F.; Hughes, S.F.; Shergill, I.; Prokopovich, P. Materials-Based Incidence of Urinary Catheter Associated Urinary Tract Infections and the Causative Micro-Organisms: Systematic Review and Meta-Analysis. BMC Urol. 2024, 24, 186. [Google Scholar] [CrossRef] [PubMed]
- Timm, M.R.; Russell, S.K.; Hultgren, S.J. Urinary Tract Infections: Pathogenesis, Host Susceptibility and Emerging Therapeutics. Nat. Rev. Microbiol. 2024, 23, 72–86. [Google Scholar] [CrossRef]
- Thänert, R.; Reske, K.A.; Hink, T.; Wallace, M.A.; Wang, B.; Schwartz, D.J.; Seiler, S.; Cass, C.; Burnham, C.-A.D.; Dubberke, E.R.; et al. Comparative Genomics of Antibiotic-Resistant Uropathogens Implicates Three Routes for Recurrence of Urinary Tract Infections. mBio 2019, 10, 10–1128. [Google Scholar] [CrossRef]
- Demir, M.; Kazanasmaz, H. Uropathogens and Antibiotic Resistance in the Community and Hospital-Induced Urinary Tract Infected Children. J. Glob. Antimicrob. Resist. 2020, 20, 68–73. [Google Scholar] [CrossRef]
- Tandogdu, Z.; Wagenlehner, F.M.E. Global Epidemiology of Urinary Tract Infections. Curr. Opin. Infect. Dis. 2016, 29, 73–79. [Google Scholar] [CrossRef]
- Yang, X.; Chen, H.; Zheng, Y.; Qu, S.; Wang, H.; Yi, F. Disease Burden and Long-Term Trends of Urinary Tract Infections: A Worldwide Report. Front. Public Health 2022, 10, 888205. [Google Scholar] [CrossRef]
- Salari, N.; Khoshbakht, Y.; Hemmati, M.; Khodayari, Y.; Khaleghi, A.A.; Jafari, F.; Shohaimi, S.; Mohammadi, M. Global Prevalence of Urinary Tract Infection in Pregnant Mothers: A Systematic Review and Meta-Analysis. Public Health 2023, 224, 58–65. [Google Scholar] [CrossRef]
- Kalhori, R.P.; Faraji, A.; Yari, M.; Ganjabi, M.; Kazeminia, M. Global Prevalence of Urinary Tract Infections in the Older Persons: A Systematic Review and Meta-Analysis. Ageing Int. 2024, 49, 813–835. [Google Scholar] [CrossRef]
- Mancuso, G.; Midiri, A.; Gerace, E.; Marra, M.; Zummo, S.; Biondo, C. Urinary Tract Infections: The Current Scenario and Future Prospects. Pathogens 2023, 12, 263. [Google Scholar] [CrossRef] [PubMed]
- Firoozeh, F.; Saffari, M.; Neamati, F.; Zibaei, M. Detection of Virulence Genes in Escherichia Coli Isolated from Patients with Cystitis and Pyelonephritis. Int. J. Infect. Dis. 2014, 29, 219–222. [Google Scholar] [CrossRef] [PubMed]
- Berry, R.E.; Klumpp, D.J.; Schaeffer, A.J. Urothelial Cultures Support Intracellular Bacterial Community Formation by Uropathogenic Escherichia Coli. Infect. Immun. 2009, 77, 2762–2772. [Google Scholar] [CrossRef]
- Behzadi, P.; Urbán, E.; Gajdács, M. Association between Biofilm-Production and Antibiotic Resistance in Uropathogenic Escherichia Coli (UPEC): An in Vitro Study. Diseases 2020, 8, 17. [Google Scholar] [CrossRef]
- Sarshar, M.; Behzadi, P.; Ambrosi, C.; Zagaglia, C.; Palamara, A.T.; Scribano, D. FimH and Anti-Adhesive Therapeutics: A Disarming Strategy against Uropathogens. Antibiotics 2020, 9, 397. [Google Scholar] [CrossRef]
- Baym, M.; Stone, L.K.; Kishony, R. Multidrug Evolutionary Strategies to Reverse Antibiotic Resistance. Science 2016, 351, aad3292. [Google Scholar] [CrossRef]
- Nasrollahian, S.; Graham, J.P.; Halaji, M. A Review of the Mechanisms That Confer Antibiotic Resistance in Pathotypes of E. coli. Front. Cell. Infect. Microbiol. 2024, 14, 1387497. [Google Scholar] [CrossRef]
- Mareș, C.; Petca, R.-C.; Popescu, R.-I.; Petca, A.; Mulțescu, R.; Bulai, C.A.; Ene, C.V.; Geavlete, P.A.; Geavlete, B.F.; Jinga, V. Update on Urinary Tract Infection Antibiotic Resistance—A Retrospective Study in Females in Conjunction with Clinical Data. Life 2024, 14, 106. [Google Scholar] [CrossRef]
- Terlizzi, M.E.; Gribaudo, G.; Maffei, M.E. UroPathogenic Escherichia Coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-Antibiotic Antimicrobial Strategies. Front. Microbiol. 2017, 8, 1566. [Google Scholar] [CrossRef]
- Behzadi, P.; Urbán, E.; Matuz, M.; Benkő, R.; Gajdács, M. The Role of Gram-Negative Bacteria in Urinary Tract Infections: Current Concepts and Therapeutic Options. Adv. Exp. Med. Biol. 2021, 1323, 35–69. [Google Scholar]
- Available online: https://www.who.int/health-topics/one-health#tab=tab_1 (accessed on 30 September 2024).
- Öztürk, R.; Murt, A. Epidemiology of urological infections: A global burden. World J. Urol. 2020, 38, 2669–2679. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Yi, X.; Li, J.; Liao, D.; Ai, J. Nonantibiotic Prophylaxis for Urinary Tract Infections: A Network Meta-Analysis of Randomized Controlled Trials. Infection 2024. [Google Scholar] [CrossRef] [PubMed]
- Scaglione, F.; Musazzi, U.M.; Minghetti, P. Considerations on D-Mannose Mechanism of Action and Consequent Classification of Marketed Healthcare Products. Front. Pharmacol. 2021, 12, 636377. [Google Scholar] [CrossRef] [PubMed]
- De Nunzio, C.; Bartoletti, R.; Tubaro, A.; Simonato, A.; Ficarra, V. Role of D-Mannose in the Prevention of Recurrent Uncomplicated Cystitis: State of the Art and Future Perspectives. Antibiotics 2021, 10, 373. [Google Scholar] [CrossRef]
- Kyriakides, R.; Jones, P.; Somani, B.K. Role of D-Mannose in the Prevention of Recurrent Urinary Tract Infections: Evidence from a Systematic Review of the Literature. Eur. Urol. Focus 2021, 7, 1166–1169. [Google Scholar] [CrossRef]
- Ala-Jaakkola, R.; Laitila, A.; Ouwehand, A.C.; Lehtoranta, L. Role of D-Mannose in Urinary Tract Infections—A Narrative Review. Nutr. J. 2022, 21, 18. [Google Scholar] [CrossRef]
- Cooper, T.E.; Teng, C.; Howell, M.; Teixeira-Pinto, A.; Jaure, A.; Wong, G. D-Mannose for Preventing and Treating Urinary Tract Infections. Cochrane Database Syst. Rev. 2022, 8, CD013608. [Google Scholar]
- Guay, D.R.P. Cranberry and Urinary Tract Infections. Drugs 2009, 69, 775–807. [Google Scholar] [CrossRef]
- Howell, A.B.; Reed, J.D.; Krueger, C.G.; Winterbottom, R.; Cunningham, D.G.; Leahy, M. A-Type Cranberry Proanthocyanidins and Uropathogenic Bacterial Anti-Adhesion Activity. Phytochemistry 2005, 66, 2281–2291. [Google Scholar] [CrossRef]
- Howell, A.B.; Botto, H.; Combescure, C.; Blanc-Potard, A.-B.; Gausa, L.; Matsumoto, T.; Tenke, P.; Sotto, A.; Lavigne, J.-P. Dosage Effect on Uropathogenic Escherichia Coli Anti-Adhesion Activity in Urine Following Consumption of Cranberry Powder Standardized for Proanthocyanidin Content: A Multicentric Randomized Double Blind Study. BMC Infect. Dis. 2010, 10, 94. [Google Scholar] [CrossRef]
- Babar, A.; Moore, L.; Leblanc, V.; Dudonné, S.; Desjardins, Y.; Lemieux, S.; Bochard, V.; Guyonnet, D.; Dodin, S. High Dose versus Low Dose Standardized Cranberry Proanthocyanidin Extract for the Prevention of Recurrent Urinary Tract Infection in Healthy Women: A Double-Blind Randomized Controlled Trial. BMC Urol. 2021, 21, 44. [Google Scholar] [CrossRef] [PubMed]
- Jepson, R.G.; Williams, G.; Craig, J.C. Cranberries for Preventing Urinary Tract Infections. Cochrane Database Syst. Rev. 2012, 10, CD001321. [Google Scholar] [CrossRef] [PubMed]
- Liska, D.J.; Kern, H.J.; Maki, K.C. Cranberries and Urinary Tract Infections: How Can the Same Evidence Lead to Conflicting Advice? Adv. Nutr. 2016, 7, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Luís, Â.; Domingues, F.; Pereira, L. Can Cranberries Contribute to Reduce the Incidence of Urinary Tract Infections? A Systematic Review with Meta-Analysis and Trial Sequential Analysis of Clinical Trials. J. Urol. 2017, 198, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Guarner, F.; Sanders, M.E.; Szajewska, H.; Cohen, H.; Eliakim, R.; Herrera-deGuise, C.; Karakan, T.; Merenstein, D.; Piscoya, A.; Ramakrishna, B.; et al. World Gastroenterology Organisation Global Guidelines: Probiotics and Prebiotics. J. Clin. Gastroenterol. 2024, 58, 533–553. [Google Scholar] [CrossRef]
- Magistro, G.; Stief, C.G. The Urinary Tract Microbiome: The Answer to All Our Open Questions? Eur. Urol. Focus 2019, 5, 36–38. [Google Scholar] [CrossRef]
- Vagios, S.; Hesham, H.; Mitchell, C. Understanding the Potential of Lactobacilli in Recurrent UTI Prevention. Microb. Pathog. 2020, 148, 104544. [Google Scholar] [CrossRef]
- Fouts, D.E.; Pieper, R.; Szpakowski, S.; Pohl, H.; Knoblach, S.; Suh, M.-J.; Huang, S.-T.; Ljungberg, I.; Sprague, B.M.; Lucas, S.K.; et al. Integrated Next-Generation Sequencing of 16S rDNA and Metaproteomics Differentiate the Healthy Urine Microbiome from Asymptomatic Bacteriuria in Neuropathic Bladder Associated with Spinal Cord Injury. J. Transl. Med. 2012, 10, 174. [Google Scholar] [CrossRef]
- Sihra, N.; Goodman, A.; Zakri, R.; Sahai, A.; Malde, S. Nonantibiotic Prevention and Management of Recurrent Urinary Tract Infection. Nat. Rev. Urol. 2018, 15, 750–776. [Google Scholar] [CrossRef]
- Kenneally, C.; Murphy, C.P.; Sleator, R.D.; Culligan, E.P. The Urinary Microbiome and Biological Therapeutics: Novel Therapies for Urinary Tract Infections. Microbiol. Res. 2022, 259, 127010. [Google Scholar] [CrossRef]
- Stapleton, A.E.; Au-Yeung, M.; Hooton, T.M.; Fredricks, D.N.; Roberts, P.L.; Czaja, C.A.; Yarova-Yarovaya, Y.; Fiedler, T.; Cox, M.; Stamm, W.E. Randomized, Placebo-Controlled Phase 2 Trial of a Lactobacillus Crispatus Probiotic given Intravaginally for Prevention of Recurrent Urinary Tract Infection. Clin. Infect. Dis. 2011, 52, 1212–1217. [Google Scholar] [CrossRef] [PubMed]
- Beerepoot, M.A.; ter Riet, G.; Nys, S.; van der Wal, W.M.; de Borgie, C.A.; de Reijke, T.M.; Prins, J.M.; Koeijers, J.; Verbon, A.; Stobberingh, E.; et al. Lactobacilli vs. antibiotics to prevent urinary tract infections: A randomized, double-blind, noninferiority trial in postmenopausal women. Arch. Intern. Med. 2012, 172, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Osset, J.; Bartolomé, R.M.; García, E.; Andreu, A. Assessment of the capacity of Lactobacillus to inhibit the growth of uro-pathogens and block their adhesion to vaginal epithelial cells. J. Infect. Dis. 2001, 183, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Aroutcheva, A.; Gariti, D.; Simon, M.; Shott, S.; Faro, J.; Simoes, J.A.; Gurguis, A.; Faro, S. Defense factors of vaginal lactobacil-li. Am. J. Obstet. Gynecol. 2001, 185, 375–379. [Google Scholar] [CrossRef]
- Reid, G.; Charbonneau, D.; Erb, J.; Kochanowski, B.; Beuerman, D.; Poehner, R.; Bruce, A.W. Oral use of Lactobacillus rhamnosus GR-1 and L. fermentum RC-14 significantly alters vaginal flora: Randomized, placebo-controlled trial in 64 healthy women. FEMS Immunol. Med. Microbiol. 2003, 35, 131–134. [Google Scholar] [CrossRef]
- Schwenger, E.M.; Tejani, A.M.; Loewen, P.S. Probiotics for Preventing Urinary Tract Infections in Adults and Children. Cochrane Database Syst. Rev. 2015, 2015, CD008772. [Google Scholar] [CrossRef]
- Parsons, C.L.; Boychuk, D.; Jones, S.; Hurst, R.; Callahan, H. Bladder Surface Glycosaminoglycans: An Epithelial Permeability Barrier. J. Urol. 1990, 143, 139–142. [Google Scholar] [CrossRef]
- Parsons, C.L.; Pollen, J.J.; Anwar, H.; Stauffer, C.; Schmidt, J.D. Antibacterial Activity of Bladder Surface Mucin Duplicated in the Rabbit Bladder by Exogenous Glycosaminoglycan (Sodium Pentosanpolysulfate). Infect. Immun. 1980, 27, 876–881. [Google Scholar] [CrossRef]
- Cicione, A.; Cantiello, F.; Ucciero, G.; Salonia, A.; Madeo, I.; Bava, I.; Aliberti, A.; Damiano, R. Restoring the Glycosaminoglycans Layer in Recurrent Cystitis: Experimental and Clinical Foundations: GAG and UTI, from Lab to Clinic. Int. J. Urol. 2014, 21, 763–768. [Google Scholar] [CrossRef]
- Kwok, M.; McGeorge, S.; Mayer-Coverdale, J.; Graves, B.; Paterson, D.L.; Harris, P.N.A.; Esler, R.; Dowling, C.; Britton, S.; Roberts, M.J. Guideline of Guidelines: Management of Recurrent Urinary Tract Infections in Women. BJU Int. 2022, 130 (Suppl. S3), 11–22. [Google Scholar] [CrossRef]
- Goddard, J.C.; Janssen, D.A.W. Intravesical Hyaluronic Acid and Chondroitin Sulfate for Recurrent Urinary Tract Infections: Systematic Review and Meta-Analysis. Int. Urogynecol. J. 2018, 29, 933–942. [Google Scholar] [CrossRef] [PubMed]
- Schiavi, M.C.; Porpora, M.G.; Vena, F.; Prata, G.; Sciuga, V.; D’Oria, O.; Di Tucci, C.; Savone, D.; Aleksa, N.; Giannini, A.; et al. Orally Administered Combination of Hyaluronic Acid, Chondroitin Sulfate, Curcumin, and Quercetin in the Prevention of Postcoital Recurrent Urinary Tract Infections: Analysis of 98 Women in Reproductive Age after 6 Months of Treatment. Female Pelvic. Med. Reconstr. Surg. 2019, 25, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Boeri, L.; De Lorenzis, E.; Lucignani, G.; Turetti, M.; Silvani, C.; Zanetti, S.P.; Longo, F.; Albo, G.; Salonia, A.; Montanari, E. Oral preparation of hyaluronic acid, chondroitin sulfate, N-acetylglucosamine, and vitamin C improves sexual and urinary symptoms in participants with recurrent urinary tract infections: A randomized crossover trial. J. Sex. Med. 2024, 21, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Neely, W.B. Action of Formaldehyde on Microorganisms. Iii. Bactericidal Action of Sublethal Concentrations of Formaldehyde on Aerobacter Aerogenes: Bactericidal Action of Sublethal Concentrations of Formaldehyde on Aerobacter Aerogenes. J. Bacteriol. 1963, 86, 445–448. [Google Scholar] [CrossRef]
- Peck, J.; Shepherd, J.P. Recurrent Urinary Tract Infections: Diagnosis, Treatment, and Prevention. Obstet. Gynecol. Clin. N. Am. 2021, 48, 501–513. [Google Scholar] [CrossRef]
- Lee, B.S.B.; Bhuta, T.; Simpson, J.M.; Craig, J.C. Methenamine Hippurate for Preventing Urinary Tract Infections. Cochrane Database Syst. Rev. 2012, 10, CD003265. [Google Scholar] [CrossRef]
- Harding, C.; Mossop, H.; Homer, T.; Chadwick, T.; King, W.; Carnell, S.; Lecouturier, J.; Abouhajar, A.; Vale, L.; Watson, G.; et al. Alternative to Prophylactic Antibiotics for the Treatment of Recurrent Urinary Tract Infections in Women: Multicentre, Open Label, Randomised, Non-Inferiority Trial. BMJ 2022, 376, e068229. [Google Scholar] [CrossRef]
- Van Pham, T.; Kreis, B.; Corradin-Betz, S.; Bauer, J.; Mauël, J. Metabolic and Functional Stimulation of Lymphocytes and Macrophages by an Escherichia Coli Extract (OM-89): In Vitro Studies. J. Biol. Response Mod. 1990, 9, 231–240. [Google Scholar]
- Ha, U.-S.; Cho, Y.-H. Immunostimulation with Escherichia Coli Extract: Prevention of Recurrent Urinary Tract Infections. Int. J. Antimicrob. Agents 2008, 31 (Suppl. S1), 63–67. [Google Scholar] [CrossRef]
- Aziminia, N.; Hadjipavlou, M.; Philippou, Y.; Pandian, S.S.; Malde, S.; Hammadeh, M.Y. Vaccines for the Prevention of Recurrent Urinary Tract Infections: A Systematic Review. BJU Int. 2019, 123, 753–768. [Google Scholar] [CrossRef]
- Prattley, S.; Geraghty, R.; Moore, M.; Somani, B.K. Role of Vaccines for Recurrent Urinary Tract Infections: A Systematic Review. Eur. Urol. Focus 2020, 6, 593–604. [Google Scholar] [CrossRef] [PubMed]
- Wagenlehner, F.M.E.; Ballarini, S.; Pilatz, A.; Weidner, W.; Lehr, L.; Naber, K.G. A Randomized, Double-Blind, Parallel-Group, Multicenter Clinical Study of Escherichia Coli-Lyophilized Lysate for the Prophylaxis of Recurrent Uncomplicated Urinary Tract Infections. Urol. Int. 2015, 95, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Gómez, M.-F.; Foley, S.; Nickel, J.C.; García-Cenador, M.-B.; Padilla-Fernández, B.-Y.; González-Casado, I.; Martínez-Huélamo, M.; Yang, B.; Blick, C.; Ferreira, F.; et al. Sublingual MV140 for Prevention of Recurrent Urinary Tract Infections. NEJM Evid. 2022, 1, EVIDoa2100018. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Barbalho, S.M.; Farinazzi -Machado, F.M. Psidium guajava (Guava): A Plant of Multipurpose Medicinal Applications. Med. Aromat. Plants 2012, 1, 1000104. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant Products as Antimicrobial Agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef]
- Khameneh, B.; Iranshahy, M.; Soheili, V.; Fazly Bazzaz, B.S. Review on Plant Antimicrobials: A Mechanistic Viewpoint. Antimicrob. Resist. Infect. Control 2019, 8, 118. [Google Scholar] [CrossRef]
- Gyawali, R.; Ibrahim, S.A. Natural Products as Antimicrobial Agents. Food Control 2014, 46, 412–429. [Google Scholar] [CrossRef]
- Moloney, M.G. Natural Products as a Source for Novel Antibiotics. Trends Pharmacol. Sci. 2016, 37, 689–701. [Google Scholar] [CrossRef]
- Rossiter, S.E.; Fletcher, M.H.; Wuest, W.M. Natural Products as Platforms to Overcome Antibiotic Resistance. Chem. Rev. 2017, 117, 12415–12474. [Google Scholar] [CrossRef]
- Ferdosh, S. Ethnobotanical Review of Selected Medicinal Plants in Guam for the Treatment of Urinary Tract Ailments and Their Pharmacological Properties. Sci. Pharm. 2023, 91, 43. [Google Scholar] [CrossRef]
- Workman, A.P.; Ortiz, L.C.; Quinata, D.K. The Use of traditional medicine & healers on Guam: Suruhånas, Suruhånos yan i Che’cho niha. In Science of Pacific Island Peoples: Fuana, Flora, Food and Medicine; Morrison, J., Geraghty, P., Crowl, L., Eds.; Institute of Pacific Studies, University of the South Pacific: Suva, Fiji, 1994; Volume 3. [Google Scholar]
- Tache, A.M.; Dinu, L.D.; Vamanu, E. Novel Insights on Plant Extracts to Prevent and Treat Recurrent Urinary Tract Infections. Appl. Sci. 2022, 12, 2635. [Google Scholar] [CrossRef]
- Bazzaz, B.S.F.; Fork, S.D.; Ahmadi, R.; Khameneh, B. Deep insights into urinary tract infections and effective natural remedies. Afr. J. Urol. 2021, 27, 6. [Google Scholar] [CrossRef]
- Poulios, E.; Vasios, G.K.; Psara, E.; Giaginis, C. Medicinal Plants Consumption against Urinary Tract Infections: A Narrative Review of the Current Evidence. Expert Rev. Anti. Infect. Ther. 2021, 19, 519–528. [Google Scholar] [CrossRef]
- Yarnell, E. Botanical Medicines for the Urinary Tract. World J. Urol. 2002, 20, 285–293. [Google Scholar] [CrossRef]
- Bag, A.; Bhattacharyya, S.K.; Chattopadhyay, R. Medicinal Plants and Urinary Tract Infections: An Update. Pharmacogn. Rev. 2008, 2, 277. [Google Scholar]
- European Medicines Agency (EMA). Assessment Report on Arctostaphylos Uva-ursi (L.) Spreng., Folium; EMA/HMPC/573462/2009 Rev. 1 Committee on Herbal Medicinal Products (HMPC); EMA: London, UK, 2012.
- Schindler, G.; Patzak, U.; Brinkhaus, B.; von Niecieck, A.; Wittig, J.; Krähmer, N.; Glöckl, I.; Veit, M. Urinary Excretion and Metabolism of Arbutin after Oral Administration of Arctostaphylos Uvae Ursi Extract as Film-Coated Tablets and Aqueous Solution in Healthy Humans. J. Clin. Pharmacol. 2002, 42, 920–927. [Google Scholar] [CrossRef]
- Quintus, J.; Kovar, K.-A.; Link, P.; Hamacher, H. Urinary Excretion of Arbutin Metabolites after Oral Administration of Bearberry Leaf Extracts. Planta Med. 2005, 71, 147–152. [Google Scholar] [CrossRef]
- McGregor, D. Hydroquinone: An Evaluation of the Human Risks from Its Carcinogenic and Mutagenic Properties. Crit. Rev. Toxicol. 2007, 37, 887–914. [Google Scholar] [CrossRef]
- de Arriba, S.G.; Naser, B.; Nolte, K.-U. Risk Assessment of Free Hydroquinone Derived from Arctostaphylos uva-ursi Folium Herbal Preparations. Int. J. Toxicol. 2013, 32, 442–453. [Google Scholar] [CrossRef]
- Beaux, D.; Fleurentin, J.; Mortier, F. Effect of Extracts of Orthosiphon Stamineus Benth, Hieracium pilosella L., Sambucus nigra L. and Arctostaphylos uva-ursi (L.) Spreng. in Rats. Phytother. Res. 1999, 13, 222–225. [Google Scholar] [CrossRef]
- Chauhan, B.; Yu, C.; Krantis, A.; Scott, I.; Arnason, J.T.; Marles, R.J.; Foster, B.C. In Vitro Activity of Uva-Ursi against Cytochrome P450 Isoenzymes and P-Glycoprotein. Can. J. Physiol. Pharmacol. 2007, 85, 1099–1107. [Google Scholar] [CrossRef] [PubMed]
- Larsson, B.; Jonasson, A.; Fianu, S. Prophylactic Effect of UVA-E in Women with Recurrent Cystitis: A Preliminary Report. Curr. Ther. Res. Clin. Exp. 1993, 53, 441–443. [Google Scholar] [CrossRef]
- Moore, M.; Trill, J.; Simpson, C.; Webley, F.; Radford, M.; Stanton, L.; Maishman, T.; Galanopoulou, A.; Flower, A.; Eyles, C.; et al. Uva-Ursi Extract and Ibuprofen as Alternative Treatments for Uncomplicated Urinary Tract Infection in Women (ATAFUTI): A Factorial Randomized Trial. Clin. Microbiol. Infect. 2019, 25, 973–980. [Google Scholar] [CrossRef]
- Gágyor, I.; Hummers, E.; Schmiemann, G.; Friede, T.; Pfeiffer, S.; Afshar, K.; Bleidorn, J. Herbal treatment with uva ursi extract versus fosfomycin in women with uncomplicated urinary tract infection in primary care: A randomized controlled trial. Clin. Microbiol. Infect. 2021, 27, 1441–1447. [Google Scholar] [CrossRef]
- Villanueva, X.; Zhen, L.; Ares, J.N.; Vackier, T.; Lange, H.; Crestini, C.; Steenackers, H.P. Effect of Chemical Modifications of Tannins on Their Antimicrobial and Antibiofilm Effect against Gram-Negative and Gram-Positive Bacteria. Front. Microbiol. 2022, 13, 987164. [Google Scholar] [CrossRef]
- Taguri, T.; Tanaka, T.; Kouno, I. Antimicrobial Activity of 10 Different Plant Polyphenols against Bacteria Causing Food-Borne Disease. Biol. Pharm. Bull. 2004, 27, 1965–1969. [Google Scholar] [CrossRef]
- Ekambaram, S.P.; Perumal, S.S.; Balakrishnan, A. Scope of Hydrolysable Tannins as Possible Antimicrobial Agent: Scope of Hydrolysable Tannins as Antimicrobial Agents. Phytother. Res. 2016, 30, 1035–1045. [Google Scholar] [CrossRef]
- Slobodníková, L.; Fialová, S.; Rendeková, K.; Kováč, J.; Mučaji, P. Antibiofilm Activity of Plant Polyphenols. Molecules 2016, 21, 1717. [Google Scholar] [CrossRef]
- Akiyama, H.; Fujii, K.; Yamasaki, O.; Oono, T.; Iwatsuki, K. Antibacterial Action of Several Tannins against Staphylococcus Aureus. J. Antimicrob. Chemother. 2001, 48, 487–491. [Google Scholar] [CrossRef]
- Trentin, D.S.; Silva, D.B.; Amaral, M.W.; Zimmer, K.R.; Silva, M.V.; Lopes, N.P.; Giordani, R.B.; Macedo, A.J. Tannins Possessing Bacteriostatic Effect Impair Pseudomonas Aeruginosa Adhesion and Biofilm Formation. PLoS ONE 2013, 8, e66257. [Google Scholar] [CrossRef] [PubMed]
- Ulrey, R.K.; Barksdale, S.M.; Zhou, W.; van Hoek, M.L. Cranberry Proanthocyanidins Have Anti-Biofilm Properties against Pseudomonas aeruginosa. BMC Complement. Altern. Med. 2014, 14, 499. [Google Scholar] [CrossRef] [PubMed]
- Ninan, N.; Forget, A.; Shastri, V.P.; Voelcker, N.H.; Blencowe, A. Antibacterial and Anti-Inflammatory pH-Responsive Tannic Acid-Carboxylated Agarose Composite Hydrogels for Wound Healing. ACS Appl. Mater. Interfaces 2016, 8, 28511–28521. [Google Scholar] [CrossRef] [PubMed]
- Khairnar, M.R.; Karibasappa, G.N.; Dodamani, A.S.; Vishwakarma, P.; Naik, R.G.; Deshmukh, M.A. Comparative Assessment of Cranberry and Chlorhexidine Mouthwash on Streptococcal Colonization among Dental Students: A Randomized Parallel Clinical Trial. Contemp. Clin. Dent. 2015, 6, 35–39. [Google Scholar] [CrossRef]
- Fasinu, P.S.; Bouic, P.J.; Rosenkranz, B. An Overview of the Evidence and Mechanisms of Herb-Drug Interactions. Front. Pharmacol. 2012, 3, 69. [Google Scholar] [CrossRef]
- Arora, G.; Arora, A.; Choudhary, V.; Kamlija, M.; Kamlija, H. Possible Herbal-Drug Interactions an Evidenced Base Review. Altern. Ther. Health Med. 2022, 28, 70–77. [Google Scholar]
- Watt, M.J.; Breyer-Brandwijk, M.G. The Medicinal and Poisonous Plants of Southem and Eastern Africa, 2nd ed.; E. and S. Livingstone: London, UK, 1962; pp. 408–410. [Google Scholar]
- Johnson, P.B.; Abdurahman, E.M.; Tiam, E.A.; Abdu-Aguye, I.; Hussaini, I.M. Euphorbia Hirta Leaf Extracts Increase Urine Output and Electrolytes in Rats. J. Ethnopharmacol. 1999, 65, 63–69. [Google Scholar] [CrossRef]
- Alisi, C. Antimicrobial Properties of Euphorbia Hyssopifolia and Euphorbia Hirta against Pathogens Complicit in Wound, Typhoid and Urinary Tract Infections. Int. J. Trop. Dis. Health 2014, 2, 72–86. [Google Scholar] [CrossRef]
- Titilope, K.; Rashidat, E. In-Vitro Antimicrobial Activities of Euphorbia Hirta against Some Clinical Isolates. Agric. Biol. J. N. Am. 2012, 3, 169–174. [Google Scholar] [CrossRef]
- Chandel, S.; Das, S.; Mazumder, A.; Neha; Chauhan, V.S. An Overview on Phytoconstituents and Multiple Biological Activities of Euphorbia Hirta. Plant Sci. Today 2023, 10, 281–299. [Google Scholar] [CrossRef]
- Enerva, L.T.; Atienza, T.V.; Glifonea, Z.R.; Villamor, O.B.; Villa, N.A. Cytotoxicity and Antimicrobial Property of the Leaf Extract of Euphorbia hirta (Tawa-Tawa). Open J. Soc. Sci. 2015, 03, 162–170. [Google Scholar]
- Pandey, A.; Verma, N. Evaluation of antimicrobial activity of E. hirta and Calotropis procera against MDR patogenes. IJPAES. 2013, 3, 17–24. [Google Scholar]
- Rajeh, M.A.B.; Zuraini, Z.; Sasidharan, S.; Latha, L.Y.; Amutha, S. Assessment of Euphorbia Hirta L. Leaf, Flower, Stem and Root Extracts for Their Antibacterial and Antifungal Activity and Brine Shrimp Lethality. Molecules 2010, 15, 6008–6018. [Google Scholar] [CrossRef]
- Saravanan, R.; Dhachinamoorthi, D.; Senthilkumar, K.; Srilakshmi, M.; Sri, T. Antibacterial activity of Euphorbia hirta extracts. Int. J. Res. Ayurveda Pharm. 2012, 3, 439–441. [Google Scholar]
- Burkill, H.M. The Useful Plants of West Tropical Africa, 2nd ed.; Royal Botanic Gardens: London, UK, 1994. [Google Scholar]
- Emmanuel, N. Ethno Medicines Used for Treatment of Prostatic Disease in Foumban, Cameroon. Afr. J. Pharm. Pharmacol. 2010, 4, 793–805. [Google Scholar]
- Coker, M.E.; Oaikhena, A.O.; Ajayi, T.O. Antimicrobial Activity of Extracts and Fractions of Euphorbia Lateriflora (Schum. and Thonn) on Microbial Isolates of the Urinary Tract. Saudi J. Biol. Sci. 2021, 28, 4723. [Google Scholar] [CrossRef]
- Patel, J.R.; Tripathi, P.; Sharma, V.; Chauhan, N.S.; Dixit, V.K. Phyllanthus Amarus: Ethnomedicinal Uses, Phytochemistry and Pharmacology: A Review. J. Ethnopharmacol. 2011, 138, 286–313. [Google Scholar] [CrossRef]
- Saranraj, P.; Sivasakthivelan, P. Screening of Antibacterial Activity of the Medicinal Plant Phyllanthus Amarus against Urinary Tract Infection Causing Bacterial Pathogens. Appl. J. Hyg. 2012, 1, 19–24. [Google Scholar]
- Obuotor, T.M.; Kolawole, A.O.; Adeyanju, F.O.; Adewumi, S.S. Antimicrobial Activity of Sida Acuta, Phyllanthus Amarus and Phyllanthus Muellerianus against Microorganisms Implicated in Urinary Tract Infections. Ife J. Sci. 2021, 23, 153–168. [Google Scholar] [CrossRef]
- Oladosu, S.A.; Coker, A.O.; Nwaokorie, F. Antibacterial effects of Phyllantus amarus on urinary tract pathogens. Int. Clin. Pathol. J. 2019, 7, 1–10. [Google Scholar]
- Prananda, A.T.; Dalimunthe, A.; Harahap, U.; Simanjuntak, Y.; Peronika, E.; Karosekali, N.E.; Hasibuan, P.A.Z.; Syahputra, R.A.; Situmorang, P.C.; Nurkolis, F. Phyllanthus emblica: A Comprehensive Review of Its Phytochemical Composition and Pharmacological Properties. Front. Pharmacol. 2023, 14, 1288618. [Google Scholar] [CrossRef] [PubMed]
- Jahan, N.; Akter, S. Assessment of the Antimicrobial Activity of the Ethanolic Extract of Phyllanthus emblica in Combination with Different Classes of Antibiotics against Single and Multi-Drug Resistant Strains. J. Pharmacogn. Phytochem. 2015, 4, 142–155. [Google Scholar]
- Farhana, F.; Mosaddek, A.S.M.; Joynal, B.J.; Sharmin, H.; Mosaddek, N. Antibacterial Effect of Amlaki (Phyllanthus emblica) Extract against Pseudomonas aeruginosa. J. Clin. Images Med. Case Rep. 2022, 3, 78–82. [Google Scholar] [CrossRef]
- Nair, A.; Balasaravanan, T.; Jadhav, S.; Mohan, V.; Kumar, C. Harnessing the Antibacterial Activity of Quercus Infectoria and Phyllanthus emblica against Antibiotic-Resistant Salmonella Typhi and Salmonella Enteritidis of Poultry Origin. Vet. World 2020, 13, 1388–1396. [Google Scholar] [CrossRef]
- Thembane, N.; Hlatshwayo, S.; Ngcobo, M.; Ngubane, P.; Gqaleni, N. Review on the Anti-Hyperglycemic Potential of Psidium guajava and Seriphium plumosum L. Plants 2024, 13, 1608. [Google Scholar] [CrossRef]
- Chechani, B.; Roat, P.; Hada, S.; Yadav, D.K.; Kumari, N. Psidium guajava: An Insight into Ethnomedicinal Uses, Phytochemistry, and Pharmacology. Comb. Chem. High Throughput Screen. 2024, 27, 2–39. [Google Scholar] [CrossRef]
- Zhu, X.; Ouyang, W.; Lan, Y.; Xiao, H.; Tang, L.; Liu, G.; Feng, K.; Zhang, L.; Song, M.; Cao, Y. Anti-Hyperglycemic and Liver Protective Effects of Flavonoids from Psidium guajava L. (Guava) Leaf in Diabetic Mice. Food Biosci. 2020, 35, 100574. [Google Scholar] [CrossRef]
- Tousif, M.I.; Nazir, M.; Saleem, M.; Tauseef, S.; Shafiq, N.; Hassan, L.; Hussian, H.; Montesano, D.; Naviglio, D.; Zengin, G.; et al. Psidium guajava L. an Incalculable but Underexplored Food Crop: Its Phytochemistry, Ethnopharmacology, and Industrial Applications. Molecules 2022, 27, 7016. [Google Scholar] [CrossRef]
- Saber, F.R.; Munekata, P.E.S.; Rizwan, K.; El-Nashar, H.A.S.; Fahmy, N.M.; Aly, S.H.; El-Shazly, M.; Bouyahya, A.; Lorenzo, J.M. Family Myrtaceae: The Treasure Hidden in the Complex/Diverse Composition. Crit. Rev. Food Sci. Nutr. 2024, 64, 6737–6755. [Google Scholar] [CrossRef]
- Lok, B.; Babu, D.; Tabana, Y.; Dahham, S.S.; Adam, M.A.A.; Barakat, K.; Sandai, D. The Anticancer Potential of Psidium guajava (Guava) Extracts. Life 2023, 13, 346. [Google Scholar] [CrossRef] [PubMed]
- Nandwani, D.; Calvo, J.A.; Tenorio, J.; Calvo, F.; Manglona, L. Medicinal Plants and Traditional Knowledge in the Northern Mariana Islands. J. Appl. Biosci. 2008, 8, 323–330. [Google Scholar]
- Díaz-de-Cerio, E.; Verardo, V.; Gómez-Caravaca, A.M.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Health Effects of Psidium guajava L. Leaves: An Overview of the Last Decade. Int. J. Mol. Sci. 2017, 18, 897. [Google Scholar] [CrossRef] [PubMed]
- Pelegrini, P.B.; Murad, A.M.; Silva, L.P.; Dos Santos, R.C.P.; Costa, F.T.; Tagliari, P.D.; Bloch, C., Jr.; Noronha, E.F.; Miller, R.N.G.; Franco, O.L. Identification of a Novel Storage Glycine-Rich Peptide from Guava (Psidium guajava) Seeds with Activity against Gram-Negative Bacteria. Peptides 2008, 29, 1271–1279. [Google Scholar] [CrossRef]
- Tavares, L.S.; Rettore, J.V.; Freitas, R.M.; Porto, W.F.; do Nascimento Duque, A.P.; de Lacorte Singulani, J.; Silva, O.N.; Michelle de Lima, M.; Vasconcelos, E.G.; Dias, S.C.; et al. Antimicrobial Activity of Recombinant Pg-AMP1, a Glycine-Rich Peptide from Guava Seeds. Peptides 2012, 37, 294–300. [Google Scholar] [CrossRef]
- Yahaya, A.; Ali, M.; Hassan, F.; Jido, B.A. Antibacterial Activity of Guava (Psidium guajava l.) Extracts on Staphylococcus Aureus Isolated from Patients with Urinary Tract Infections Attending a Tertiary-Care Hospital. Sci. World J. 2019, 14, 47–51. [Google Scholar]
- Bouchoukh, I.; Hazmoune, T.; Boudelaa, M.; Bensouici, C.; Zellagui, A. Anticholinesterase and Antioxidant Activities of Foliar Extract from a Tropical Species: Psidium guajava L. (Myrtaceae) Grown in Algeria. Curr. Issues Pharm. Med. Sci. 2019, 32, 160–167. [Google Scholar] [CrossRef]
- Mitra, S.; Bhesania Hodiwala, A.V.; Kar, H. Susceptibility and Synergistic Effects of Guava Plant Extract and Antimicrobial Drugs on Escherichia coli. Cureus 2024, 16, e52345. [Google Scholar] [CrossRef]
- Simamora, A.; Santoso, A.W.; Timotius, K.H.; Rahayu, I. Antioxidant Activity, Enzyme Inhibition Potentials, and Phytochemical Profiling of Premna serratifolia L. Leaf Extracts. Int. J. Food Sci. 2020, 2020, 3436940. [Google Scholar] [CrossRef]
- Didry, N.; Seidel, V.; Dubreuil, L.; Tillequin, F.; Bailleul, F. Isolation and Antibacterial Activity of Phenylpropanoid Derivatives from Ballota Nigra. J. Ethnopharmacol. 1999, 67, 197–202. [Google Scholar] [CrossRef]
- Kang, K.H.; Jang, S.K.; Kim, B.K.; Park, M.K. Antibacterial Phenylpropanoid Glycosides from Paulownia Tomentosa Steud. Arch. Pharm. Res. 1994, 17, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.-Y.; Yuan, W.; Zhou, L.; Wang, S.-X.; Xie, Y.; Fu, Y.-J. Forsythoside A Exerts an Anti-Endotoxin Effect by Blocking the LPS/TLR4 Signaling Pathway and Inhibiting Tregs in Vitro. Int. J. Mol. Med. 2017, 40, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Sindhusha, V.B.; Rajasekar, A. Preparation and Evaluation of Antimicrobial Property and Anti-Inflammatory Activity of Fenugreek Gel against Oral Microbes: An Invitro Study. Cureus 2023, 15, e47659. [Google Scholar] [CrossRef] [PubMed]
- Quraishi, F.; Tarique, S.; Iqbal, N.; Azhar, S.; Nangrejo, R.; Mughal, F. Antibacterial efficacy of Fenugreek Seed Extract Rinse against Streptococcus Mutants Colonies. J. Res. Med. Dent. Sci. 2021, 9, 236–240. [Google Scholar]
- Walli, R.R.; Al-Musrati, R.A.; Eshtewi, H.M.; Sherif, F.M. Screening of antimicrobial activity of fenugreek seeds. Pharm. Pharmacol. Int. J. 2015, 2, 122–124. [Google Scholar]
- Alwhibi, M.S.; Soliman, D.A. Evaluating the Antibacterial Activity of Fenugreek (Trigonella Foenum-Graecum) Seed Extract against A Selection of Different Pathogenic Bacteria. JPAM 2014, 8, 817–821. [Google Scholar]
- Aldawsari, M.F.; Khafagy, E.-S.; Saqr, A.A.; Alalaiwe, A.; Abbas, H.A.; Shaldam, M.A.; Hegazy, W.A.H.; Goda, R.M. Tackling Virulence of Pseudomonas aeruginosa by the Natural Furanone Sotolon. Antibiotics 2021, 10, 871. [Google Scholar] [CrossRef]
- Abbas, H.A.; Goda, R.M. Sotolon Is a Natural Virulence Mitigating Agent in Serratia Marcescens. Arch. Microbiol. 2021, 203, 533–541. [Google Scholar] [CrossRef]
- Peraza-Luna, F.; Rodríguez-Mendiola, M.; Arias-Castro, C.; Bessiere, J.M.; Calva-Calva, G. Sotolone Production by Hairy Root Cultures of Trigonella Foenum-Graecum in Airlift with Mesh Bioreactors. J. Agric. Food Chem. 2001, 49, 6012–6019. [Google Scholar] [CrossRef]
- Available online: https://www.who.int/tools/elena/interventions/vitamind-infants (accessed on 27 September 2024).
- Adams, J.S.; Chen, H.; Chun, R.; Ren, S.; Wu, S.; Gacad, M.; Nguyen, L.; Ride, J.; Liu, P.; Modlin, R.; et al. Substrate and Enzyme Trafficking as a Means of Regulating 1,25-Dihydroxyvitamin D Synthesis and Action: The Human Innate Immune Response. J. Bone Miner. Res. 2007, 22, V20–V24. [Google Scholar] [CrossRef]
- Winzberg, T.; Jones, G. Vitamin D Bone Health Childhood Adolescence. Calcif. Tiss. Int. 2013, 92, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Amdekar, S.; Singh, V.; Singh, D.D. Probiotic Therapy: Immunomodulating Approach Toward Urinary Tract Infection. Curr. Microbiol. 2011, 63, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Wallace, C.; Gordon, M.; Sinopoulou, V.; Limketkai, B.N. Vitamin D for the Treatment of Inflammatory Bowel Disease. Cochrane Libr. 2023, 10, CD011806. [Google Scholar] [CrossRef]
- Cao, M.; He, C.; Gong, M.; Wu, S.; He, J. The Effects of Vitamin D on All-Cause Mortality in Different Diseases: An Evidence-Map and Umbrella Review of 116 Randomized Controlled Trials. Front. Nutr. 2023, 10, 1132528. [Google Scholar] [CrossRef] [PubMed]
- Hertting, O.; Luthja, P. Vitamin D Induction Human Antimicrobial Peptide Cathelicidin, Urinary Bladder. PLoS ONE 2010, 5, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Sunlight Vitamin D Bone Health Prevention Autoimmune Disease, Cancers, Cardiovascular Disease. Am. J. Clin. Nutr. 2004, 80, 1678S–1688S. [Google Scholar] [CrossRef]
- Ali, S.B.; Perdawood, D.; Abdulrahman, R.; Al Farraj, D.A.; Alkubaisi, N.A. Vitamin D Deficiency as a Risk Factor for Urinary Tract Infection in Women at Reproductive Age. Saudi J. Biol. Sci. 2020, 27, 2942–2947. [Google Scholar] [CrossRef]
- Mercy, D.J.; Girigoswami, A.; Girigoswami, K. Relationship between Urinary Tract Infections and Serum Vitamin D Level in Adults and Children- a Literature Review. Mol. Biol. Rep. 2024, 51, 955. [Google Scholar] [CrossRef]
- Hassanein, M.M.; Huri, H.Z.; Abduelkarem, A.R.; Baig, K. Therapeutic Effects of Vitamin D on Vaginal, Sexual, and Urological Functions in Postmenopausal Women. Nutrients 2023, 15, 3804. [Google Scholar] [CrossRef]
- Seifollahi, M.; Heidarzadeh Arani, M.; Hoseini Shamsabadi, R.; Nakhaie, S.; Karimi Aghche, M.; Azadchehr, M.J.; Sadat Sharif, A. Serum Vitamin D and Zinc Levels in Children with Urinary Tract Infection without Confounding Factors: A Case-Control Study. Med. J. Islam. Repub. Iran 2024, 38, 240–243. [Google Scholar] [CrossRef]
- Liu, L.; Xie, K.; Yin, M.; Chen, X.; Chen, B.; Ke, J.; Wang, C. Lower Serum Levels of Vitamin D in Adults with Urinary Tract Infection. Infection 2022, 50, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Sorić Hosman, I.; Cvitković Roić, A.; Lamot, L. A Systematic Review of the (Un)Known Host Immune Response Biomarkers for Predicting Recurrence of Urinary Tract Infection. Front. Med. 2022, 9, 931717. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; You, S.; Ying, J.; Mu, D. The Association between Serum Vitamin D Levels and Urinary Tract Infection Risk in Children: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 2690. [Google Scholar] [CrossRef]
- Mahyar, A.; Ayazi, P.; Sarkhosh Afshar, A.; Naserpour Farivar, T.; Sahmani, M.; Oveisi, S.; Shabani, R.; Esmaeili, S. Vitamin D Receptor Gene (FokI, TaqI, BsmI, and ApaI) Polymorphisms in Children with Urinary Tract Infection. Pediatr. Res. 2018, 84, 527–532. [Google Scholar] [CrossRef]
- Jorde, R.; Sollid, S.T.; Svartberg, J.; Joakimsen, R.M.; Grimnes, G.; Hutchinson, M.Y. Prevention of urinary tract infections with vitamin D supplementation 20,000 IU per week for five years. Results from an RCT including 511 subjects. Infect. Dis. 2016, 48, 823–828. [Google Scholar] [CrossRef]
- Merrikhi, A.; Ziaei, E.; Shahsanai, A.; Kelishadi, R.; Maghami-Mehr, A. Is Vitamin D Supplementation Effective in Prevention of Recurrent Urinary Tract Infections in the Pediatrics? A Randomized Triple-Masked Controlled Trial. Adv. Biomed. Res. 2018, 7, 150. [Google Scholar]
- Aranow, C. Vitamin D and the Immune System. J. Investig. Med. 2011, 59, 881–886. [Google Scholar] [CrossRef]
- Bikle, D.D. Vitamin D Metabolism, Mechanism of Action, and Clinical Applications. Chem. Biol. 2014, 21, 319–329. [Google Scholar] [CrossRef]
- Liu, P.T.; Stenger, S.; Li, H.; Wenzel, L.; Tan, B.H.; Krutzik, S.R.; Ochoa, M.T.; Schauber, J.; Wu, K.; Meinken, C.; et al. Toll-like Receptor Triggering of a Vitamin D-Mediated Human Antimicrobial Response. Science 2006, 311, 1770–1773. [Google Scholar] [CrossRef]
- Shin, D.-M.; Jo, E.-K. Antimicrobial Peptides in Innate Immunity against Mycobacteria. Immune Netw. 2011, 11, 245–252. [Google Scholar] [CrossRef]
- Hasan, M.; Yamazaki, M. Elementary Processes and Mechanisms of Interactions of Antimicrobial Peptides with Membranes-Single Giant Unilamellar Vesicle Studies. Adv. Exp. Med. Biol. 2019, 1117, 17–32. [Google Scholar] [PubMed]
- Mohanty, S.; Kamolvit, W.; Hertting, O.; Brauner, A. Vitamin D Strengthens the Bladder Epithelial Barrier by Inducing Tight Junction Proteins during E. coli Urinary Tract Infection. Cell Tissue Res. 2020, 380, 669–673. [Google Scholar] [CrossRef] [PubMed]
- McGrane, M.M. Vitamin A Regulation of Gene Expression: Molecular Mechanism of a Prototype Gene. J. Nutr. Biochem. 2007, 18, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Semba, R.D.; West, K.P., Jr.; Sommer, A.; Griffin, D.E.; Ward, B.J.; Scott, A.L.; Natadisastra, G. Abnormal T-Cell Subset Proportions in Vitamin-A-Deficient Children. Lancet 1993, 341, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.C.; Chen, Q.; Ma, Y. Vitamin A and Retinoic Acid in the Regulation of B-Cell Development and Antibody Production. In Vitamins & Hormones; Elsevier: Amsterdam, The Netherlands, 2011; pp. 103–126. ISBN 9780123869609. [Google Scholar]
- Reifen, R. Vitamin A as an Anti-Inflammatory Agent. Proc. Nutr. Soc. 2002, 61, 397–400. [Google Scholar] [CrossRef]
- D’Aquino, M.; Dunster, C.; Willson, R.L. Vitamin A and Glutathione-Mediated Free Radical Damage: Competing Reactions with Polyunsaturated Fatty Acids and Vitamin C. Biochem. Biophys. Res. Commun. 1989, 161, 1199–1203. [Google Scholar] [CrossRef]
- Kavukçu, S.; Soylu, A.; Türkmen, M.; Sarioglu, S.; Büyükgebiz, B.; Güre, A. The Role of Vitamin A in Preventing Renal Scarring Secondary to Pyelonephritis. BJU Int. 1999, 83, 1055–1059. [Google Scholar] [CrossRef]
- Soylu, A.; Kavukçu, S.; Sarıoğlu, S.; Astarcıoğlu, H.; Türkmen, M.; Büyükgebiz, B. The Effect of Vitamin A on the Course of Renal Ablation Nephropathy. Pediatr. Nephrol. 2001, 16, 472–476. [Google Scholar] [CrossRef]
- Ayazi, P.; Moshiri, S.A.; Mahyar, A.; Moradi, M. The Effect of Vitamin A on Renal Damage Following Acute Pyelonephritis in Children. Eur. J. Pediatr. 2011, 170, 347–350. [Google Scholar] [CrossRef]
- Kahbazi, M.; Sharafkhah, M.; Yousefichaijan, P.; Taherahmadi, H.; Rafiei, M.; Kaviani, P.; Abaszadeh, S.; Massoudifar, A.; Mohammadbeigi, A. Vitamin A Supplementation Is Effective for Improving the Clinical Symptoms of Urinary Tract Infections and Reducing Renal Scarring in Girls with Acute Pyelonephritis: A Randomized, Double-Blind Placebo-Controlled, Clinical Trial Study. Complement. Ther. Med. 2019, 42, 429–437. [Google Scholar] [CrossRef]
- Zhang, G.-Q.; Chen, J.-L.; Zhao, Y. The Effect of Vitamin A on Renal Damage Following Acute Pyelonephritis in Children: A Meta-Analysis of Randomized Controlled Trials. Pediatr. Nephrol. 2016, 31, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, A.; Bahat, E.; Yilmaz, G.G.; Hasanoglu, A.; Akman, S.; Guven, A.G. Adjuvant Effect of Vitamin A on Recurrent Lower Urinary Tract Infections. Pediatr. Int. 2007, 49, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.; Craig, J.C. Prevention of Recurrent Urinary Tract Infection in Children. Curr. Opin. Infect. Dis. 2009, 22, 72–76. [Google Scholar] [CrossRef]
- Carr, A.; Frei, B. Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J. 1999, 13, 1007–1024. [Google Scholar] [CrossRef]
- Mandl, J.; Szarka, A.; Banhegyi, G. Vitamin C: Update on physiology and pharmacology. Br. J. Pharmacol. 2009, 157, 1097–1110. [Google Scholar] [CrossRef]
- Carr, A.C.; Shaw, G.M.; Fowler, A.A.; Natarajan, R. Ascorbate-dependent vasopressor synthesis: A rationale for vitamin C administration in severe sepsis and septic shock? Crit. Care 2015, 19, e418. [Google Scholar] [CrossRef]
- Englard, S.; Seifter, S. The biochemical functions of ascorbic acid. Annu. Rev. Nutr. 1986, 6, 365–406. [Google Scholar] [CrossRef]
- Young, J.I.; Zuchner, S.; Wang, G. Regulation of the epigenome by vitamin C. Annu. Rev. Nutr. 2015, 35, 545–564. [Google Scholar] [CrossRef]
- Carr, A.; Maggini, S. Vitamin C and Immune Function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef]
- Verghese, R.J.; Mathew, S.K.; David, A. Antimicrobial activity of vitamin C demonstrated on uropathogenic Escherichia coli and Klebsiella pneumonia. J. Curr. Res. Sci. Med. 2020, 3, 88. [Google Scholar]
- Pandit, S.; Ravikumar, V.; Abdel-Haleem, A.M.; Derouiche, A.; Mokkapati, V.R.S.S.; Sihlbom, C.; Mineta, K.; Gojobori, T.; Gao, X.; Westerlund, F.; et al. Low concentrations of vitamin C reduce the synthesis of extracellular polymers and destabilize bacterial biofilms. Front. Microbiol. 2017, 8, 2599. [Google Scholar] [CrossRef] [PubMed]
- Shivaprasad, D.P.; Tanej, N.K.; Lakra, A.; Sachdev, D. In vitro and in situ abrogation of biofilm formation in E. coli by vitamin C through ROS generation, disruption of quorum sensing and exopolysaccharide production. Food Chem. 2021, 341, 128171. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Dong, N.; Chen, K.; Yang, X.; Zeng, P.; Hou, C.; Wai, E.; Chan, C.; Yao, C.; Chen, S. Bactericidal, anti-biofilm, and anti-virulence activity of vitamin C against carbapenem-resistant hypervirulent Klebsiella pneumonia. iScience 2022, 25, 103894. [Google Scholar] [CrossRef] [PubMed]
- El-Gebaly, E.; Essam, T.; Hashem, S.; El-Baky, R.A. Effect of levofloxacin and vitamin C on bacterial adherence and preformed biofilm on urethral catheter surfaces. J. Microb. Biochem. Technol. 2012, 4, 6. [Google Scholar] [CrossRef]
- Stolarek, P.; Bernat, P.; Różalski, A. Combined Application of Aminoglycosides and Ascorbic Acid in the Elimination of Proteus Mirabilis Rods Responsible for Causing Catheter-Associated Urinary Tract Infections (CAUTIs)—A Molecular Approach. Int. J. Mol. Sci. 2022, 23, 13069. [Google Scholar] [CrossRef]
- Hassuna, N.A.; Rabie, E.M.; Mahd, W.K.M.; Refaie, M.M.M.; Yousef, R.K.M.; Abdelraheem, W.M. Antibacterial Effect of Vitamin C against Uropathogenic E. coli in Vitro and in Vivo. BMC Microbiol. 2023, 23, 112. [Google Scholar] [CrossRef]
- Keya, T.A.; Leela, A.; Fernandez, K.; Habib, N.; Rashid, M. Effect of Vitamin C Supplements on Respiratory Tract Infections: A Systematic Review and Meta-Analysis. Curr. Rev. Clin. Exp. Pharmacol. 2022, 17, 205–215. [Google Scholar] [CrossRef]
- Yousefichaijan, P.; Ahmad Goudarzi, A.; Rezagholizamenjany, M.; Kahbazi, M.; Rafeie, M.; Arjmand Shabestari, A.; Shariatmadari, F.; Taherahmadi, H. Efficacy of Ascorbic Acid Supplementation in Relief of Symptoms Due to Febrile Upper Urinary Tract Infection in Children, a Clinical Trial and Hospital Based Study. Arch. Pediatr. Infect. Dis. 2018, 6, e57071. [Google Scholar] [CrossRef]
- Jeitler, M.; Michalsen, A.; Schwiertz, A.; Kessler, C.S.; Koppold-Liebscher, D.; Grasme, J.; Kandil, F.I.; Steckhan, N. Effects of a Supplement Containing a Cranberry Extract on Recurrent Urinary Tract Infections and Intestinal Microbiota: A Prospective, Uncontrolled Exploratory Study. J. Integr. Complement. Med. 2022, 28, 399–406. [Google Scholar] [CrossRef]
- Maki, K.C.; Kaspar, K.L.; Khoo, C.; Derrig, L.H.; Schild, A.L.; Gupta, K. Consumption of a Cranberry Juice Beverage Lowered the Number of Clinical Urinary Tract Infection Episodes in Women with a Recent History of Urinary Tract Infection. Am. J. Clin. Nutr. 2016, 103, 1434–1442. [Google Scholar] [CrossRef]
- Montorsi, F.; Gandaglia, G.; Salonia, A.; Briganti, A.; Mirone, V. Effectiveness of Combination of Cranberries, Lactobacillus rhamnosus, and Vitamin C for the Management of Recurrent Urinary Tract Infections in Women: Results of a Pilot Study. Eur Urol. 2016, 70, 912–915. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.W.; Joyce, A.; Ingold, K.U. Is Vitamin E the Only Lipid-Soluble, Chain-Breaking Antioxidant in Human Blood Plasma and Erythrocyte Membranes? Arch. Biochem. Biophys. 1983, 221, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Zingg, J.-M. Vitamin E: Regulatory Role on Signal Transduction. IUBMB Life 2019, 71, 456–478. [Google Scholar] [CrossRef]
- Kobzar, G. Inhibition of Platelet Activation Using Vitamins. Platelets 2020, 31, 157–166. [Google Scholar] [CrossRef]
- Lewis, E.D.; Meydani, S.N.; Wu, D. Regulatory Role of Vitamin E in the Immune System and Inflammation. IUBMB Life 2019, 71, 487–494. [Google Scholar] [CrossRef]
- Önol, F.F.; Demir, A.; Temiz, Y.; Yüksel, M.; Eren, F.; Türkeri, L.N. The Inhibitory Effect of Vitamin E on Cigarette Smoke-Induced Oxidative Damage to the Rat Urothelium: Can It Prevent Transitional Cell Carcinoma? Urol. Int. 2007, 78, 150–154. [Google Scholar] [CrossRef]
- Yousefichaijan, P.; Kahbazi, M.; Rasti, S.; Rafeie, M.; Sharafkhah, M. Vitamin E as Adjuvant Treatment for Urinary Tract Infection in Girls with Acute Pyelonephritis. Iran. J. Kidney Dis. 2015, 9, 97–104. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cipriani, C.; Carilli, M.; Rizzo, M.; Miele, M.T.; Sinibaldi-Vallebona, P.; Matteucci, C.; Bove, P.; Balestrieri, E. Bioactive Compounds as Alternative Approaches for Preventing Urinary Tract Infections in the Era of Antibiotic Resistance. Antibiotics 2025, 14, 144. https://doi.org/10.3390/antibiotics14020144
Cipriani C, Carilli M, Rizzo M, Miele MT, Sinibaldi-Vallebona P, Matteucci C, Bove P, Balestrieri E. Bioactive Compounds as Alternative Approaches for Preventing Urinary Tract Infections in the Era of Antibiotic Resistance. Antibiotics. 2025; 14(2):144. https://doi.org/10.3390/antibiotics14020144
Chicago/Turabian StyleCipriani, Chiara, Marco Carilli, Marta Rizzo, Martino Tony Miele, Paola Sinibaldi-Vallebona, Claudia Matteucci, Pierluigi Bove, and Emanuela Balestrieri. 2025. "Bioactive Compounds as Alternative Approaches for Preventing Urinary Tract Infections in the Era of Antibiotic Resistance" Antibiotics 14, no. 2: 144. https://doi.org/10.3390/antibiotics14020144
APA StyleCipriani, C., Carilli, M., Rizzo, M., Miele, M. T., Sinibaldi-Vallebona, P., Matteucci, C., Bove, P., & Balestrieri, E. (2025). Bioactive Compounds as Alternative Approaches for Preventing Urinary Tract Infections in the Era of Antibiotic Resistance. Antibiotics, 14(2), 144. https://doi.org/10.3390/antibiotics14020144