Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae in Dogs from Cape Verde and São Tomé and Príncipe: Implications for Public Health
Abstract
:1. Introduction
2. Results
2.1. Bacterial Isolation and Identification
2.2. Antimicrobial Susceptibility Testing
2.3. Identification of β-Lactamase Genes by PCR
2.4. DNA Fingerprinting
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Bacterial Isolation
4.3. Bacterial Identification
4.4. Confirmation of the ESBL Phenotype
4.5. Antimicrobial Susceptibility Testing
4.6. DNA Extraction
4.7. Identification of β-Lactamase Genes by Multiplex PCR
Target | Primer Sequence (5′–3′) | Amplicon Size (bp) | |
---|---|---|---|
blaSHV | Forward | ATG CGT TAT ATT CGC CTG TG | 747 |
Reverse | TGC TTT GTT ATT CGG GCC AA | ||
blaTEM | Forward | TCG CCG CAT ACA CTA TTC TCA GAA TGA | 445 |
Reverse | ACG CTC ACC GGC TCC AGA TTT AT | ||
blaCTX-M 1 | Forward | ATG TGC AGY ACC AGT AAR GTK ATG GC | 593 |
Reverse | TGG GTR AAR TAR GTS ACC AGA AYC AGC GG | ||
blaCTX-M1 | Forward | AAA AAT CAC TGC GCC AGT TC | 415 |
Reverse | AGC TTA TTC ATC GCC ACG TT | ||
blaCTX-M2 | Forward | CGA CGC TAC CCC TGC TAT T | 522 |
Reverse | CCA GCG TCA GAT TTT TCA GG | ||
blaCTX-M8 | Forward | TCG CGT TAA GCG GAT GAT GC | 666 |
Reverse | AAC CCA CGA TGT GGG TAG C | ||
blaCTX-M9 | Forward | CAA AGA GAG TGC AAC GGA TG | 205 |
Reverse | ATT GGA AAG CGT TCA TCA CC | ||
blaCTX-M25 | Forward | GCA CGA TGA CAT TCG GG | 327 |
Reverse | AAC CCA CGA TGT GGG TAG C |
4.8. DNA Fingerprinting
4.9. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abayneh, M.; Tesfaw, G.; Abdissa, A. Isolation of Extended-Spectrum β-Lactamase-(ESBL-) Producing Escherichia coli and Klebsiella pneumoniae from Patients with Community-Onset Urinary Tract Infections in Jimma University Specialized Hospital, Southwest Ethiopia. Can. J. Infect. Dis. Med. Microbiol. 2018, 2018, 4846159. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Khairy, R.M.M.; Abdelrahim, S.S. Prevalence and Molecular Characteristics of ESBL and AmpC β -Lactamase Producing Enterobacteriaceae Strains Isolated from UTIs in Egypt. Antimicrob. Resist. Infect. Control. 2020, 9, 198. [Google Scholar] [CrossRef]
- Castanheira, M.; Simner, P.J.; Bradford, P.A. Extended-Spectrum β-Lactamases: An Update on Their Characteristics, Epidemiology and Detection. JAC-Antimicrob. Resist. 2021, 3, dlab092. [Google Scholar] [CrossRef]
- Bush, K.; Jacoby, G. Updated Functional Classification of Beta-Lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef]
- Zhang, S.; Liao, X.; Ding, T.; Ahn, J. Role of β-Lactamase Inhibitors as Potentiators in Antimicrobial Chemotherapy Targeting Gram-Negative Bacteria. Antibiotics 2024, 13, 260. [Google Scholar] [CrossRef]
- Cabral, A.B.; Melo, R.d.C.d.A.; Maciel, M.A.V.; Lopes, A.C.S. Multidrug resistance genes, including blaKPC and blaCTX-M-2, among Klebsiella pneumoniae isolated in Recife, Brazil. Rev. da Soc. Bras. de Med. Trop. 2012, 45, 572–578. [Google Scholar] [CrossRef]
- World Health Organization. WHO Integrated Global Surveillance on ESBL-Producing E. coli Using a One Health Approach: Implementation and Opportunities; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Damborg, P.; Broens, E.M.; Chomel, B.B.; Guenther, S.; Pasmans, F.; Wagenaar, J.A.; Weese, J.S.; Wieler, L.H.; Windahl, U.; Vanrompay, D.; et al. Bacterial Zoonoses Transmitted by Household Pets: State-of-the-Art and Future Perspectives for Targeted Research and Policy Actions. J. Comp. Pathol. 2016, 155, S27–S40. [Google Scholar] [CrossRef]
- Marchetti, L.; Buldain, D.; Castillo, L.G.; Buchamer, A.; Chirino-Trejo, M.; Mestorino, N. Pet and Stray Dogs as Reservoirs of Antimicrobial-Resistant Escherichia coli. Int. J. Microbiol. 2021, 2021, 6664557. [Google Scholar] [CrossRef]
- Gargano, V.; Gambino, D.; Orefice, T.; Cirincione, R.; Castelli, G.; Bruno, F.; Interrante, P.; Pizzo, M.; Spada, E.; Proverbio, D.; et al. Can Stray Cats Be Reservoirs of Antimicrobial Resistance? Vet. Sci. 2022, 9, 631. [Google Scholar] [CrossRef]
- Graham, D.W.; Bergeron, G.; Bourassa, M.W.; Dickson, J.; Gomes, F.; Howe, A.; Kahn, L.H.; Morley, P.S.; Scott, H.M.; Simjee, S.; et al. Complexities in Understanding Antimicrobial Resistance across Domesticated Animal, Human, and Environmental Systems. Ann. N. Y. Acad. Sci. 2019, 1441, 17–30. [Google Scholar] [CrossRef]
- Collignon, P.J.; McEwen, S.A. One Health-Its Importance in Helping to Better Control Antimicrobial Resistance. Trop. Med. Infect. Dis. 2019, 4, 22. [Google Scholar] [CrossRef]
- Bradford, P.A. Extended-Spectrum β-Lactamases in the 21st Century: Characterization, Epidemiology, and Detection of This Important Resistance Threat. Clin. Microbiol. Rev. 2001, 14, 933–951. [Google Scholar] [CrossRef]
- Cho, S.; Jackson, C.R.; Frye, J.G. Freshwater Environment as a Reservoir of Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae. J. Appl. Microbiol. 2023, 134, lxad034. [Google Scholar] [CrossRef] [PubMed]
- Markey, B.; Leonard, F.; Archambault, M.; Cullinane, A.; Maguire, D. Enterobacteriaceae. In Clinical Veterinary Microbiology; Elsevier: Edinburgh, Scotland, UK, 2013; pp. 239–274. [Google Scholar]
- Martin, R.M.; Cao, J.; Brisse, S.; Passet, V.; Wu, W.; Zhao, L.; Malani, P.N.; Rao, K.; Bachman, M.A. Molecular Epidemiology of Colonizing and Infecting Isolates of Klebsiella pneumoniae. mSphere 2016, 1, e00261-16. [Google Scholar] [CrossRef] [PubMed]
- Podschun, R.; Ullmann, U. Klebsiella pneumoniae as Nosocomial Pathogens: Epidemiology, Taxonomy, Typing Methods, and Pathogenicity Factors. Clin. Microbiol. Rev. 1998, 11, 589–603. [Google Scholar] [CrossRef] [PubMed]
- Walker, K.J.; Lee, Y.R.; Klar, A.R. Clinical Outcomes of Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae Infections with Susceptibilities among Levofloxacin, Cefepime, and Carbapenems. Can. J. Infect. Dis. Med. Microbiol. 2018, 2018, 3747521. [Google Scholar] [CrossRef]
- Singh, A.; Tanwar, M.; Singh, T.P.; Sharma, S.; Sharma, P. An Escape from ESKAPE Pathogens: A Comprehensive Review on Current and Emerging Therapeutics against Antibiotic Resistance. Int. J. Biol. Macromol. 2024, 279, 135253. [Google Scholar] [CrossRef]
- World Health Organization. WHO Bacterial Priority Pathogens List, 2024: WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Akpan, M.R.; Isemin, N.U.; Udoh, A.E.; Ashiru-Oredope, D. Implementation of Antimicrobial Stewardship Programmes in African Countries: A Systematic Literature Review. J. Glob. Antimicrob. Resist. 2020, 22, 317–324. [Google Scholar] [CrossRef]
- Al Meslamani, A.Z. Antibiotic Resistance in Low- and Middle-Income Countries: Current Practices and Its Global Implications. Expert Rev. Anti-Infect. Ther. 2023, 21, 1281–1286. [Google Scholar] [CrossRef]
- World Health Organization. Regional Office for Africa Antimicrobial Resistance in the WHO African Region: A Systematic Literature Review; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. The Threat of Antimicrobial Resistance in Developing Countries: Causes and Control Strategies. Antimicrob. Resist. Infect. Control 2017, 6, 47. [Google Scholar] [CrossRef]
- World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Storberg, V. ESBL-Producing Enterobacteriaceae in Africa—A Non-Systematic Literature Review of Research Published 2008–2012. Infect. Ecol. Epidemiol. 2014, 4, 20342. [Google Scholar] [CrossRef]
- Sangare, S.A.; Maiga, A.I.; Guindo, I.; Maiga, A.; Camara, N.; Savadogo, S.; Diallo, S.; Bougoudogo, F.; Armand-Lefevre, L.; Andremont, A.; et al. Prevalence of Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae Isolated from Blood Cultures in Africa. Med. Mal. Infect. 2015, 45, 374–382. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, Y.; Feng, Y.; Fang, Q.; Wang, C.; Zhao, F.; McNally, A.; Zong, Z. Prevalence and Clonal Diversity of Carbapenem-Resistant Klebsiella pneumoniae Causing Neonatal Infections: A Systematic Review of 128 Articles across 30 Countries. PLoS Med. 2023, 20, e1004233. [Google Scholar] [CrossRef]
- Sartorius, B.; Gray, A.P.; Weaver, N.D.; Aguilar, G.R.; Swetschinski, L.R.; Ikuta, K.S.; Mestrovic, T.; Chung, E.; E Wool, E.; Han, C.; et al. The Burden of Bacterial Antimicrobial Resistance in the WHO African Region in 2019: A Cross-Country Systematic Analysis. Lancet Glob Health 2024, 12, e201–e216. [Google Scholar] [CrossRef]
- Tacão, M.; Moura, A.; Correia, A.; Henriques, I. Co-Resistance to Different Classes of Antibiotics among ESBL-Producers from Aquatic Systems. Water Res. 2014, 48, 100–107. [Google Scholar] [CrossRef]
- Morosini, M.-I.; García-Castillo, M.; Coque, T.M.; Valverde, A.; Novais, A.; Loza, E.; Baquero, F.; Cantón, R. Antibiotic Coresistance in Extended-Spectrum-β-Lactamase-Producing Enterobacteriaceae and in vitro Activity of Tigecycline. Antimicrob. Agents Chemother. 2006, 50, 2695–2699. [Google Scholar] [CrossRef]
- Graf, F.E.; Goodman, R.N.; Gallichan, S.; Forrest, S.; Picton-Barlow, E.; Fraser, A.J.; Phan, M.-D.; Mphasa, M.; Hubbard, A.T.M.; Musicha, P.; et al. Molecular Mechanisms of Re-Emerging Chloramphenicol Susceptibility in Extended-Spectrum Beta-Lactamase-Producing Enterobacterales. Nat. Commun. 2024, 15, 9019. [Google Scholar] [CrossRef]
- Tulara, N.K. Nitrofurantoin and Fosfomycin for Extended Spectrum Beta-lactamases Producing Escherichia coli and Klebsiella pneumoniae. J. Glob. Infect. Dis. 2018, 10, 19–21. [Google Scholar] [CrossRef]
- Khamari, B.; Kumar, P.; Pradeep, B.E. Resistance to Nitrofurantoin Is an Indicator of Extensive Drug-Resistant (XDR) Enterobacteriaceae. J. Med. Microbiol. 2021, 70, 001347. [Google Scholar] [CrossRef]
- Sekyere, J.O. Genomic Insights into Nitrofurantoin Resistance Mechanisms and Epidemiology in Clinical Enterobacteriaceae. Futur. Sci. OA 2018, 4, FSO293. [Google Scholar] [CrossRef] [PubMed]
- Sheu, C.-C.; Lin, S.-Y.; Chang, Y.-T.; Lee, C.-Y.; Chen, Y.-H.; Hsueh, P.-R. Management of Infections Caused by Extended-Spectrum β–Lactamase-Producing Enterobacteriaceae: Current Evidence and Future Prospects. Expert. Rev. Anti. Infect. Ther. 2018, 16, 205–218. [Google Scholar] [CrossRef]
- Freire, S.; Grilo, T.; Teixeira, M.L.; Fernandes, E.; Poirel, L.; Aires-de-Sousa, M. Screening and Characterization of Multidrug-Resistant Enterobacterales among Hospitalized Patients in the African Archipelago of Cape Verde. Microorganisms 2022, 10, 1426. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Aires-de-sousa, M.; Kudyba, P.; Kieffer, N.; Nordmann, P. Screening and Characterization of Multidrug-Resistant Gram-Negative Bacteria from a Remote African Area, São Tomé and Príncipe. Antimicrob. Agents Chemother. 2018, 62, e01021-18. [Google Scholar] [CrossRef]
- Cantón, R.; González-Alba, J.M.; Galán, J.C. CTX-M Enzymes: Origin and Diffusion. Front. Microbiol. 2012, 3, 110. [Google Scholar] [CrossRef]
- Rossolini, G.; D’Andrea, M.; Mugnaioli, C. The spread of CTX-M-type extended-spectrum β-lactamases. Clin. Microbiol. Infect. 2008, 14, 33–41. [Google Scholar] [CrossRef]
- Deekshit, V.K.; Srikumar, S. ‘To Be, or Not to Be’—The Dilemma of ‘Silent’ Antimicrobial Resistance Genes in Bacteria. J. Appl. Microbiol. 2022, 133, 2902–2914. [Google Scholar] [CrossRef]
- Stasiak, M.; Maćkiw, E.; Kowalska, J.; Kucharek, K.; Postupolski, J. Silent Genes: Antimicrobial Resistance and Antibiotic Production. Pol. J. Microbiol. 2021, 70, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhai, Y.; Guo, Y.; Li, D.; Wang, Z.; Wang, J.; Chen, Y.; Wang, Q.; Gao, Z. Characterization of Unexpressed Extended-Spectrum Beta-Lactamase Genes in Antibiotic-Sensitive Klebsiella pneumoniae Isolates. Microb. Drug Resist. 2018, 24, 799–806. [Google Scholar] [CrossRef]
- Ben-Hamouda, T.; Foulon, T.; Ben-Cheikh-Masmoudi, A.; Fendri, C.; Belhadj, O.; Ben-Mahrez, K. Molecular Epidemiology of an Outbreak of Multiresistant Klebsiella pneumoniae in a Tunisian Neonatal Ward. J. Med. Microbiol. 2003, 52, 427–433. [Google Scholar] [CrossRef]
- Bell, B.G.; Schellevis, F.; Stobberingh, E.; Goossens, H.; Pringle, M. A Systematic Review and Meta-Analysis of the Effects of Antibiotic Consumption on Antibiotic Resistance. BMC Infect. Dis. 2014, 14, 13. [Google Scholar] [CrossRef] [PubMed]
- Bréchet, C.; Plantin, J.; Sauget, M.; Thouverez, M.; Talon, D.; Cholley, P.; Guyeux, C.; Hocquet, D.; Bertrand, X. Wastewater Treatment Plants Release Large Amounts of Extended-Spectrum β-Lactamase-Producing Escherichia coli into the Environment. Clin. Infect. Dis. 2014, 58, 1658–1665. [Google Scholar] [CrossRef]
- Ikhimiukor, O.O.; Odih, E.E.; Donado-Godoy, P.; Okeke, I.N. A Bottom-up View of Antimicrobial Resistance Transmission in Developing Countries. Nat. Microbiol. 2022, 7, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Rusdi, B.; Laird, T.; Abraham, R.; Ash, A.; Robertson, I.D.; Mukerji, S.; Coombs, G.W.; Abraham, S.; O’Dea, M.A. Carriage of Critically Important Antimicrobial Resistant Bacteria and Zoonotic Parasites amongst Camp Dogs in Remote Western Australian Indigenous Communities. Sci. Rep. 2018, 8, 8725. [Google Scholar] [CrossRef]
- Tängdén, T.; Cars, O.; Melhus, Å.; Löwdin, E. Foreign Travel Is a Major Risk Factor for Colonization with Escherichia coli Producing CTX-M-Type Extended-Spectrum β-Lactamases: A Prospective Study with Swedish Volunteers. Antimicrob. Agents Chemother. 2010, 54, 3564–3568. [Google Scholar] [CrossRef]
- Matos, A.; Cunha, E.; Baptista, L.; Tavares, L.; Oliveira, M. ESBL-Positive Enterobacteriaceae from Dogs of Santiago and Boa Vista Islands, Cape Verde: A Public Health Concern. Antibiotics 2023, 12, 447. [Google Scholar] [CrossRef]
- Monteiro, T.; Wysocka, M.; Tellez, E.; Monteiro, O.; Spencer, L.; Veiga, E.; Monteiro, S.; de Pina, C.; Gonçalves, D.; de Pina, S.; et al. A Five-Year Retrospective Study Shows Increasing Rates of Antimicrobial Drug Resistance in Cabo Verde for Both Staphylococcus aureus and Escherichia coli. J. Glob. Antimicrob. Resist. 2020, 22, 483–487. [Google Scholar] [CrossRef]
- Sun, L.; Meng, N.; Wang, Z.; Hong, J.; Dai, Y.; Wang, Z.; Wang, J.; Jiao, X. Genomic Characterization of ESBL/AmpC-Producing Escherichia coli in Stray Dogs Sheltered in Yangzhou, China. Infect. Drug Resist. 2022, 15, 7741–7750. [Google Scholar] [CrossRef] [PubMed]
- Réglier-Poupet, H.; Naas, T.; Carrer, A.; Cady, A.; Adam, J.-M.; Fortineau, N.; Poyart, C.; Nordmann, P. Performance of ChromID ESBL, a Chromogenic Medium for Detection of Enterobacteriaceae Producing Extended-Spectrum β-Lactamases. J. Med. Microbiol. 2008, 57, 310–315. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. CLSI Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2025; Volume CLSI, supplement M100. [Google Scholar]
- Clinical and Laboratory Standards Institute. CLSI Standard M02; CLSI Performance Standards for Antimicrobial Disk Susceptibility Tests; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024. [Google Scholar]
- Singh, S.K.; Ekka, R.; Mishra, M.; Mohapatra, H. Association Study of Multiple Antibiotic Resistance and Virulence: A Strategy to Assess the Extent of Risk Posed by Bacterial Population in Aquatic Environment. Environ. Monit. Assess. 2017, 189, 320. [Google Scholar] [CrossRef]
- Magalhães, R.; Abreu, R.; Pereira, G.; Cunha, E.; Silva, E.; Tavares, L.; Chambel, L.; Oliveira, M. First Insights on Resistance and Virulence Potential of Escherichia coli from Captive Birds of Prey in Portugal. Antibiotics 2024, 13, 379. [Google Scholar] [CrossRef] [PubMed]
- Monstein, H.-J.; Östholm-Balkhed, Å.; Nilsson, M.V.; Dornbusch, K.; Nilsson, L.E. Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX-M genes in Enterobacteriaceae. APMIS 2007, 115, 1400–1408. [Google Scholar] [CrossRef] [PubMed]
- Woodford, N. Rapid Characterization of Beta-Lactamases by Multiplex PCR. In Antibiotic Resistance Protocols; Gillespie, S.H., McHugh, T.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 642, pp. 181–192. [Google Scholar]
- Cornish-Bowden, A. Nucleic Acids Research Nomenclature for Incompletely Specified Bases in Nucleic Acid. Sequences: Rcommendations 1984. Nucleic Acids Res. 1985, 13, 3021–3030. [Google Scholar] [CrossRef] [PubMed]
Antimicrobial Class | Antimicrobial | S (%) | I (%) | R (%) |
---|---|---|---|---|
3rd-G cephalosporins | Ceftazidime | 0.0 | 15.6 | 84.4 |
Cefotaxime | 0.0 | 0.0 | 100.0 | |
Cefpodoxime | 0.0 | 0.0 | 100.0 | |
4th-G cephalosporins | Cefepime | 0.0 | 6.3 | 93.8 |
5th-G cephalosporins | Ceftaroline | 0.0 | 0.0 | 100.0 |
Cephamycins | Cefoxitin | 100.0 | 0.0 | 0.0 |
Monobactams | Aztreonam | 0.0 | 0.0 | 100.0 |
β-Lactam combination agents | Amoxicillin/clavulanate | 53.6 | 31.3 | 12.5 |
Piperacillin/tazobactam | 90.6 | 0.0 | 9.4 | |
Carbapenems | Imipenem | 100.0 | 0.0 | 0.0 |
Meropenem | 100.0 | 0.0 | 0.0 | |
Aminoglycosides | Gentamicin | 15.6 | 34.4 | 50.0 |
Tetracyclines | Tetracycline | 37.5 | 0.0 | 62.5 |
Doxycycline | 37.5 | 0.0 | 62.5 | |
Fluoroquinolones | Ciprofloxacin | 6.3 | 0.0 | 93.8 |
Folate pathway antagonists | Trimethoprim/sulfamethoxazole | 9.4 | 0.0 | 90.6 |
Phenicols | Chloramphenicol | 84.4 | 6.3 | 9.4 |
Nitrofurans | Nitrofurantoin | 21.9 | 25.0 | 53.1 |
Enzyme(s) | Frequency (%) | |
---|---|---|
β-lactamase presence | CTX-M | 96.9 |
TEM | 56.3 | |
SHV | 65.6 | |
CTX-M groups | CTX-M1 | 96.9 |
CTX-M2 | 0.0 | |
CTX-M8 | 0.0 | |
CTX-M9 | 0.0 | |
CTX-M25 | 0.0 | |
β-lactamase distribution patterns | CTX-M | 18.8 |
TEM | 0.0 | |
SHV | 3.1 | |
CTX-M + TEM | 15.6 | |
CTX-M + SHV | 21.9 | |
TEM + SHV | 0.0 | |
CTX-M + TEM + SHV | 40.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abreu, R.; Matos, A.; Capela, L.; Jorge, R.; Guerreiro, J.F.; Pereira, G.; Cunha, E.; Chambel, L.; Tavares, L.; Boyen, F.; et al. Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae in Dogs from Cape Verde and São Tomé and Príncipe: Implications for Public Health. Antibiotics 2025, 14, 408. https://doi.org/10.3390/antibiotics14040408
Abreu R, Matos A, Capela L, Jorge R, Guerreiro JF, Pereira G, Cunha E, Chambel L, Tavares L, Boyen F, et al. Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae in Dogs from Cape Verde and São Tomé and Príncipe: Implications for Public Health. Antibiotics. 2025; 14(4):408. https://doi.org/10.3390/antibiotics14040408
Chicago/Turabian StyleAbreu, Raquel, Alice Matos, Luís Capela, Rita Jorge, Joana F. Guerreiro, Gonçalo Pereira, Eva Cunha, Lélia Chambel, Luis Tavares, Filip Boyen, and et al. 2025. "Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae in Dogs from Cape Verde and São Tomé and Príncipe: Implications for Public Health" Antibiotics 14, no. 4: 408. https://doi.org/10.3390/antibiotics14040408
APA StyleAbreu, R., Matos, A., Capela, L., Jorge, R., Guerreiro, J. F., Pereira, G., Cunha, E., Chambel, L., Tavares, L., Boyen, F., & Oliveira, M. (2025). Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae in Dogs from Cape Verde and São Tomé and Príncipe: Implications for Public Health. Antibiotics, 14(4), 408. https://doi.org/10.3390/antibiotics14040408