Distribution, Antibiotic Resistance, and Virulence Factors of Vibrio parahaemolyticus in the Southern Coastal Waters of Republic of Korea
Abstract
:1. Introduction
2. Results
2.1. Water Temperature and Salinity
2.2. Distribution of V. parahaemolyticus
2.3. Antimicrobial Resistance Profiles of V. parahaemolyticus
2.4. Abundance Variations and Virulence Genes of V. parahaemolyticus in Shellfish and Seawater
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Analysis of V. parahaemolyticus
4.3. Antimicrobial Susceptibility Tests of V. parahaemolyticus Isolates
4.4. Virulence Genes in V. parahaemolyticus Isolates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Letchumanan, V.; Chan, K.-G.; Lee, L.-H. Vibrio parahaemolyticus: A review on the pathogenesis, prevalence, and advance molecular identification techniques. Front. Microbiol. 2014, 5, 705. [Google Scholar] [CrossRef]
- Thompson, F.L.; Iida, T.; Swings, J. Biodiversity of vibrios. Microbiol. Mol. Biol. Rev. 2004, 68, 403–431. [Google Scholar] [CrossRef] [PubMed]
- López-Cervantes, G.; Álvarez-Ruiz, P.; Luna-Suárez, S.; Luna-González, A.; Esparza-Leal, H.M.; Castro-Martínez, C.; Gámez-Jiménez, C.; Soto-Alcalá, J. Temperature and salinity modulate virulence and PirA gene expression of Vibrio parahaemolyticus, the causative agent of AHPND. Aquac. Int. 2021, 29, 743–756. [Google Scholar] [CrossRef]
- Mok, J.S.; Ryu, A.; Kwon, J.Y.; Park, K.; Shim, K.B. Abundance, antimicrobial resistance, and virulence of pathogenic Vibrio strains from molluscan shellfish farms along the Korean coast. Mar. Pollut. Bull. 2019, 149, 110559. [Google Scholar] [CrossRef]
- Pazhani, G.P.; Chowdhury, G.; Ramamurthy, T. Adaptations of Vibrio parahaemolyticus to stress during environmental survival, host colonization, and infection. Front. Microbiol. 2021, 12, 737299. [Google Scholar]
- Sheahan, M.; Gould, C.A.; Neumann, J.E.; Kinney, P.L.; Hoffmann, S.; Fant, C.; Wang, X.; Kolian, M. Examining the relationship between climate change and vibriosis in the United States: Projected health and economic impacts for the 21st century. Environ. Health Perspect. 2022, 130, 087007. [Google Scholar] [CrossRef]
- Chen, A.J.; Hasan, N.A.; Haley, B.J.; Taviani, E.; Tarnowski, M.; Brohawn, K.; Johnson, C.N.; Colwell, R.R.; Huq, A. Characterization of pathogenic Vibrio parahaemolyticus from the Chesapeake Bay, Maryland. Front. Microbiol. 2017, 8, 2460. [Google Scholar] [CrossRef]
- Raghunath, P. Roles of thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) in Vibrio parahaemolyticus. Front. Microbiol. 2015, 5, 805. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhong, Y.; Gu, X.; Yuan, J.; Saeed, A.F.; Wang, S. The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Front. Microbiol. 2015, 6, 144. [Google Scholar] [CrossRef]
- Odeyemi, O.A. Incidence and prevalence of Vibrio parahaemolyticus in seafood: A systematic review and meta-analysis. Springerplus 2016, 5, 464. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, L.; Zhang, Z.; Zhang, Y.; Wang, Z.; Li, S.; Zhu, Y.; Zheng, H.; Zhang, Z.; Tian, Z. Epidemiological and Genomic analysis of Vibrio parahaemolyticus isolated from imported travelers at the port of Shanghai, China (2017–2019). BMC Microbiol. 2024, 24, 145. [Google Scholar] [CrossRef]
- KCDC. Korea Centers for Disease Control & Prevention, Infectious Disease Portal. Available online: http://www.cdc.go.kr/npt/biz/npp/nppMain.do (accessed on 30 September 2024).
- Huang, Z.; Anokyewaa, M.A.; Wang, J.; Jian, J.; Lu, Y. Pathogenicity and antibiotic resistance analysis of Vibrio species found in coastal water at mainly beach of Shenzhen, China. Front. Mar. Sci. 2022, 9, 980593. [Google Scholar] [CrossRef]
- Xu, X.; Liang, S.; Li, X.; Hu, W.; Li, X.; Lei, L.; Lin, H. Antibiotic resistance and virulence characteristics of Vibrio vulnificus isolated from Ningbo, China. Front. Microbiol. 2024, 15, 1459466. [Google Scholar] [CrossRef]
- Byrne, M.K.; Miellet, S.; McGlinn, A.; Fish, J.; Meedya, S.; Reynolds, N.; Van Oijen, A.M. The drivers of antibiotic use and misuse: The development and investigation of a theory driven community measure. BMC Public Health 2019, 19, 1425. [Google Scholar] [CrossRef] [PubMed]
- Dogra, S.; Giri, B.S.; Kumar, M. Crucial Effects of COVID-19 on Antimicrobial Resistance; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Hsu, J. How covid-19 is accelerating the threat of antimicrobial resistance. BMJ 2020, 369, m1983. [Google Scholar] [CrossRef]
- Hossain, A.; Habibullah-Al-Mamun, M.; Nagano, I.; Masunaga, S.; Kitazawa, D.; Matsuda, H. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: Risks, current concern, and future thinking. Environ. Sci. Pollut. Res. 2022, 29, 11054–11075. [Google Scholar]
- Elmahdi, S.; DaSilva, L.V.; Parveen, S. Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: A review. Food Microbiol. 2016, 57, 128–134. [Google Scholar] [CrossRef]
- Mok, J.S.; Lee, K.J.; Kim, P.H.; Lee, T.S.; Lee, H.J.; Jung, Y.J.; Kim, J.H. Bacteriological quality evaluation of seawater and oysters from the Jaranman-Saryangdo area, a designated shellfish growing area in Korea: Impact of inland pollution sources. Mar. Pollut. Bull. 2016, 108, 147–154. [Google Scholar] [CrossRef]
- Cabello, F.C. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environ. Microbiol. 2006, 8, 1137–1144. [Google Scholar] [CrossRef]
- Yang, J.H.; Mok, J.S.; Jung, Y.J.; Lee, K.J.; Kwon, J.Y.; Park, K.; Moon, S.Y.; Kwon, S.J.; Ryu, A.R.; Lee, T.S. Distribution and antimicrobial susceptibility of Vibrio species associated with zooplankton in coastal area of Korea. Mar. Pollut. Bull. 2017, 125, 39–44. [Google Scholar] [CrossRef]
- Kang, C.-H.; Shin, Y.; Jang, S.; Yu, H.; Kim, S.; An, S.; Park, K.; So, J.-S. Characterization of Vibrio parahaemolyticus isolated from oysters in Korea: Resistance to various antibiotics and prevalence of virulence genes. Mar. Pollut. Bull. 2017, 118, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Ottaviani, D.; Leoni, F.; Talevi, G.; Masini, L.; Santarelli, S.; Rocchegiani, E.; Susini, F.; Montagna, C.; Monno, R.; D’Annibale, L. Extensive investigation of antimicrobial resistance in Vibrio parahaemolyticus from shellfish and clinical sources, Italy. Int. J. Antimicrob. Agents 2013, 42, 191–193. [Google Scholar] [CrossRef]
- Krumperman, P.H. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol. 1983, 46, 165–170. [Google Scholar] [CrossRef]
- Lesmana, M.; Subekti, D.; Simanjuntak, C.H.; Tjaniadi, P.; Campbell, J.R.; Oyofo, B.A. Vibrio parahaemolyticus associated with cholera-like diarrhea among patients in North Jakarta, Indonesia. Diagn. Microbiol. Infect. Dis. 2001, 39, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Mok, J.S.; Kwon, J.Y.; Ryu, A.R.; Kim, S.H.; Lee, H.J. Food-borne outbreaks, distributions, virulence, and antibiotic resistance profiles of Vibrio parahaemolyticus in Korea from 2003 to 2016: A review. Fish. Aquat. Sci. 2018, 21, 3. [Google Scholar] [CrossRef]
- Jones, J.L.; Lüdeke, C.H.; Bowers, J.C.; DeRosia-Banick, K.; Carey, D.H.; Hastback, W. Abundance of Vibrio cholerae, V. vulnificus, and V. parahaemolyticus in Oysters (Crassostrea virginica) and Clams (Mercenaria mercenaria) from Long Island Sound. Appl. Environ. Microbiol. 2014, 80, 7667–7672. [Google Scholar] [CrossRef]
- Lee, J.-K.; Jung, D.-W.; Eom, S.-Y.; Oh, S.-W.; Kim, Y.; Kwak, H.-S.; Kim, Y.-H. Occurrence of Vibrio parahaemolyticus in oysters from Korean retail outlets. Food Control 2008, 19, 990–994. [Google Scholar] [CrossRef]
- Nakaguchi, Y. Contamination by Vibrio parahaemolyticus and its virulent strains in seafood marketed in Thailand, Vietnam, Malaysia, and Indonesia. Trop. Med. Health 2013, 41, 95–102. [Google Scholar] [CrossRef]
- Xie, T.; Wu, Q.; Zhang, J.; Xu, X.; Cheng, J. Comparison of Vibrio parahaemolyticus isolates from aquatic products and clinical by antibiotic susceptibility, virulence, and molecular characterisation. Food Control 2017, 71, 315–321. [Google Scholar] [CrossRef]
- Johnson, C.N.; Flowers, A.R.; Noriea III, N.F.; Zimmerman, A.; Bowers, J.C.; DePaola, A.; Grimes, D. Relationships between environmental factors and pathogenic vibrios in the northern Gulf of Mexico. Appl. Environ. Microbiol. 2010, 76, 7076–7084. [Google Scholar] [CrossRef]
- Silva, I.P.; de Souza Carneiro, C.; Saraiva, M.A.F.; de Oliveira, T.A.S.; de Sousa, O.V.; Evangelista-Barreto, N.S. Antimicrobial resistance and potential virulence of Vibrio parahaemolyticus isolated from water and bivalve mollusks from Bahia, Brazil. Mar. Pollut. Bull. 2018, 131, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Dalmolin, T.V.; de Lima-Morales, D.; Barth, A.L. Plasmid-mediated colistin resistance: What do we know? J. Infect. Epidemiol. 2018, 1, 16–22. [Google Scholar] [CrossRef]
- Chiou, J.; Li, R.; Chen, S. CARB-17 family of β-lactamases mediates intrinsic resistance to penicillins in Vibrio parahaemolyticus. Antimicrob. Agents Chemother. 2015, 59, 3593–3595. [Google Scholar] [CrossRef] [PubMed]
- Valdez, C.; Costa, C.; Simões, M.; De Carvalho, C.C.; Baptista, T.; Campos, M.J. Detection of mcr-1 gene in undefined Vibrio species isolated from clams. Microorganisms 2022, 10, 394. [Google Scholar] [CrossRef]
- Mondal, A.H.; Khare, K.; Saxena, P.; Debnath, P.; Mukhopadhyay, K.; Yadav, D. A review on colistin resistance: An antibiotic of last resort. Microorganisms 2024, 12, 772. [Google Scholar] [CrossRef]
- World Health Organization. WHO List of Critically Important Antimicrobials for Human Medicine (WHO CIA List); WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Aminov, R.I. Horizontal gene exchange in environmental microbiota. Front. Microbiol. 2011, 2, 158. [Google Scholar] [CrossRef] [PubMed]
- Baquero, F.; Martínez, J.-L.; Cantón, R. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 2008, 19, 260–265. [Google Scholar] [CrossRef]
- CDC. Centers for Disease Control and Prevention, Vibrio Infection. Available online: https://www.cdc.gov/vibrio/ (accessed on 12 August 2024).
- Baker-Austin, C.; McArthur, J.; Lindell, A.H.; Wright, M.S.; Tuckfield, R.C.; Gooch, J.; Warner, L.; Oliver, J.; Stepanauskas, R. Multi-site analysis reveals widespread antibiotic resistance in the marine pathogen Vibrio vulnificus. Microb. Ecol. 2009, 57, 151–159. [Google Scholar] [CrossRef]
- Olsen, J.E. DNA-based methods for detection of food-borne bacterial pathogens. Food Res. Int. 2000, 33, 257–266. [Google Scholar] [CrossRef]
- Bacian, C.; Verdugo, C.; García, K.; Perez-Larruscain, J.; De Blas, I.; Cachicas, V.; Lopez-Joven, C. Longitudinal study of total and pathogenic Vibrio parahaemolyticus (tdh+ and/or trh+) in two natural extraction areas of Mytilus chilensis in Southern Chile. Front. Microbiol. 2021, 12, 621737. [Google Scholar] [CrossRef]
- Chang, H.-C.; Chen, M.-L.; Su, Y.-C.; Pai, J.-Y.; Chiu, T.-H. Molecular characterizations of pathogenic Vibrio parahaemolyticus isolated from Southern Taiwan oyster-growing environment. Food Control 2011, 22, 245–251. [Google Scholar] [CrossRef]
- Chiu, T.-H.; Duan, J.; Su, Y.-C. Characteristics of virulent Vibrio parahaemolyticus isolated from Oregon and Washington. J. Food Prot. 2007, 70, 1011–1016. [Google Scholar] [CrossRef] [PubMed]
- Al-Garadi, M.A.; Aziz, R.N.; Almashhadany, D.A.; Al Qabili, D.M.A.; Aljoborey, A.D.A. Validity of cold storage and heat treatment on the deactivation of Vibrio parahaemolyticus isolated from fish meat markets. Ital. J. Food Saf. 2024, 13, 11516. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Risk Assessment Tools for Vibrio Parahaemolyticus and Vibrio Vulnificus Associated with Seafood; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Kaysner, C.A.; DePaola, A.; Jones, J. BAM Chapter 9: Vibrio. Bacteriological Analytical Manual; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2004; p. 8.
- U.S. Food and Drug Administration. Bacteriological Analytical Manual; U.S. Food and Drug Administration: Silver Spring, MD, USA, 1992; p. 529.
- U.S. Food and Drug Administration. Bacteriological Analytical Manual Appendix 2: Most Probable Number from Serial Dilutions. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-appendix-2-most-probable-number-serial-dilutions (accessed on 15 August 2024).
- Humphries, R.; Bobenchik, A.M.; Hindler, J.A.; Schuetz, A.N. Overview of changes to the clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing, M100. J. Clin. Microbiol. 2021, 59, e0021321. [Google Scholar] [CrossRef]
- CDC. National Antimicrobial Resistance Monitoring System (NARMS): 2014 Human Isolates Final Report; CDC: Atlanta, GA, USA, 2014. [Google Scholar]
- Nelapati, S.; Krishnaiah, N. Detection of total and pathogenic Vibrio parahaemolyticus by Polymerase chain reaction using toxR, tdh and trh genes. Vet. World 2010, 3, 268–271. [Google Scholar]
Samples | Concentration (MPN/100 g or 100 mL) | Mean of Detected Values (MPN/100 g or 100 mL) | ||
---|---|---|---|---|
Month | Total Number | Positive Number | ||
Shellfish | ||||
1 | 16 | 0 | <30 | <30 |
2 | 16 | 0 | <30 | <30 |
3 | 15 | 0 | <30 | <30 |
4 | 15 | 1 | <30–36 | 36 |
5 | 15 | 2 | <30–93 | 93 |
6 | 16 | 10 | <30–1500 | 252 |
7 | 16 | 15 | <30–11,000 | 3680 |
8 | 16 | 16 | 150–11,000 | 6011 |
9 | 15 | 13 | <30–11,000 | 1433 |
10 | 13 | 10 | <30–11,000 | 1695 |
11 | 16 | 6 | <30–930 | 229 |
12 | 16 | 3 | <30–62 | 42.7 |
Subtotal | 185 | 76 | <30–11,000 | <30–6011 |
Seawater | ||||
1 | 19 | 0 | <3.0 | <3.0 |
2 | 18 | 0 | <3.0 | <3.0 |
3 | 19 | 0 | <3.0 | <3.0 |
4 | 19 | 0 | <3.0 | <3.0 |
5 | 19 | 1 | <3.0–3.0 | 3.0 |
6 | 18 | 5 | <3.0–9.2 | 7.0 |
7 | 19 | 11 | <3.0–460 | 100 |
8 | 19 | 16 | <3.0–1100 | 248 |
9 | 19 | 15 | <3.0–93 | 21.8 |
10 | 19 | 6 | <3.0–9.2 | 4.3 |
11 | 19 | 7 | <3.0–7.4 | 4.0 |
12 | 19 | 1 | <3.0–3.6 | 3.6 |
Subtotal | 226 | 62 | <3.0–1100 | <3.0–109 |
Resistance Pattern | Number of Antimicrobials | Number of Isolates (%) | MAR Index |
---|---|---|---|
- | 0 | 1 (0.15%) | 0.00 |
AMP * | 1 | 11 (1.63%) | 0.06 |
CL | 9 (1.34%) | 0.06 | |
AMP, CL | 2 | 361 (53.64%) | 0.13 |
AMP, FIS | 4 (0.59%) | 0.13 | |
AMP, STR | 1 (0.15%) | 0.13 | |
CL, STR | 3 (0.45%) | 0.13 | |
AMP, CL, FIS | 3 | 117 (17.38%) | 0.19 |
AMP, CL, STR | 104 (15.45%) | 0.19 | |
AMP, CL, SXT | 1 (0.15%) | 0.19 | |
AMP, FEP, CL | 1 (0.15%) | 0.19 | |
AMP, FOX, CL | 2 (0.30%) | 0.19 | |
AMP, STR, FIS | 1 (0.15%) | 0.19 | |
CL, STR, FIS | 1 (0.15%) | 0.19 | |
AmC, AMP, CL, STR | 4 | 1 (0.15%) | 0.25 |
AMP, CL, FIS, SXT | 2 (0.30%) | 0.25 | |
AMP, CL, FIS, TET | 1 (0.15%) | 0.25 | |
AMP, CL, STR, FIS | 41 (6.09%) | 0.25 | |
AMP, FOX, CL, FIS | 3 (0.45%) | 0.25 | |
AMP, XNL, CL, STR | 1 (0.15%) | 0.25 | |
AmC, AMP, FOX, CL, TET | 5 | 1 (0.15%) | 0.31 |
AMP, CL, STR, FIS, SXT | 1 (0.15%) | 0.31 | |
AMP, CL, STR, FIS, TET | 1 (0.15%) | 0.31 | |
AMP, FOX, CL, STR, FIS | 1 (0.15%) | 0.31 | |
AMP, CHL, CL, FIS, TET, SXT | 6 | 2 (0.30%) | 0.38 |
AMP, CL, STR, FIS, TET, SXT | 1 (0.15%) | 0.38 |
Samples | Isolates | |||
---|---|---|---|---|
Type | Positive Number/Total Number (%) | Concentration (MPN/100 g 100 mL) | Total Number | Positive Number for Pathogenic Genes |
Molluscan shellfish | ||||
Oyster | 47/106 (44.3%) | <30–11,000 | 254 | tdh (2), trh (13) |
Mussel | 15/33 (45.5%) | <30–11,000 | 108 | tdh (0), trh (0) |
Ark shell | 5/12 (41.7%) | <30–11,000 | 33 | tdh (0), trh (2) |
Manila clam | 9/34 (26.5%) | <30–1500 | 34 | tdh (0), trh (0) |
Subtotal | 76/185 (41.1%) | <30–11,000 | 429 | tdh (2), trh (15) |
Seawater | 62/226 (27.4%) | <3.0–1100 | 244 | tdh (3), trh (10) |
Total | 138/411 (33.6%) | - | 673 | 30 (tdh, 5; trh, 25) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zin, H.; Ham, I.; Shin, S.; Yu, H.; Choi, T.-J.; Ha, K.; Mok, J.S. Distribution, Antibiotic Resistance, and Virulence Factors of Vibrio parahaemolyticus in the Southern Coastal Waters of Republic of Korea. Antibiotics 2025, 14, 435. https://doi.org/10.3390/antibiotics14050435
Zin H, Ham I, Shin S, Yu H, Choi T-J, Ha K, Mok JS. Distribution, Antibiotic Resistance, and Virulence Factors of Vibrio parahaemolyticus in the Southern Coastal Waters of Republic of Korea. Antibiotics. 2025; 14(5):435. https://doi.org/10.3390/antibiotics14050435
Chicago/Turabian StyleZin, Hyunwoo, Intae Ham, Soonbum Shin, Hongsik Yu, Tae-Jin Choi, Kwangsoo Ha, and Jong Soo Mok. 2025. "Distribution, Antibiotic Resistance, and Virulence Factors of Vibrio parahaemolyticus in the Southern Coastal Waters of Republic of Korea" Antibiotics 14, no. 5: 435. https://doi.org/10.3390/antibiotics14050435
APA StyleZin, H., Ham, I., Shin, S., Yu, H., Choi, T.-J., Ha, K., & Mok, J. S. (2025). Distribution, Antibiotic Resistance, and Virulence Factors of Vibrio parahaemolyticus in the Southern Coastal Waters of Republic of Korea. Antibiotics, 14(5), 435. https://doi.org/10.3390/antibiotics14050435