Broad-Spectrum Gramicidin S Derivatives with Potent Activity Against Multidrug-Resistant Gram-Negative ESKAPE Pathogens
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals
3.2. Peptide Synthesis
3.3. Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC)
3.4. High-Resolution Mass Spectrometry (HRMS)
3.5. Antibacterial Assays (MIC Determination)
3.6. Haemolysis Assays
3.7. MTT Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abu | α-aminobutyric acid |
ACN | Acetonitrile |
CAMHB | Cation-adjusted Mueller-Hinton broth |
CLSI | Clinical and Laboratory Standards Institute |
CPS | Capsular polysaccharide |
DArg | D-arginine |
DCM | Dichloromethane |
DIPEA | N,N-diisopropylethylamine |
DMF | Dimethylformamide |
DMSO | Dimethyl sulfoxide |
DPhe | D-phenylalanine |
DPPA | Diphenylphosphoryl azide |
DTrp | D-tryptophan |
Fmoc | Fluorenylmethyloxycarbonyl |
GS | Gramicidin S |
HATU | O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate |
HC50 | 50% haemolytic concentration |
HEK-293 | Human embryonic kidney 293 cells |
HEPES | 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid |
HBS | HEPES-buffered saline |
HRMS | High-resolution mass spectrometry |
logP | Logarithm of the partition coefficient |
LPS | Lipopolysaccharide |
MIC | Minimum inhibitory concentration |
MRSA | Methicillin-resistant Staphylococcus aureus |
MSSA | Methicillin-sensitive Staphylococcus aureus |
Pbf | 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl |
RP-HPLC | Reverse-phase high-performance liquid chromatography |
SPPS | Solid-phase peptide synthesis |
TFA | Trifluoroacetic acid |
THF | Tetrahydrofuran |
TI | Therapeutic index |
TIPS | Triisopropylsilane |
Tle | Tert-leucine |
Trp | Tryptophan |
tR | Retention time |
References
- Mobley, H.L.; Anderson, M.T.; Moricz, B.S.; Severin, G.B.; Holmes, C.L.; Ottosen, E.N.; Eichler, T.; Gupta, S.; Paudel, S.; Sinha, R. Fitness factor genes conserved within the multi-species core genome of Gram-negative Enterobacterales species contribute to bacteremia pathogenesis. PLoS Pathog. 2024, 20, e1012495. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, K.A.; Ulrich, R.J.; Vasan, A.K.; Sinclair, M.; Wen, P.-C.; Holmes, J.R.; Lee, H.Y.; Hung, C.-C.; Fields, C.J.; Tajkhorshid, E. A Gram-negative-selective antibiotic that spares the gut microbiome. Nature 2024, 630, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Amaral, L.; Martins, A.; Spengler, G.; Molnar, J. Efflux pumps of Gram-negative bacteria: What they do, how they do it, with what and how to deal with them. Front. Pharmacol. 2014, 4, 168. [Google Scholar] [CrossRef]
- Smith, B.L.; Fernando, S.; King, M.D. Escherichia coli resistance mechanism AcrAB-TolC efflux pump interactions with commonly used antibiotics: A molecular dynamics study. Sci. Rep. 2024, 14, 2742. [Google Scholar] [CrossRef] [PubMed]
- Chatupheeraphat, C.; Peamchai, J.; Luk-In, S.; Yainoy, S.; Eiamphungporn, W. Synergistic effect of two antimicrobial peptides, BP203 and MAP-0403 J-2 with conventional antibiotics against colistin-resistant Escherichia coli and Klebsiella pneumoniae clinical isolates. PLoS ONE 2023, 18, e0294287. [Google Scholar] [CrossRef]
- Abdullah, S.J.; Yan, B.T.S.; Palanivelu, N.; Dhanabal, V.B.; Bifani, J.P.; Bhattacharjya, S. Outer-Membrane Permeabilization, LPS Transport Inhibition: Activity, Interactions, and Structures of Thanatin Derived Antimicrobial Peptides. Int. J. Mol. Sci. 2024, 25, 2122. [Google Scholar] [CrossRef]
- Shepperson, O.A.; Harris, P.W.; Brimble, M.A.; Cameron, A.J. Thanatin and vinyl sulfide analogues as narrow spectrum antimicrobial peptides that synergise with polymyxin B. Front. Pharmacol. 2024, 15, 1487338. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Li, C.; Liu, M.; Qi, Y.; Xie, X.; Zhou, C.; Ma, L. A novel cathelicidin TS-CATH derived from Thamnophis sirtalis combats drug-resistant gram-negative bacteria in vitro and in vivo. Comput. Struct. Biotechnol. J. 2024, 23, 2388–2406. [Google Scholar] [CrossRef]
- Kalyvas, J.T.; Wang, Y.; Toronjo-Urquiza, L.; Stachura, D.L.; Yu, J.; Horsley, J.R.; Abell, A.D. A New Gramicidin S Analogue with Potent Antibacterial Activity and Negligible Hemolytic Toxicity. J. Med. Chem. 2024, 67, 10774–10782. [Google Scholar] [CrossRef]
- Wang, Y.; Kalyvas, J.T.; Evans, J.D.; Toronjo-Urquiza, L.; Horsley, J.R.; Abell, A.D. Expanding the Therapeutic Window of Gramicidin S Towards a Safe and Effective Systemic Treatment of Methicillin-Resistant, S. aureus Infections. Eur. J. Med. Chem. 2024, 283, 117128. [Google Scholar] [CrossRef]
- Le Huy, B.; Phuong, H.B.T.; Thanh, B.N.T.; Van, Q.T.; Dinh, H.V.; Xuan, H.L. Influence of hydrophobicity on the antimicrobial activity of helical antimicrobial peptides: A study focusing on three mastoparans. Mol. Divers. 2024, 28, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mechesso, A.F.; Zhang, W.; Su, Y.; Xie, J.; Wang, G. Segment-Based Peptide Design Reveals the Importance of N-Terminal High Cationicity for Antimicrobial Activity Against Gram-Negative Pathogens. Probiotics Antimicrob. Proteins 2024, 17, 15–34. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, S.S.; Dwibedy, S.K.; Padhy, I. Polymyxins, the last-resort antibiotics: Mode of action, resistance emergence, and potential solutions. J. Biosci. 2021, 46, 85. [Google Scholar] [CrossRef] [PubMed]
- Rathman, B.M.; Allen, J.L.; Shaw, L.N.; Del Valle, J.R. Synthesis and biological evaluation of backbone-aminated analogues of gramicidin S. Bioorganic Med. Chem. Lett. 2020, 30, 127283. [Google Scholar] [CrossRef]
- Swierstra, J.; Kapoerchan, V.; Knijnenburg, A.; van Belkum, A.; Overhand, M. Structure, toxicity and antibiotic activity of gramicidin S and derivatives. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 763–769. [Google Scholar] [CrossRef]
- Wenzel, M.; Rautenbach, M.; Vosloo, J.A.; Siersma, T.; Aisenbrey, C.H.; Zaitseva, E.; Laubscher, W.E.; Van Rensburg, W.; Behrends, J.C.; Bechinger, B. The multifaceted antibacterial mechanisms of the pioneering peptide antibiotics tyrocidine and gramicidin S. mBio 2018, 9, e00802-18. [Google Scholar] [CrossRef]
- Lal, J.; Kaul, G.; Akhir, A.; Saxena, D.; Dubkara, H.; Shekhar, S.; Chopra, S.; Reddy, D.N. β-Turn editing in Gramicidin S: Activity impact on replacing proline α-carbon with stereodynamic nitrogen. Bioorganic Chem. 2023, 138, 106641. [Google Scholar] [CrossRef]
- Gause, G.F.; Brazhnikova, M.G. Gramicidin S and its use in the Treatment of Infected Wounds. Nature 1944, 154, 703. [Google Scholar] [CrossRef]
- Lyu, Y.; Yang, Y.; Lyu, X.; Dong, N.; Shan, A. Antimicrobial activity, improved cell selectivity and mode of action of short PMAP-36-derived peptides against bacteria and Candida. Sci. Rep. 2016, 6, 27258. [Google Scholar] [CrossRef]
- Thacharodi, A.; Vithlani, A.; Hassan, S.; Alqahtani, A.; Pugazhendhi, A. Carbapenem-resistant Acinetobacter baumannii raises global alarm for new antibiotic regimens. iScience 2024, 27, 111367. [Google Scholar] [CrossRef]
- Shi, J.; Cheng, J.; Liu, S.; Zhu, Y.; Zhu, M. Acinetobacter baumannii: An evolving and cunning opponent. Front. Microbiol. 2024, 15, 1332108. [Google Scholar] [CrossRef] [PubMed]
- Pakharukova, N.; Tuittila, M.; Paavilainen, S.; Malmi, H.; Parilova, O.; Teneberg, S.; Knight, S.D.; Zavialov, A.V. Structural basis for Acinetobacter baumannii biofilm formation. Proc. Natl. Acad. Sci. USA 2018, 115, 5558–5563. [Google Scholar] [CrossRef] [PubMed]
- Wildman, S.A.; Crippen, G.M. Prediction of Physicochemical Parameters by Atomic Contributions. J. Chem. Inf. Comput. Sci. 1999, 39, 868–873. [Google Scholar] [CrossRef]
- Ebbensgaard, A.; Mordhorst, H.; Aarestrup, F.M.; Hansen, E.B. The role of outer membrane proteins and lipopolysaccharides for the sensitivity of Escherichia coli to antimicrobial peptides. Front. Microbiol. 2018, 9, 2153. [Google Scholar] [CrossRef]
- Mishra, A.K.; Choi, J.; Moon, E.; Baek, K.-H. Tryptophan-rich and proline-rich antimicrobial peptides. Molecules 2018, 23, 815. [Google Scholar] [CrossRef]
- McKay, M.J.; Greathouse, D.V.; Koeppe, R.E. Flanking aromatic residue competition influences transmembrane peptide helix dynamics. FEBS Lett. 2020, 594, 4280–4291. [Google Scholar] [CrossRef]
- Elfadadny, A.; Ragab, R.F.; AlHarbi, M.; Badshah, F.; Ibáñez-Arancibia, E.; Farag, A.; Hendawy, A.O.; De los Ríos-Escalante, P.R.; Aboubakr, M.; Zakai, S.A. Antimicrobial resistance of Pseudomonas aeruginosa: Navigating clinical impacts, current resistance trends, and innovations in breaking therapies. Front. Microbiol. 2024, 15, 1374466. [Google Scholar] [CrossRef]
- Singh, S.; Wilksch, J.J.; Dunstan, R.A.; Mularski, A.; Wang, N.; Hocking, D.; Jebeli, L.; Cao, H.; Clements, A.; Jenney, A.W. LPS O antigen plays a key role in Klebsiella pneumoniae capsule retention. Microbiol. Spectr. 2022, 10, e01517–e01521. [Google Scholar] [CrossRef]
- Fleeman, R.M.; Macias, L.A.; Brodbelt, J.S.; Davies, B.W. Defining principles that influence antimicrobial peptide activity against capsulated Klebsiella pneumoniae. Proc. Natl. Acad. Sci. USA 2020, 117, 27620–27626. [Google Scholar] [CrossRef]
- Campos, M.A.; Vargas, M.A.; Regueiro, V.; Llompart, C.M.; Albertí, S.; Bengoechea, J.A. Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect. Immun. 2004, 72, 7107–7114. [Google Scholar] [CrossRef]
- Busi, S.; Prasad, R. ESKAPE Pathogens: Detection, Mechanisms and Treatment Strategies; Springer Nature: Berlin, Germany, 2024. [Google Scholar]
- FIELDS, G.B.; NOBLE, R.L. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int. J. Pept. Protein Res. 1990, 35, 161–214. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Tenth Edition; M07-A10; CLSI: Wayne, PA, USA, 2015. [Google Scholar]
Peptide | MIC (µg/mL) | HC50 (µg/mL) | |||||
---|---|---|---|---|---|---|---|
S. aureus ATCC 29213 | S. aureus ATCC USA300 | E. coli ATCC 25922 | P. aeruginosa ATCC 27853 | K. pneumonia ATCC 33495 | A. baumannii ATCC 19606 | ||
GS | 4 | 4 | 32 | 128 | 128 | 8 | 12.34 ± 9.27 |
1 | 2 | 2 | 32 | 64 | 128 | 4 | 5.90 ± 0.23 |
2 | 4 | 4 | 256 | >256 | >256 | 64 | 9.04 ± 0.16 |
3 | 8 | 8 | >256 | >256 | >256 | 128 | 5.85 ± 0.11 |
4 | 8 | 8 | >256 | >256 | >256 | >256 | 12.24 ± 0.47 |
5 | 64 | 64 | >256 | >256 | >256 | >256 | 37.21 ± 1.70 |
6 | 32 | 32 | >256 | >256 | >256 | >256 | 55.58 ± 1.81 |
7 | 6 | 6 | 16 | 32 | 32 | 4 | 84.09 ± 1.02 |
8 | 5 | 5 | 8 | 32 | 16 | 8 | 32.81 ± 0.51 |
9 | 8 | 8 | 16 | 32 | 16 | 8 | 39.21 ± 0.46 |
10 | 5 | 5 | 16 | 32 | 32 | 8 | 31.88 ± 0.47 |
11 | 5 | 5 | 16 | 32 | 16 | 8 | 19.64 ± 0.37 |
12 | 4 | 4 | 32 | 128 | 128 | 8 | 7.49 ± 0.35 |
13 | 4 | 4 | 32 | 128 | 256 | 32 | 6.26 ± 0.35 |
14 | 4 | 4 | 256 | >256 | >256 | >256 | 8.11 ± 0.24 |
15 | 8 | 8 | 16 | 32 | 16 | 8 | 33.82 ± 1.11 |
16 | 16 | 16 | 32 | 64 | 32 | 16 | 65.32 ± 1.72 |
17 | 16 | 16 | 32 | 64 | 32 | 16 | 70.52 ± 1.93 |
18 | 32 | 32 | 64 | 128 | 64 | 32 | 121.6 ± 4.49 |
19 | 3 | 3 | 16 | 16 | 32 | 4 | 17.70 ± 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalyvas, J.T.; Wang, Y.; Romeo, O.; Horsley, J.R.; Abell, A.D. Broad-Spectrum Gramicidin S Derivatives with Potent Activity Against Multidrug-Resistant Gram-Negative ESKAPE Pathogens. Antibiotics 2025, 14, 423. https://doi.org/10.3390/antibiotics14050423
Kalyvas JT, Wang Y, Romeo O, Horsley JR, Abell AD. Broad-Spectrum Gramicidin S Derivatives with Potent Activity Against Multidrug-Resistant Gram-Negative ESKAPE Pathogens. Antibiotics. 2025; 14(5):423. https://doi.org/10.3390/antibiotics14050423
Chicago/Turabian StyleKalyvas, John T., Yifei Wang, Ornella Romeo, John R. Horsley, and Andrew D. Abell. 2025. "Broad-Spectrum Gramicidin S Derivatives with Potent Activity Against Multidrug-Resistant Gram-Negative ESKAPE Pathogens" Antibiotics 14, no. 5: 423. https://doi.org/10.3390/antibiotics14050423
APA StyleKalyvas, J. T., Wang, Y., Romeo, O., Horsley, J. R., & Abell, A. D. (2025). Broad-Spectrum Gramicidin S Derivatives with Potent Activity Against Multidrug-Resistant Gram-Negative ESKAPE Pathogens. Antibiotics, 14(5), 423. https://doi.org/10.3390/antibiotics14050423