Rapid Syndromic Testing: A Key Strategy for Antibiotic Stewardship in ICU Patients with Pneumonia
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. SoC and Unyvero Concordance
2.3. Pathogen Identification
2.4. Antimicrobial Resistance Marker Detection
3. Discussion
4. Materials and Methods
4.1. Study Details
- -
- Fever of >38 °C without other cause;
- -
- Leukopenia (<4000 leukocytes/mm3) or leukocytosis (≥12,000 leukocytes/mm3);
- -
- New onset of purulent sputum or a change in sputum characteristics (i.e., color, smell, quantity, and consistency);
- -
- Cough or dyspnea/tachypnea;
- -
- Suggestive auscultatory signs (e.g., rales, rhonchi, and wheezing);
- -
- Deterioration of gas exchange [33].
4.2. Microbiological Method
4.2.1. Standard-of-Care (SoC) Testing
4.2.2. Testing of Study Samples Using the Unyvero/HPN Application
4.3. Interpretation of Concordances
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CAP | Community-acquired pneumonia |
HAP | Hospital-acquired pneumonia |
VAP | Ventilator-associated pneumonia |
NV-HAP | Non-ventilator hospital-acquired pneumonia |
HAI | Healthcare-associated infections |
ICU | Intensive care unit |
MSSA | Methicillin-sensitive Staphylococcus aureus |
MRSA | Methicillin-resistant Staphylococcus aureus |
MDRO | Multidrug-resistant microorganism |
GNB | Gram-negative bacilli |
GP | Gram-positive |
GN | Gram-negative |
AMR | Antimicrobial drug resistance |
ASP | Antimicrobial stewardship program |
AST | Antimicrobial susceptibility testing |
BSA | Broad-spectrum antibiotic |
SoC | Standard of care |
PCR | Polymerase chain reaction |
TP | True-positive |
TN | True-negative |
FP | False-positive |
FN | False-negative |
PPA | Positive percent agreement |
NPA | Negative percent agreement |
PPV | Positive predictive value |
References
- Lim, W.S. Pneumonia—Overview. Encycl. Respir. Med. 2021, 4, 185. [Google Scholar] [CrossRef]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Bassi, G.L.; Luna, C.M.; Martin-Loeches, I.; et al. International ERS/ESICM/ESCMID/ALAT Guidelines for the Management of Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia: Guidelines for the Management of Hospital-Acquired Pneumonia (HAP)/Ventilator-Associated Pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana Del Tórax (ALAT). Eur. Respir. J. 2017, 50, 1700582. [Google Scholar] [CrossRef] [PubMed]
- Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I.; et al. Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- WHO. The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 3 March 2025).
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Management of Adults with Hospital-Acquired and Ventilator-Associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef]
- Torres, A.; Cilloniz, C.; Niederman, M.S.; Menéndez, R.; Chalmers, J.D.; Wunderink, R.G.; van der Poll, T. Pneumonia. Nat. Rev. Dis. Primers 2021, 7, 25. [Google Scholar] [CrossRef]
- American Thoracic Society; Infectious Diseases Society of America. Guidelines for the Management of Adults with Hospital-Acquired, Ventilator-Associated, and Healthcare-Associated Pneumonia. Am. J. Respir. Crit. Care Med. 2005, 171, 388–416. [Google Scholar] [CrossRef]
- Jarvis, W.R. Hospital-Acquired Pneumonia. In Bennett and Brachman’s Hospital Infections; Jarvis, W., Ed.; Lippincott Williams & Wilkins (LWW): Philadelphia, PA, USA, 2023; pp. 485–490. ISBN 978-1-97-514960-4. [Google Scholar]
- Giuliano, K.K.; Baker, D.; Quinn, B. The Epidemiology of Nonventilator Hospital-Acquired Pneumonia in the United States. Am. J. Infect. Control 2018, 46, 322–327. [Google Scholar] [CrossRef]
- Mendelson, M.; Morris, A.M.; Thursky, K.; Pulcini, C. How to Start an Antimicrobial Stewardship Programme in a Hospital. Clin. Microbiol. Infect. 2020, 26, 447–453. [Google Scholar] [CrossRef]
- Sullivan, K.V. Diagnostic Stewardship in Clinical Microbiology, Essential Partner to Antimicrobial Stewardship. Clin. Chem. 2021, 68, 75–82. [Google Scholar] [CrossRef]
- Dik, J.W.H.; Poelman, R.; Friedrich, A.W.; Panday, P.N.; Lo-Ten-Foe, J.R.; Van Assen, S.; Van Gemert-Pijnen, J.E.W.C.; Niesters, H.G.M.; Hendrix, R.; Sinha, B. An Integrated Stewardship Model: Antimicrobial, Infection Prevention and Diagnostic (AID). Future Microbiol. 2016, 11, 93–102. [Google Scholar] [CrossRef]
- Dessajan, J.; Timsit, J.F. Impact of Multiplex PCR in the Therapeutic Management of Severe Bacterial Pneumonia. Antibiotics 2024, 13, 95. [Google Scholar] [CrossRef]
- Enne, V.I.; Aydin, A.; Baldan, R.; Owen, D.R.; Richardson, H.; Ricciardi, F.; Russell, C.; Nomamiukor-Ikeji, B.O.; Swart, A.M.; High, J.; et al. Multicentre Evaluation of Two Multiplex PCR Platforms for the Rapid Microbiological Investigation of Nosocomial Pneumonia in UK ICUs: The INHALE WP1 Study. Thorax 2022, 77, 1220–1228. [Google Scholar] [CrossRef] [PubMed]
- Timsit, J.F.; Bassetti, M.; Cremer, O.; Daikos, G.; de Waele, J.; Kallil, A.; Kipnis, E.; Kollef, M.; Laupland, K.; Paiva, J.A.; et al. Rationalizing Antimicrobial Therapy in the ICU: A Narrative Review. Intensive Care Med. 2019, 45, 172–189. [Google Scholar] [CrossRef] [PubMed]
- Kollef, M.H.; Shorr, A.F.; Bassetti, M.; Timsit, J.F.; Micek, S.T.; Michelson, A.P.; Garnacho-Montero, J. Timing of Antibiotic Therapy in the ICU. Crit. Care 2021, 25, 360. [Google Scholar] [CrossRef] [PubMed]
- ECDC. WHO Regional Office for Europe/European Centre for Disease Prevention and Control. Antimicrobial Resistance Surveillance in Europe 2022—2020 Data; ECDC: Copenhagen, Denmark, 2022. [Google Scholar]
- World Health Organization. Antimicrobial Stewardship Programmes in Health-Care Facilities in Low-And Middle-Income Countries: A WHO Practical Toolkit; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Palavecino, E.L.; Williamson, J.C.; Ohl, C.A. Collaborative Antimicrobial Stewardship: Working with Microbiology. Infect. Dis. Clin. N. Am. 2020, 34, 51–65. [Google Scholar] [CrossRef]
- Musuroi, C.; Musuroi, S.-I.; Baditoiu, L.; Crainiceanu, Z.; Muntean, D.; Voinescu, A.; Izmendi, O.; Sirmon, A.; Licker, M. The Profile of Bacterial Infections in a Burn Unit during and after the COVID-19 Pandemic Period. Antibiotics 2024, 13, 823. [Google Scholar] [CrossRef]
- Novacescu, A.N.; Buzzi, B.; Bedreag, O.; Papurica, M.; Rogobete, A.F.; Sandesc, D.; Sorescu, T.; Baditoiu, L.; Musuroi, C.; Vlad, D.; et al. Bacterial and Fungal Superinfections in COVID-19 Patients Hospitalized in an Intensive Care Unit from Timișoara, Romania. Infect. Drug Resist. 2022, 15, 7001–7014. [Google Scholar] [CrossRef]
- Murphy, C.N.; Fowler, R.; Balada-Llasat, J.M.; Carroll, A.; Stone, H.; Akerele, O.; Buchan, B.; Windham, S.; Hopp, A.; Ronen, S.; et al. Multicenter Evaluation of the BioFire FilmArray Pneumonia/Pneumonia Plus Panel for Detection and Quantification of Agents of Lower Respiratory Tract Infection. J. Clin. Microbiol. 2020, 58, e00128. [Google Scholar] [CrossRef]
- Luyt, C.E.; Hékimian, G.; Bonnet, I.; Bréchot, N.; Schmidt, M.; Robert, J.; Combes, A.; Aubry, A. Usefulness of Point-of-Care Multiplex PCR to Rapidly Identify Pathogens Responsible for Ventilator-Associated Pneumonia and Their Resistance to Antibiotics: An Observational Study. Crit. Care 2020, 24, 378. [Google Scholar] [CrossRef]
- Tellapragada, C.; Giske, C.G. The Unyvero Hospital-Acquired Pneumonia Panel for Diagnosis of Secondary Bacterial Pneumonia in COVID-19 Patients. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2479–2485. [Google Scholar] [CrossRef]
- Tellapragada, C.; Ydsten, K.A.; Ternhag, A.; Giske, C.G. Evaluation of a Pneumonia Multiplex PCR Panel for Detection of Bacterial Respiratory Tract Pathogens from Serial Specimens Collected from Hospitalized COVID-19 Patients. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 1093–1098. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Li, L.; Du, S.; Liu, Y.; Cao, B. An Evaluation of the Unyvero Pneumonia System for Rapid Detection of Microorganisms and Resistance Markers of Lower Respiratory Infections-a Multicenter Prospective Study on ICU Patients. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2113–2121. [Google Scholar] [CrossRef] [PubMed]
- Papan, C.; Meyer-Buehn, M.; Laniado, G.; Nicolai, T.; Griese, M.; Huebner, J. Assessment of the Multiplex PCR-Based Assay Unyvero Pneumonia Application for Detection of Bacterial Pathogens and Antibiotic Resistance Genes in Children and Neonates. Infection 2018, 46, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Ganti, L.; Rosario, J.; Lebowitz, D.C.; Vera, A.E. Epidemiology and Ethics. In Step-Up to USMLE Step 2 CK; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2019; pp. 333–340. ISBN 1975106288. [Google Scholar]
- Ozongwu, C.; Personne, Y.; Platt, G.; Jeanes, C.; Aydin, S.; Kozato, N.; Gant, V.; O’Grady, J.; Enne, V.I. The Unyvero P55 “sample-in, Answer-out” Pneumonia Assay: A Performance Evaluation. Biomol. Detect. Quantif. 2017, 13, 1–6. [Google Scholar] [CrossRef]
- Peiffer-Smadja, N.; Peiffer-Smadja, N.; Bouadma, L.; Bouadma, L.; Mathy, V.; Allouche, K.; Patrier, J.; Reboul, M.; Montravers, P.; Timsit, J.-F.; et al. Performance and Impact of a Multiplex PCR in ICU Patients with Ventilator-Associated Pneumonia or Ventilated Hospital-Acquired Pneumonia. Crit. Care 2020, 24, 366. [Google Scholar] [CrossRef] [PubMed]
- Giacobbe, D.R.; Battaglini, D.; Enrile, E.M.; Dentone, C.; Vena, A.; Robba, C.; Ball, L.; Bartoletti, M.; Coloretti, I.; Di Bella, S.; et al. Incidence and Prognosis of Ventilator-Associated Pneumonia in Critically Ill Patients with COVID-19: A Multicenter Study. J. Clin. Med. 2021, 10, 555. [Google Scholar] [CrossRef]
- Antimicrobial Guidebook | Stanford Antimicrobial Safety & Sustainability Program | Stanford Medicine. Available online: https://med.stanford.edu/bugsanddrugs/guidebook.html (accessed on 3 March 2025).
- The European Union Implementing Decision (EU) 2018/945 of 22 June 2018 on the Communicable Diseases and Related Special Health Issues to Be Covered by Epidemiological Surveillance as Well as Relevant Case Definitions C/2018/3868. Document 32018D0945 2018. Available online: https://eur-lex.europa.eu/eli/dec_impl/2018/945/oj (accessed on 3 March 2025).
- Klein, M.; Bacher, J.; Barth, S.; Atrzadeh, F.; Siebenhaller, K.; Ferreira, I.; Beisken, S.; Posch, A.E.; Carroll, K.C.; Wunderink, R.G.; et al. Multicenter Evaluation of the Unyvero Platform for Testing Bronchoalveolar Lavage Fluid. J. Clin. Microbiol. 2021, 59, e02497. [Google Scholar] [CrossRef]
Patients | N = 98 | [95% CI] |
---|---|---|
Female [n (%)] | 46 (46.94) | [36.78–57.29] |
Male [n (%)] | 52 (53.06) | [42.71–63.22] |
Age [median, IQR] | 48.00 [28.00–65.00] | / |
No. of days of hospital stay [median, IQR] | 38.00 [22.00–54.00] | / |
Transferred from another hospital [n (%)] | 49 (50) | [39.73–60.27] |
Risk factors | ||
Mechanical ventilation [n (%)] | 98 (100) | [96.31–100.00] |
Urinary catheter [n (%)] | 98 (100) | [96.31–100.00] |
CVC [n (%)] | 96 (97.96) | [92.82–99.75] |
Surgical wound [n (%)] | 91 (92.86) | [85.84–97.08] |
Vasopressors [n (%)] | 90 (91.84) | [84.55–96.41] |
Transfusion [n (%)] | 78 (79.59) | [70.26–87.07] |
Tracheostomy [n (%)] | 60 (61.22) | [50.85–70.90] |
Hemodialysis [n (%)] | 35 (35.71) | [26.29–46.03] |
Immunosuppression [n (%)] | 17 (17.35) | [10.44–26.31] |
Gastrostomy [n (%)] | 3 (3.06) | [0.64–8.69] |
Chemotherapy [n (%)] | 0 (0) | / |
Radiotherapy [n (%)] | 0 (0) | / |
GCS on admission * [median, IQR] | 15.00 [15.00–3.00] | / |
No. of antibiotics [median, IQR] | 7.00 [4.00–10.00] | / |
Outcome | ||
Discharge [n (%)] | 51 (52.04) | [41.71–62.24] |
Death [n (%)] | 42 (42.86) | [32.90–53.25] |
Transfer [n (%)] | 5 (5.10) | [1.68–11.51] |
Acute pathology | ||
HAP [n (%)] | 82 (83.67) | [74.84–90.37] |
CAP [n (%)] | 16 (16.33) | [9.63–25.16] |
Background pathology | ||
Polytrauma [n (%)] | 36 (36.73) | [27.22–47.07] |
Brain tumor [n (%)] | 6 (6.12) | [2.28–12.85] |
Influenza type A/B [n (%)] | 6 (6.12) | [2.28–12.85] |
HAP [n (%)] | 6 (6.12) | [2.28–12.85] |
CVA [n (%)] | 4 (4.08) | [1.12–10.12] |
COVID-19 [n (%)] | 4 (4.08) | [1.12–10.12] |
COPD [n (%)] | 4 (4.08) | [1.12–10.12] |
Brain aneurysm [n (%)] | 3 (3.06) | [0.64–8.69] |
Gastrointestinal tumor [n (%)] | 3 (3.06) | [0.64–8.69] |
Liver cirrhosis [n (%)] | 3 (3.06) | [0.64–8.69] |
Resuscitated cardiorespiratory arrest [n (%)] | 3 (3.06) | [0.64–8.69] |
Post-cesarean infection [n (%)] | 3 (3.06) | [0.64–8.69] |
Meningoencephalitis/encephalitis [n (%)] | 3 (3.06) | [0.64–8.69] |
Acute pancreatitis [n (%)] | 2 (2.04) | [0.25–7.18] |
Acute lower limb ischemia [n (%)] | 2 (2.04) | [0.25–7.18] |
Alcohol intoxication [n (%)] | 2 (2.04) | [0.25–7.18] |
Acute respiratory failure [n (%)] | 2 (2.04) | [0.25–7.18] |
Intestinal obstruction [n (%)] | 1 (1.02) | [0.03–5.55] |
Thermal burn by flame [n (%)] | 1 (1.02) | [0.03–5.55] |
Pleural empyema [n (%)] | 1 (1.02) | [0.03–5.55] |
DIC [n (%)] | 1 (1.02) | [0.03–5.55] |
Miastenia gravis [n (%)] | 1 (1.02) | [0.03–5.55] |
Pulmonary neoplasm [n (%)] | 1 (1.02) | [0.03–5.55] |
Associated pathology | ||
Sepsis [n (%)] | 24 (24.49) | [16.36–34.21] |
Diabetes [n (%)] | 13 (13.27) | [7.26–21.62] |
Pressure ulcers [n (%)] | 8 (8.16) | [3.59–15.45] |
Obesity [n (%)] | 5 (5.10) | [1.68–11.51] |
Other nephropathies ** [n (%)] | 4 (4.08) | [1.12–10.12] |
Nephrolithiasis [n (%)] | 3 (3.06) | [0.64–8.69] |
Pneumothorax [n (%)] | 3 (3.06) | [0.64–8.69] |
Psychopathy [n (%)] | 3 (3.06) | [0.64–8.69] |
COVID-19 [n (%)] | 2 (2.04) | [0.25–7.18] |
Crohn’s disease [n (%)] | 2 (2.04) | [0.25–7.18] |
C. difficile enterocolitis [n (%)] | 1 (1.02) | [0.03–5.55] |
Type of Results | N of Specimens, Total = 100 |
---|---|
All concordant results (either negative or the same microorganisms) [n (%)] | 51 (51.00) |
Partially concordant [n (%)] | 48 (48.00) |
Unyvero miss, SoC finding [n (%)] | 19 (19.00) |
Unyvero finding, SoC miss [n (%)] | 24 (24.00) |
Some misses/findings both with Unyvero and SoC [n (%)] | 5 (5.00) |
Completely discordant results [n (%)] | 1 (1.00) |
Results | N of Specimens, Total = 100 | |
---|---|---|
Unyvero | SoC | |
Negative [n (%)] | 34 (34.00) | 23 (23.00) |
Positive [n (%)] | 66 (66.00) | 77 (77.00) |
1 bacterial strain [n (%)] | 30 (30.00) | 48 (48.00) |
2 bacterial strains [n (%)] | 17 (17.00) | 25 (25.00) |
3 bacterial strains [n (%)] | 9 (9.00) | 4 (4.00) |
4 bacterial strains [n (%)] | 9 (9.00) | 0 (0) |
5 bacterial strains [n (%)] | 1 (1.00) | 0 (0) |
Species | Relative Frequency Based on the SoC [95% CI] | Relative Frequency Based on Unyvero [95% CI] | Positive with Unyvero and the SoC/Positive with the SoC PPA [95% CI] | Negative with Unyvero and the SoC/Negative with the SoC NPA [95% CI] |
---|---|---|---|---|
Acinetobacter baumannii | 26/100 | 33/100 | 24/26 | 65/74 |
26% [17.74–35.73] | 33% [23.92–43.12] | 92.31% [74.87–99.05] | 87.84% [78.16–94.29] | |
Bacillus species * | 2/100 2% [0.24–7.04] | 0/100 0% [0–3.62] | 0/2 0% [0–53.71] | 98/98 100% [96.31–100] |
Citrobacter freundii | 0/100 0% [0–3.62] | 1/100 1% [0.03–5.45] | / | 99/100 99% [94.55–99.97] |
Enterobacter cloacae complex | 2/100 2% [0.24–7.04] | 5/100 5% [1.64–11.28] | 2/2 100% [15.81–100] | 95/98 96.94% [91.31–99.36] |
Escherichia coli | 4/100 4% [1.10–9.93] | 7/100 7% [2.86–13.89] | 4/4 100% [39.76–100] | 93/96 96.88% [91.14–99.35] |
Klebsiella oxytoca | 0/100 0% [0–3.62] | 4/100 4% [1.10–9.93] | / | 96/100 96% [90.07–98.90] |
Klebsiella pneumoniae | 24/100 24% [16.02–33.57] | 17/100 17% [10.23–25.82] | 12/24 50% [29.12–70.88] | 71/76 93.42% [85.31–97.83] |
Klebsiella variicola | 2/100 2% [0.24–7.04] | 2/100 2% [0.24–7.04] | 2/2 100% [15.81–100] | 98/98 100% [96.31–100] |
Moraxella catarrhalis | 0/100 0% [0–3.62] | 2/100 2% [0.24–7.04] | / | 98/100 98% [92.96–99.76] |
Proteus species | 6/100 6% [2.23–12.60] | 7/100 7% [2.86–13.89] | 6/6 100% [54.07–100] | 93/94 98.94% [94.21–99.97] |
Providencia stuartii * | 5/100 5% [1.64–11.28] | 0/100 0% [0–3.62] | 0/5 0% [0–53.71] | 95/95 100% [96.19–100] |
Pseudomonas aeruginosa | 22/100 22% [14.33–31.39] | 25/100 25% [16.88–34.66] | 22/22 100% [84.56–100] | 75/78 96.15% [89.17–99.20] |
Staphylococcus aureus | 10/100 | 11/100 | 8/10 | 87/90 |
10% [4.90–17.62] | 11% [5.62–18.83] | 80% [44.39–97.48] | 96.67% [90.57–99.31] | |
Serratia marcescens | 0/100 | 1/100 | / | 99/100 |
0% [0–3.62] | 1% [0.03–5.45] | 99% [94.55–99.97] | ||
Stenotrophomonas maltophilia | 4/100 | 13/100 | 3/4 | 86/96 |
4% [1.10–9.93] | 13% [7.11–21.20] | 75% [19.41–99.37] | 89.58% [81.68–94.89] | |
Streptococcus pneumoniae | 3/100 | 4/100 | 2/3 | 95/97 |
3% [0.62–8.52] | 4% [1.10–9.93] | 66.67% [9.43–99.16] | 97.94% [92.75–99.75] |
Type of Resistance | N of Samples with the SoC Culture Results | Genotype Markers | Observed Phenotypic Agreement Genotype Markers for the Resistant SoC Results/Genotype Markers with Unyvero PPV [95% CI] | Proportion of False Genotype Markers Genotype Markers for the Sensitive SoC Results/Sensitive SoC Results [95% CI] |
---|---|---|---|---|
Penicillins | 69 | tem; shv | 29/31 93.55% [78.58–99.21] | 2/11 18.18% [2.28–51.78] |
Cephalosporins, generations 1, 2, 3, and 4 | 70 | ctx-M | 9/9 100% [66.37–100] | 0/17 0% [0–19.51] |
Monobactams and carbapenems | 68 | kpc; imp; vim; ndm; and oxa-23, −24/40, −48, and −58 | 35/38 92.10% [78.62–98.34] | 4/18 22.22% [6.41–47.64] |
Sulfonamides | 62 | sul1 | 27/32 84.38% [67.21–94.72] | 5/21 23.81% [8.22–47.17] |
Fluoroquinolones | 77 | gyrA83; gyrA87 | 14/16 87.50% [61.65–98.45] | 2/22 9.09% [1.12–29.16] |
Methicillin-resistant Staphylococcus aureus (MRSA) | 10 | mecA | 2/2 100% [15.81–100] | 0/6 0% [0–45.93] |
Macrolides and lincozamides | 13 | ermB | 3/4 75% [19.41–99.37] | 1/5 20% [0.51–71.64] |
Sample Types | Sputum, Bronchoalveolar Lavage, and Tracheal Aspirates | ||
---|---|---|---|
Category | Organism | Antibiotic Resistance Genes | |
Gram-positive bacteria | Staphylococcus aureus | Macrolides/lincosamides | ermB |
Streptococcus pneumoniae | Oxacillins | mecA and mecC | |
Enterobacteriaceae | Citrobacter freundii | Penicillins | tem and shv |
Escherichia coli | Third-generation cephalosporins | ctx-M | |
Enterobacter cloacae complex | Carbapenems | kpc, imp, ndm, oxa-23, oxa-24/40, oxa-48, oxa-58, and vim | |
Enterobacter aerogenes | Sulfonamides | sul1 | |
Proteus spp. | Fluoroquinolones | gyrA83 and gyrA87 | |
Klebsiella pneumoniae | |||
Klebsiella oxytoca | |||
Klebsiella variicola | |||
Serratia marcescens | |||
Morganella morganii | |||
Non-fermenting bacteria | Moraxella catarrhalis | ||
Pseudomonas aeruginosa | |||
Acinetobacter baumannii complex | |||
Stenotrophomonas maltophilia | |||
Legionella pneumophila | |||
Others/fungi | Pneumocystis jirovecii | ||
Haemophilus influenzae | |||
Mycoplasma pneumoniae | |||
Chlamydophila pneumoniae |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vulpie, S.; Licker, M.; Izmendi, O.; Muntean, D.; Lungeanu, D.; Zembrod, B.S.; Hancu, I.M.; Bedreag, O.; Sandesc, D.; Jumanca, R.; et al. Rapid Syndromic Testing: A Key Strategy for Antibiotic Stewardship in ICU Patients with Pneumonia. Antibiotics 2025, 14, 426. https://doi.org/10.3390/antibiotics14050426
Vulpie S, Licker M, Izmendi O, Muntean D, Lungeanu D, Zembrod BS, Hancu IM, Bedreag O, Sandesc D, Jumanca R, et al. Rapid Syndromic Testing: A Key Strategy for Antibiotic Stewardship in ICU Patients with Pneumonia. Antibiotics. 2025; 14(5):426. https://doi.org/10.3390/antibiotics14050426
Chicago/Turabian StyleVulpie, Silvana, Monica Licker, Oana Izmendi, Delia Muntean, Diana Lungeanu, Beatrice Sarah Zembrod, Iasmina Maria Hancu, Ovidiu Bedreag, Dorel Sandesc, Romanita Jumanca, and et al. 2025. "Rapid Syndromic Testing: A Key Strategy for Antibiotic Stewardship in ICU Patients with Pneumonia" Antibiotics 14, no. 5: 426. https://doi.org/10.3390/antibiotics14050426
APA StyleVulpie, S., Licker, M., Izmendi, O., Muntean, D., Lungeanu, D., Zembrod, B. S., Hancu, I. M., Bedreag, O., Sandesc, D., Jumanca, R., & Baditoiu, L. M. (2025). Rapid Syndromic Testing: A Key Strategy for Antibiotic Stewardship in ICU Patients with Pneumonia. Antibiotics, 14(5), 426. https://doi.org/10.3390/antibiotics14050426