Antimicrobial Resistance and Mortality in Carbapenem-Resistant Pseudomonas aeruginosa Infections in Southern Thailand
Abstract
:1. Introduction
2. Results
2.1. In Vitro Analysis
2.1.1. Antimicrobial Susceptibility Testing
2.1.2. Evaluation of Resistance Mechanisms
2.2. Clinical Data
2.2.1. The 30-Day All-Cause Mortality Rate
2.2.2. Factors Associated with 30-Day All-Cause Mortality
3. Discussion
4. Materials and Methods
4.1. Study Design and Participants
4.2. Definitions
4.3. Clinical Data Collection
4.4. Sample Collection and Isolate Identification
4.5. AST and MIC Determination
4.6. Phenotypic Detection of Carbapenemase Production
4.7. Genotypic Detection of Efflux Pump, Porin, and blaAmpC Genes
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weinstein, R.A.; Gaynes, R.; Edwards, J.R.; National Nosocomial Infections Surveillance System. Overview of nosocomial infections caused by gram-negative bacilli. Clin. Infect. Dis. 2005, 41, 848–854. [Google Scholar] [CrossRef] [PubMed]
- Zelenitsky, S.A.; Harding, G.K.; Sun, S.; Ubhi, K.; Ariano, R.E. Treatment and outcome of Pseudomonas aeruginosa bacteraemia: An antibiotic pharmacodynamic analysis. J. Antimicrob. Chemother. 2003, 52, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Rossolini, G.M.; Mantengoli, E. Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clin. Microbiol. Infect. 2005, 11 (Suppl. S4), 17–32. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Echols, R.; Magee, G.; Arjona Ferreira, J.C.; Morgan, G.; Ariyasu, M.; Sawada, T.; Nagata, T.D. Prevalence of carbapenem-resistant gram-negative infections in the United States predominated by Acinetobacter baumannii and Pseudomonas aeruginosa. Open Forum Infect. Dis. 2017, 4, ofx176. [Google Scholar] [CrossRef]
- Labarca, J.A.; Salles, M.J.; Seas, C.; Guzman-Blanco, M. Carbapenem resistance in Pseudomonas aeruginosa and Acinetobacter baumannii in the nosocomial setting in latin america. Crit. Rev. Microbiol. 2016, 42, 276–292. [Google Scholar]
- Baumgart, A.M.; Molinari, M.A.; Silveira, A.C. Prevalence of carbapenem resistant Pseudomonas aeruginosa and Acinetobacter baumannii in highcomplexity hospital. Braz. J. Infect. Dis. 2010, 14, 433–436. [Google Scholar] [CrossRef]
- Terahara, F.; Nishiura, H. Carbapenem-resistant Pseudomonas aeruginosa and carbapenem use in Japan: An ecological study. J. Int. Med. Res. 2019, 47, 4711–4722. [Google Scholar] [CrossRef]
- Buehrle, D.J.; Shields, R.K.; Clarke, L.G.; Potoski, B.A.; Clancy, C.J.; Nguyen, M.H. Carbapenem-resistant Pseudomonas aeruginosa bacteremia: Risk factors for mortality and microbiologic treatment failure. Antimicrob. Agents Chemother. 2017, 61, e01243-16. [Google Scholar] [CrossRef]
- Li, S.; Jia, X.; Li, C.; Zou, H.; Liu, H.; Guo, Y.; Zhang, L. Carbapenem-resistant and cephalosporin-susceptible Pseudomonas aeruginosa: A notable phenotype in patients with bacteremia. Infect. Drug Resist. 2018, 11, 1225–1235. [Google Scholar] [CrossRef]
- Dantas, R.C.; Ferreira, M.L.; Gontijo-Filho, P.P.; Ribas, R.M. Pseudomonas aeruginosa bacteraemia: Independent risk factors for mortality and impact of resistance on outcome. J. Med. Microbiol. 2014, 63, 1679–1687. [Google Scholar] [CrossRef]
- WHO. Who Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- CDC. Carbapenem-Resistant Pseudomonas aeruginosa; CDC: Atlanta, GA, USA, 2018.
- National Antimicrobial Resistance Surveillance Team (NARST). Situation of Antimicrobial Resistance 2000–2021; NARST: Bangkok, Thailand, 2021. [Google Scholar]
- National Antimicrobial Resistance Surveillance Team (NARST). Antibiograms by Health Service Area; NARST: Bangkok, Thailand, 2020. [Google Scholar]
- Poonsuk, K.; Tribuddharat, C.; Chuanchuen, R. Simultaneous overexpression of multidrug efflux pumps in Pseudomonas aeruginosa non-cystic fibrosis clinical isolates. Can. J. Microbiol. 2014, 60, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Livermore, D.M. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare? Clin. Infect. Dis. 2002, 34, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Riera, E.; Cabot, G.; Mulet, X.; Garcia-Castillo, M.; del Campo, R.; Juan, C.; Canton, R.; Oliver, A. Pseudomonas aeruginosa carbapenem resistance mechanisms in spain: Impact on the activity of imipenem, meropenem and doripenem. J. Antimicrob. Chemother. 2011, 66, 2022–2027. [Google Scholar] [CrossRef] [PubMed]
- Yoon, E.J.; Kim, D.; Lee, H.; Lee, H.S.; Shin, J.H.; Park, Y.S.; Kim, Y.A.; Shin, J.H.; Shin, K.S.; Uh, Y.; et al. Mortality dynamics of Pseudomonas aeruginosa bloodstream infections and the influence of defective oprd on mortality: Prospective observational study. J. Antimicrob. Chemother. 2019, 74, 2774–2783. [Google Scholar] [CrossRef] [PubMed]
- Picoli, S.U.; Gonçalves, A.L.S. Chapter 10—Metallo-beta-lactamase producer Pseudomonas aeruginosa: An opportunistic pathogen in lungs. In The Microbiology of Respiratory System Infections; Kon, K., Rai, M., Eds.; Academic Press: Cambridge, MA, USA, 2016; Volume 1, pp. 143–152. [Google Scholar]
- Hirakata, Y.; Yamaguchi, T.; Nakano, M.; Izumikawa, K.; Mine, M.; Aoki, S.; Kondoh, A.; Matsuda, J.; Hirayama, M.; Yanagihara, K.; et al. Clinical and bacteriological characteristics of imp-type metallo-beta-lactamase-producing Pseudomonas aeruginosa. Clin. Infect. Dis. 2003, 37, 26–32. [Google Scholar] [CrossRef]
- Pena, C.; Suarez, C.; Gozalo, M.; Murillas, J.; Almirante, B.; Pomar, V.; Aguilar, M.; Granados, A.; Calbo, E.; Rodriguez-Bano, J.; et al. Prospective multicenter study of the impact of carbapenem resistance on mortality in Pseudomonas aeruginosa bloodstream infections. Antimicrob. Agents Chemother. 2012, 56, 1265–1272. [Google Scholar] [CrossRef]
- Joo, E.J.; Kang, C.I.; Ha, Y.E.; Kang, S.J.; Park, S.Y.; Chung, D.R.; Peck, K.R.; Lee, N.Y.; Song, J.H. Risk factors for mortality in patients with Pseudomonas aeruginosa bacteremia: Clinical impact of antimicrobial resistance on outcome. Microb. Drug Resist. 2011, 17, 305–312. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, Z.; Wu, H.; Chen, L.; Gao, S.; Chen, Y. The impact of carbapenem-resistant Pseudomonas aeruginosa on clinical and economic outcomes in a Chinese tertiary care hospital: A propensity score-matched analysis. Am. J. Infect. Control 2019, 47, 677–682. [Google Scholar] [CrossRef]
- Suárez, C.; Peña, C.; Gavaldà, L.; Tubau, F.; Manzur, A.; Dominguez, M.A.; Pujol, M.; Gudiol, F.; Ariza, J. Influence of carbapenem resistance on mortality and the dynamics of mortality in Pseudomonas aeruginosa bloodstream infection. Int. J. Infect. Dis. 2010, 14 (Suppl. S3), e73–e78. [Google Scholar] [CrossRef]
- Lin, K.Y.; Lauderdale, T.L.; Wang, J.T.; Chang, S.C. Carbapenem-resistant Pseudomonas aeruginosa in Taiwan: Prevalence, risk factors, and impact on outcome of infections. J. Microbiol. Immunol. Infect. 2016, 49, 52–59. [Google Scholar] [CrossRef]
- Lee, C.H.; Su, T.Y.; Ye, J.J.; Hsu, P.C.; Kuo, A.J.; Chia, J.H.; Lee, M.H. Risk factors and clinical significance of bacteremia caused by Pseudomonas aeruginosa resistant only to carbapenems. J. Microbiol. Immunol. Infect. 2017, 50, 677–683. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2023. [Google Scholar]
- Worapong, N.; Parnrada, N.; Dhitiwat, C.; Supanun, P.; Patomroek, H.; Tassanawan, C.; Wichai, S. Optimizing doses of ceftolozane/tazobactam as monotherapy or in combination with amikacin to treat carbapenem-resistant Pseudomonas aeruginosa. Antibiotics 2022, 11, 517. [Google Scholar] [CrossRef] [PubMed]
- Wolter, D.J.; Khalaf, N.; Robledo, I.E.; Vazquez, G.J.; Sante, M.I.; Aquino, E.E.; Goering, R.V.; Hanson, N.D. Surveillance of carbapenem-resistant Pseudomonas aeruginosa isolates from Puerto Rican Medical Center hospitals: Dissemination of kpc and IMP-18 beta-lactamases. Antimicrob. Agents Chemother. 2009, 53, 1660–1664. [Google Scholar] [CrossRef] [PubMed]
- Walters, M.S.; Grass, J.E.; Bulens, S.N.; Hancock, E.B.; Phipps, E.C.; Muleta, D.; Mounsey, J.; Kainer, M.A.; Concannon, C.; Dumyati, G.; et al. Carbapenem-resistant Pseudomonas aeruginosa at US emerging infections program sites, 2015. Emerg. Infect. Dis. 2019, 25, 1281–1288. [Google Scholar] [CrossRef] [PubMed]
- McCann, E.; Srinivasan, A.; DeRyke, C.; Ye, G.; DePestel, D.; Murray, J.; Gupta, V. Carbapenem-nonsusceptible gram-negative pathogens in icu and non-icu settings in us hospitals in 2017: A multicenter study. Open Forum Infect. Dis. 2018, 5, ofy241. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Cao, J.M.; Yang, Q.; Chen, S.; Lv, H.Y.; Zhou, H.W.; Wu, Z.; Zhang, R. Risk factors for carbapenem-resistant Pseudomonas aeruginosa, zhejiang province, china. Emerg. Infect. Dis. 2019, 25, 1861–1867. [Google Scholar] [CrossRef]
- Grupper, M.; Sutherland, C.; Nicolau, D.P. Multicenter evaluation of ceftazidime-avibactam and ceftolozane-tazobactam inhibitory activity against meropenem-nonsusceptible Pseudomonas aeruginosa from blood, respiratory tract, and wounds. Antimicrob. Agents Chemother. 2017, 61, e00875-17. [Google Scholar] [CrossRef]
- Castanheira, M.; Deshpande, L.M.; Costello, A.; Davies, T.A.; Jones, R.N. Epidemiology and carbapenem resistance mechanisms of carbapenem-non-susceptible Pseudomonas aeruginosa collected during 2009-11 in 14 European and mediterranean countries. J. Antimicrob. Chemother. 2014, 69, 1804–1814. [Google Scholar] [CrossRef]
- van Duin, D.; Bonomo, R.A. Ceftazidime/avibactam and ceftolozane/tazobactam: Second-generation beta-lactam/beta-lactamase inhibitor combinations. Clin. Infect. Dis. 2016, 63, 234–241. [Google Scholar] [CrossRef]
- Sader, H.S.; Farrell, D.J.; Flamm, R.K.; Jones, R.N. Ceftolozane/tazobactam activity tested against aerobic gram-negative organisms isolated from intra-abdominal and urinary tract infections in European and United States hospitals (2012). J. Infect. 2014, 69, 266–277. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Shortridge, D.; Harris, K.A.; Garrison, M.W.; DeRyke, C.A.; DePestel, D.D.; Moise, P.A.; Sader, H.S. Ceftolozane-tazobactam activity against clinical isolates of Pseudomonas aeruginosa from icu patients with pneumonia: United states, 2015–2018. Int. J. Infect. Dis. 2021, 112, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Carvalhaes, C.G.; Castanheira, M.; Sader, H.S.; Flamm, R.K.; Shortridge, D. Antimicrobial activity of ceftolozane–tazobactam tested against gram-negative contemporary (2015–2017) isolates from hospitalized patients with pneumonia in us medical centers. Diagn. Microbiol. Infect. Dis. 2019, 94, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Farrell, D.J.; Sader, H.S.; Flamm, R.K.; Jones, R.N. Ceftolozane/tazobactam activity tested against gram-negative bacterial isolates from hospitalised patients with pneumonia in us and European medical centres (2012). Int. J. Antimicrob. Agents 2014, 43, 533–539. [Google Scholar] [CrossRef]
- Sader, H.S.; Castanheira, M.; Flamm, R.K.; Farrell, D.J.; Jones, R.N. Antimicrobial activity of ceftazidime-avibactam against gram-negative organisms collected from U.S. Medical centers in 2012. Antimicrob. Agents Chemother. 2014, 58, 1684–1692. [Google Scholar] [CrossRef]
- Khuntayaporn, P.; Montakantikul, P.; Santanirand, P.; Kiratisin, P.; Chomnawang, M.T. Molecular investigation of carbapenem resistance among multidrug-resistant Pseudomonas aeruginosa isolated clinically in Thailand. Microbiol. Immunol. 2013, 57, 170–178. [Google Scholar] [CrossRef]
- Saengsuwan, P.; Kositpantawong, N.; Kawila, S.; Patugkaro, W.; Romyasamit, C. Prevalence of carbapenemase genes among multidrug-resistant Pseudomonas aeruginosa isolates from tertiary care centers in southern Thailand. Saudi Med. J. 2022, 43, 991–999. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 34th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024. [Google Scholar]
- Lee, J.Y.; Ko, K.S. Oprd mutations and inactivation, expression of efflux pumps and ampc, and metallo-beta-lactamases in carbapenem-resistant Pseudomonas aeruginosa isolates from south korea. Int. J. Antimicrob. Agents 2012, 40, 168–172. [Google Scholar] [CrossRef]
- Mueller, M.R.; Hayden, M.K.; Fridkin, S.K.; Warren, D.K.; Phillips, L.; Lolans, K.; Quinn, J.P. Nosocomial acquisition of Pseudomonas aeruginosa resistant to both ciprofloxacin and imipenem: A risk factor and laboratory analysis. Eur. J. Clin. Microbiol. Infect. Dis. 2008, 27, 565–570. [Google Scholar] [CrossRef]
- Tanimoto, K.; Tomita, H.; Fujimoto, S.; Okuzumi, K.; Ike, Y. Fluoroquinolone enhances the mutation frequency for meropenem-selected carbapenem resistance in Pseudomonas aeruginosa, but use of the high-potency drug doripenem inhibits mutant formation. Antimicrob. Agents Chemother. 2008, 52, 3795–3800. [Google Scholar] [CrossRef]
- Jalal, S.; Ciofu, O.; Hoiby, N.; Gotoh, N.; Wretlind, B. Molecular mechanisms of fluoroquinolone resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob. Agents Chemother. 2000, 44, 710–712. [Google Scholar] [CrossRef]
- Algun, U.; Arisoy, A.; Gunduz, T.; Ozbakkaloglu, B. The resistance of Pseudomonas aeruginosa strains to fluoroquinolone group of antibiotics. Indian J. Med. Microbiol. 2004, 22, 112–114. [Google Scholar] [CrossRef]
- Palavutitotai, N.; Jitmuang, A.; Tongsai, S.; Kiratisin, P.; Angkasekwinai, N. Epidemiology and risk factors of extensively drug-resistant Pseudomonas aeruginosa infections. PLoS ONE 2018, 13, e0193431. [Google Scholar] [CrossRef]
- Chaisathaphol, T.; Chayakulkeeree, M. Epidemiology of infections caused by multidrug-resistant gram-negative bacteria in adult hospitalized patients at siriraj hospital. J. Med. Assoc. Thai 2014, 97, S35–S45. [Google Scholar] [PubMed]
- Howard-Anderson, J.; Bower, C.W.; Smith, G.; Satola, S.W.; Jacob, J.T. Mortality in patients with carbapenem-resistant Pseudomonas aeruginosa with and without susceptibility to traditional antipseudomonal beta-lactams. JAC Antimicrob. Resist. 2021, 3, dlab187. [Google Scholar] [CrossRef]
- Kollef, M.H.; Nováček, M.; Kivistik, Ü.; Réa-Neto, Á.; Shime, N.; Martin-Loeches, I.; Timsit, J.F.; Wunderink, R.G.; Bruno, C.J.; Huntington, J.A.; et al. Ceftolozane-tazobactam versus meropenem for treatment of nosocomial pneumonia (ASPECT-NP): A randomised, controlled, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2019, 19, 1299–1311. [Google Scholar] [CrossRef] [PubMed]
- Solomkin, J.; Hershberger, E.; Miller, B.; Popejoy, M.; Friedland, I.; Steenbergen, J.; Yoon, M.; Collins, S.; Yuan, G.; Barie, P.S.; et al. Ceftolozane/tazobactam plus metronidazole for complicated intra-abdominal infections in an era of multidrug resistance: Results from a randomized, double-blind, phase 3 trial (ASPECT-CIAI). Clin. Infect. Dis. 2015, 60, 1462–1471. [Google Scholar] [CrossRef] [PubMed]
- Wagenlehner, F.M.; Umeh, O.; Steenbergen, J.; Yuan, G.; Darouiche, R.O. Ceftolozane-tazobactam compared with levofloxacin in the treatment of complicated urinary-tract infections, including pyelonephritis: A randomised, double-blind, phase 3 trial (ASPECT-CUTI). Lancet 2015, 385, 1949–1956. [Google Scholar] [CrossRef]
- Wagenlehner, F.M.; Sobel, J.D.; Newell, P.; Armstrong, J.; Huang, X.; Stone, G.G.; Yates, K.; Gasink, L.B. Ceftazidime-avibactam versus doripenem for the treatment of complicated urinary tract infections, including acute pyelonephritis: Recapture, a phase 3 randomized trial program. Clin. Infect. Dis. 2016, 63, 754–762. [Google Scholar] [CrossRef]
- Torres, A.; Zhong, N.; Pachl, J.; Timsit, J.F.; Kollef, M.; Chen, Z.; Song, J.; Taylor, D.; Laud, P.J.; Stone, G.G.; et al. Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): A randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect. Dis. 2018, 18, 285–295. [Google Scholar] [CrossRef]
- Mazuski, J.E.; Gasink, L.B.; Armstrong, J.; Broadhurst, H.; Stone, G.G.; Rank, D.; Llorens, L.; Newell, P.; Pachl, J. Efficacy and safety of ceftazidime-avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infection: Results from a randomized, controlled, double-blind, phase 3 program. Clin. Infect. Dis. 2016, 62, 1380–1389. [Google Scholar] [CrossRef]
- Carmeli, Y.; Armstrong, J.; Laud, P.J.; Newell, P.; Stone, G.; Wardman, A.; Gasink, L.B. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): A randomised, pathogen-directed, phase 3 study. Lancet Infect. Dis. 2016, 16, 661–673. [Google Scholar]
- Motsch, J.; Murta de Oliveira, C.; Stus, V.; Koksal, I.; Lyulko, O.; Boucher, H.W.; Kaye, K.S.; File, T.M.; Brown, M.L.; Khan, I.; et al. Restore-imi 1: A multicenter, randomized, double-blind trial comparing efficacy and safety of imipenem/relebactam vs colistin plus imipenem in patients with imipenem-nonsusceptible bacterial infections. Clin. Infect. Dis. 2020, 70, 1799–1808. [Google Scholar] [CrossRef]
- Carmeli, Y.; Cisneros, J.M.; Paul, M.; Daikos, G.L.; Wang, M.; Torre-Cisneros, J.; Singer, G.; Titov, I.; Gumenchuk, I.; Zhao, Y.; et al. Aztreonam-avibactam versus meropenem for the treatment of serious infections caused by gram-negative bacteria (REVISIT): A descriptive, multinational, open-label, phase 3, randomised trial. Lancet Infect. Dis. 2025, 25, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Mauri, C.; Maraolo, A.E.; Di Bella, S.; Luzzaro, F.; Principe, L. The revival of aztreonam in combination with avibactam against metallo-β-lactamase-producing gram-negatives: A systematic review of in vitro studies and clinical cases. Antibiotics 2021, 10, 1012. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious diseases society of america 2022 guidance on the treatment of extended-spectrum β-lactamase producing enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2022, 75, 187–212. [Google Scholar] [PubMed]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European society of clinical microbiology and infectious diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef]
- Tamma, P.; Aitken, S.; Bonomo, R.; Mathers, A.; van Duin, D.; Clancy, C. Infectious Diseases Society of America 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. Clin. Infect. Dis. 2023, ciad428. [Google Scholar] [CrossRef]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; Kline, E.G.; Squires, K.M.; Van Tyne, D.; Doi, Y. In vitro activity of cefiderocol against Pseudomonas aeruginosa demonstrating evolved resistance to novel beta-lactam/beta-lactamase inhibitors. JAC Antimicrob. Resist. 2023, 5, dlad107. [Google Scholar] [CrossRef] [PubMed]
- Babich, T.; Naucler, P.; Valik, J.K.; Giske, C.G.; Benito, N.; Cardona, R.; Rivera, A.; Pulcini, C.; Abdel Fattah, M.; Haquin, J.; et al. Ceftazidime, carbapenems, or piperacillin-tazobactam as single definitive therapy for Pseudomonas aeruginosa bloodstream infection: A multisite retrospective study. Clin. Infect. Dis. 2020, 70, 2270–2280. [Google Scholar] [CrossRef]
- Bauer, K.A.; West, J.E.; O’Brien, J.M.; Goff, D.A. Extended-infusion cefepime reduces mortality in patients with Pseudomonas aeruginosa infections. Antimicrob. Agents Chemother. 2013, 57, 2907–2912. [Google Scholar] [CrossRef] [PubMed]
- Felton, T.W.; Hope, W.W.; Lomaestro, B.M.; Butterfield, J.M.; Kwa, A.L.; Drusano, G.L.; Lodise, T.P. Population pharmacokinetics of extended-infusion piperacillin-tazobactam in hospitalized patients with nosocomial infections. Antimicrob. Agents Chemother. 2012, 56, 4087–4094. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Kang, G.; Zang, D.Y.; Lee, D.H. Precision dosing of meropenem in adults with normal renal function: Insights from a population pharmacokinetic and monte carlo simulation study. Antibiotics 2024, 13, 849. [Google Scholar] [CrossRef]
- Asuphon, O.; Montakantikul, P.; Houngsaitong, J.; Kiratisin, P.; Sonthisombat, P. Optimizing intravenous fosfomycin dosing in combination with carbapenems for treatment of Pseudomonas aeruginosa infections in critically ill patients based on pharmacokinetic/pharmacodynamic (pk/pd) simulation. Int. J. Infect. Dis. 2016, 50, 23–29. [Google Scholar] [CrossRef]
- Tamma, P.D.; Heil, E.L.; Justo, J.A.; Mathers, A.J.; Satlin, M.J.; Bonomo, R.A. Infectious diseases society of america 2024 guidance on the treatment of antimicrobial-resistant gram-negative infections. Clin. Infect. Dis. 2024, ciae403. [Google Scholar] [CrossRef]
- Pogue, J.M.; Kaye, K.S.; Veve, M.P.; Patel, T.S.; Gerlach, A.T.; Davis, S.L.; Puzniak, L.A.; File, T.M.; Olson, S.; Dhar, S.; et al. Ceftolozane/tazobactam vs polymyxin or aminoglycoside-based regimens for the treatment of drug-resistant Pseudomonas aeruginosa. Clin. Infect. Dis. 2020, 71, 304–310. [Google Scholar] [CrossRef]
- Tsuji, B.T.; Pogue, J.M.; Zavascki, A.P.; Paul, M.; Daikos, G.L.; Forrest, A.; Giacobbe, D.R.; Viscoli, C.; Giamarellou, H.; Karaiskos, I.; et al. International consensus guidelines for the optimal use of the polymyxins: Endorsed by the american college of clinical pharmacy (ACCP), european society of clinical microbiology and infectious diseases (ESCMID), infectious diseases society of america (IDSA), international society for anti-infective pharmacology (ISAP), society of critical care medicine (SCCM), and society of infectious diseases pharmacists (SIDP). Pharmacotherapy 2019, 39, 10–39. [Google Scholar]
- CDC. CDC/NHSN Surveillance Definitions for Specific Types of Infections; National Healthcare Safety Network (NHSN): Atlanta, GA, USA, 2023; Volume 2023. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.B.; Lee, J.; Kim, Y.K.; Lee, S.S.; Lee, J.-a.; Kim, H.Y.; Uh, Y.; Kim, H.-S.; Song, W. Randomized controlled trial of piperacillin-tazobactam, cefepime and ertapenem for the treatment of urinary tract infection caused by extended-spectrum beta-lactamase-producing escherichia coli. BMC Infect. Dis. 2017, 17, 404. [Google Scholar] [CrossRef]
- Beam, T.R., Jr.; Gilbert, D.N.; Kunin, C.M. General guidelines for the clinical evaluation of anti-infective drug products. Infectious diseases society of america and the food and drug administration. Clin. Infect. Dis. 1992, 15 (Suppl. S1), S5–S32. [Google Scholar] [CrossRef]
- Chow, A.W.; Hall, C.B.; Klein, J.O.; Kammer, R.B.; Meyer, R.D.; Remington, J.S. Evaluation of new anti-infective drugs for the treatment of respiratory tract infections. Infectious diseases society of america and the food and drug administration. Clin. Infect. Dis. 1992, 15 (Suppl. S1), S62–S88. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Goodman, K.E.; Harris, A.D.; Tekle, T.; Roberts, A.; Taiwo, A.; Simner, P.J. Comparing the outcomes of patients with carbapenemase-producing and non-carbapenemase-producing carbapenem-resistant Enterobacteriaceae bacteremia. Clin. Infect. Dis. 2017, 64, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Picao, R.C.; Andrade, S.S.; Nicoletti, A.G.; Campana, E.H.; Moraes, G.C.; Mendes, R.E.; Gales, A.C. Metallo-beta-lactamase detection: Comparative evaluation of double-disk synergy versus combined disk tests for imp-, gim-, sim-, spm-, or vim-producing isolates. J. Clin. Microbiol. 2008, 46, 2028–2037. [Google Scholar] [CrossRef]
- Cabot, G.; Ocampo-Sosa, A.A.; Tubau, F.; Macia, M.D.; Rodriguez, C.; Moya, B.; Zamorano, L.; Suarez, C.; Pena, C.; Martinez-Martinez, L.; et al. Overexpression of ampc and efflux pumps in Pseudomonas aeruginosa isolates from bloodstream infections: Prevalence and impact on resistance in a spanish multicenter study. Antimicrob. Agents Chemother. 2011, 55, 1906–1911. [Google Scholar] [CrossRef]
Antimicrobial Agent | S (%) | I (%) | R (%) | MIC Range (mg/L) | MIC50 (mg/L) | MIC90 (mg/L) |
---|---|---|---|---|---|---|
Ceftazidime–avibactam | 32.86 | NA | 67.14 | ≤0.5–≥512 | 256 | ≥512 |
Ceftolozane–tazobactam | 27.86 | 0.00 | 72.14 | ≤0.5–≥512 | 256 | ≥512 |
Piperacillin–tazobactam | 20.71 | 10.71 | 68.57 | 2–512 | 128 | 256 |
Cefepime | 20.71 | 6.43 | 72.86 | ≤1–≥1024 | 256 | ≥1024 |
Ceftazidime | 22.86 | 2.14 | 75.00 | ≤1–≥1024 | ≥1024 | ≥1024 |
Aztreonam | 14.29 | 51.43 | 34.29 | 2–≥128 | 16 | ≥128 |
Doripenem | 20.00 | 5.71 | 74.29 | ≤0.5–≥512 | 128 | 256 |
Meropenem | 7.14 | 5.71 | 87.14 | 1–≥512 | 128 | ≥512 |
Imipenem | 2.86 | 7.14 | 90.00 | 1–≥512 | 64 | 256 |
Ciprofloxacin | 15.00 | 5.00 | 80.00 | 0.06–≥2 | ≥2 | ≥2 |
Colistin | NA | 98.60 | 1.40 | ≤1–4 | ≤1 | 2 |
Amikacin | 89.30 | 6.40 | 4.30 | ≤8–≥64 | 8 | 32 |
Gentamicin | 66.40 | 1.40 | 32.10 | 2–>8 | 2 | >8 |
Antimicrobial Agents | MBL-Producing Strains | Non-MBL-Producing Strains | ||
---|---|---|---|---|
MIC50 (mg/L) | S (%) | MIC50 (mg/L) | S (%) | |
Ceftazidime–avibactam | ≥512 | 0 | 4 | 59.70 |
Ceftolozane–tazobactam | ≥512 | 0 | 4 | 50.60 |
Piperacillin–tazobactam | 128 | 0 | 32 | 37.70 |
Cefepime | 512 | 0 | 32 | 37.70 |
Ceftazidime | ≥1024 | 0 | 64 | 41.60 |
Aztreonam | 16 | 4.80 | 16 | 22.10 |
Doripenem | 256 | 0 | 8 | 36.40 |
Meropenem | ≥512 | 0 | 16 | 13.00 |
Imipenem | 128 | 0 | 8 | 5.20 |
Ciprofloxacin | ≥2 | 0 | ≥2 | 27.30 |
Colistin | ≤1 | NA | ≤1 | NA |
Amikacin | ≤8 | 100.00 | ≤8 | 80.50 |
Gentamicin | ≤2 | 65.00 | ≤2 | 67.50 |
Characteristics | Survived (n = 89) | Died (n = 39) |
---|---|---|
Male, n (%) | 62 (69.7) | 27 (69.2) |
Age, median (IQR), year | 71 (55–82) | 69 (63–80) |
Body mass index (BMI), median (IQR), kg/m2 | 21.4 (18.1–24.0) | 19.9 (18.7–22.8) |
Serum creatinine, median (IQR), mg/dL | 0.7 (0.5–0.9) | 0.8 (0.5–1.5) |
eGFR, median (IQR), mL/min/1.73 m2 | 93.0 (77.0–109.0) | 83.5 (35.0–122.5) |
Comorbidities | ||
Cancer | 30 (33.7) | 14 (35.9) |
Diabetes | 21 (23.6) | 14 (35.9) |
Asthma or chronic obstructive pulmonary disease | 22 (24.7) | 10 (25.6) |
Multiple comorbidities (>1) | 42 (47.2) | 29 (74.4) |
Charlson Comorbidity Index (CCI), median (IQR) | 5 (4–7) | 6 (5–8) |
Invasive medical device insertion, n (%) | 61 (68.5) | 34 (87.2) |
Immunosuppressive therapy within 14 days *, n (%) | 17 (19.1) | 7 (17.9) |
Neutropenia, n (%) | 5 (5.6) | 2 (5.1) |
APACHE II score, median (IQR) | 14 (11–19) | 20 (16–25) |
SOFA score, median (IQR) | 3 (1–5) | 8 (5–10) |
Septic shock, n (%) | 14 (15.7) | 24 (61.5) |
Intensive care unit admission, n (%) | 31 (34.8) | 25 (64.1) |
Site of infection | ||
Lower respiratory tract | 51 (57.3) | 33 (84.6) |
Urinary tract | 20 (22.5) | 3 (7.7) |
Intra-abdominal | 7 (7.9) | 1 (2.6) |
Skin and soft tissues | 6 (6.7) | 1 (2.6) |
Bloodstream | 4 (4.5) | 1 (2.6) |
Bone and joints | 1 (1.1) | - |
Secondary septicemia, n (%) | 5 (5.6) | 3 (7.7) |
Inadequate source control, n (%) | 6 (6.7) | 1 (2.6) |
Polymicrobial infection (>1 bacterial species) a, n (%) | 48 (53.9) | 23 (59.0) |
Resistance mechanism of CRPA | ||
Overexpression of efflux pumps | 80 (89.9) | 35 (89.7) |
Downregulation of oprD porin | 39 (43.8) | 21 (53.8) |
MBL production | 34 (38.2) | 23 (59.0) |
blaAmpC overexpression | 34 (38.2) | 17 (43.6) |
Active empirical therapy, n (%) | 64 (71.9) | 22 (56.4) |
Active documented therapy, n (%) | 25 (28.1) | 3 (7.7) |
Monotherapy of documented therapy, n (%) | 70 (78.7) | 27 (69.2) |
Colistin | 20 (22.5) | 18 (46.2) |
β-lactams | 26 (29.2) | 7 (17.9) |
Fluoroquinolones | 13 (14.6) | 1 (2.6) |
Aminoglycosides | 10 (11.2) | 1 (2.6) |
Fosfomycin | 1 (1.1) | - |
Combination of documented therapy, n (%) | 19 (21.3) | 12 (30.8) |
Colistin combination-based therapy | 14 (15.7) | 10 (25.6) |
Colistin with β-lactams | 7 (7.9) | 6 (15.4) |
Colistin with fluoroquinolones | 3 (3.4) | 2 (5.1) |
Colistin with fosfomycin | 4 (4.5) | 2 (5.1) |
Non-colistin combination-based therapy | 5 (5.6) | 2 (5.1) |
Adverse drug reaction | ||
Acute kidney injury (AKI) ¶ | 17 (19.1) | 11 (31.4) |
Treatment failure or clinical failure, n (%) | 12 (13.5) | 34 (87.2) |
Variables | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
OR (95%CI) | p Value | OR (95%CI) | p Value | |
Age > 60 years | 1.97 (0.80–4.81) | 0.13 | ||
CCI ≥ 5 | 4.40 (1.57–12.35) | <0.01 * | 3.43 (1.07–10.99) | 0.03 ** |
Invasive device insertion | 3.12 (1.10–8.83) | 0.02 * | ||
APACHE II score ≥ 15 | 5.35 (2.13–13.40) | <0.01 * | ||
SOFA score ≥ 2 | 17.44 (2.27–133.52) | <0.01 * | 10.62 (1.26–89.44) | 0.03 ** |
Septic shock | 8.57 (3.62–20.28) | <0.01 * | 4.39 (1.67–11.55) | <0.01 ** |
ICU admission | 3.34 (1.52–7.33) | <0.01 * | ||
Lower respiratory tract infection | 4.09 (1.56–10.76) | <0.01 * | ||
Urinary tract infection | 0.28 (0.08–1.03) | 0.04 * | ||
MBL production | 2.32 (1.07–5.01) | 0.03 * | 2.39 (0.91–6.23) | 0.07 |
S. maltophilia co-infection | 3.05 (0.87–10.69) | 0.08 * | ||
Active empirical therapy | 0.46 (0.21–1.02) | 0.05 * | ||
Active documented therapy | 0.20 (0.05–0.73) | <0.01 * | 0.17 (0.04–0.74) | 0.01 ** |
Gene | Primer | Sequence (5′->3′) | Product Length (bp) |
---|---|---|---|
mexB | mexB_F | CCACCCACGGCTACGAG | 200 |
mexB_R | CACCTGGGTACGCTCGG | ||
mexD | mexD_F | CAGACCGCTACCCTGGTG | 152 |
mexD_R | ACCAGGACCATCGCTTCG | ||
mexF | mexF_F | TCCCGGCTCGAACGC | 127 |
mexF_R | GGAGCCGCGGACGAA | ||
mexY | mexY_F | GGTGGACGACGCGATCA | 199 |
mexY_R | CGCGAACTGGCGGTAGA | ||
oprD | oprD_F | AACATCTACCGCACAAACGAT | 160 |
oprD_R | GGCCGAAGCCGATATAATCAA | ||
blaAmpC | AmpC_F | ACAGATCCGCGACTACTACC | 152 |
AmpC_R | GGAACACTTGCTGCTCCAT | ||
rpsL | rpsL_F | AACTCGGCACTGCGTAA | 194 |
rpsL_R | CGGTCTTTGACACCCGA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chotimakorn, P.; Pattharachayakul, S.; Lertsrisatit, Y.; Santimaleeworagun, W.; Tansakul, P.; Yingkajorn, M.; Chelae, S.; Pomwised, R.; Chukamnerd, A.; Soontarach, R.; et al. Antimicrobial Resistance and Mortality in Carbapenem-Resistant Pseudomonas aeruginosa Infections in Southern Thailand. Antibiotics 2025, 14, 322. https://doi.org/10.3390/antibiotics14030322
Chotimakorn P, Pattharachayakul S, Lertsrisatit Y, Santimaleeworagun W, Tansakul P, Yingkajorn M, Chelae S, Pomwised R, Chukamnerd A, Soontarach R, et al. Antimicrobial Resistance and Mortality in Carbapenem-Resistant Pseudomonas aeruginosa Infections in Southern Thailand. Antibiotics. 2025; 14(3):322. https://doi.org/10.3390/antibiotics14030322
Chicago/Turabian StyleChotimakorn, Parichart, Sutthiporn Pattharachayakul, Yongyut Lertsrisatit, Wichai Santimaleeworagun, Pimpimon Tansakul, Mingkwan Yingkajorn, Sureerat Chelae, Rattanaruji Pomwised, Arnon Chukamnerd, Rosesathorn Soontarach, and et al. 2025. "Antimicrobial Resistance and Mortality in Carbapenem-Resistant Pseudomonas aeruginosa Infections in Southern Thailand" Antibiotics 14, no. 3: 322. https://doi.org/10.3390/antibiotics14030322
APA StyleChotimakorn, P., Pattharachayakul, S., Lertsrisatit, Y., Santimaleeworagun, W., Tansakul, P., Yingkajorn, M., Chelae, S., Pomwised, R., Chukamnerd, A., Soontarach, R., & Chusri, S. (2025). Antimicrobial Resistance and Mortality in Carbapenem-Resistant Pseudomonas aeruginosa Infections in Southern Thailand. Antibiotics, 14(3), 322. https://doi.org/10.3390/antibiotics14030322