Antimicrobial Resistance in Diverse Ecological Niches—One Health Perspective and Food Safety
Abstract
:1. Introduction
2. Agriculture and Environment
2.1. Antibiotic Resistance in Agriculture
2.2. Presence of Antibiotics, Antibiotic-Resistant Bacteria, and Antibiotic-Resistant Genes in Water
3. Food Production and Veterinary Public Health
3.1. Antimicrobial Use (AMU) in Food-Producing Animals
3.2. Surveillance of AMR in Food Production
4. Public Health and One Health Approach
4.1. Pathogenic Microorganisms and Foodborne Infections
4.1.1. Overview of Foodborne Pathogens and AMR
4.1.2. Common Zoonotic Foodborne Pathogens
Non-Typhoidal Salmonella
Campylobacter spp.
Diarrheagenic E. coli
4.2. Non-Pathogenic and Opportunistic Bacteria as the Source of Antimicrobial Resistance in Food
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Martak, D.; Henriot, C.P.; Hocquet, D. Environment, animals, and food as reservoirs of antibiotic-resistant bacteria for humans: One health or more? Infect. Dis. Now 2024, 54, 104895. [Google Scholar] [CrossRef] [PubMed]
- Founou, L.L.; Founou, R.C.; Essack, S.Y. Antimicrobial resistance in the farm-to-plate continuum: More than a food safety issue. Future Sci. OA 2021, 7, FSO692. [Google Scholar] [CrossRef] [PubMed]
- Sweileh, W.M. Global research activity on antimicrobial resistance in food-producing animals. Arch. Public Health 2021, 79, 49. [Google Scholar] [CrossRef] [PubMed]
- Pokharel, S.; Shrestha, P.; Adhikari, B. Antimicrobial use in food animals and human health: Time to implement ‘One Health’ approach. Antimicrob. Resist. Infect. Control 2020, 9, 181. [Google Scholar] [CrossRef]
- Hoffmann, S.; White, A.E.; McQueen, R.B.; Ahn, J.W.; Gunn-Sandell, L.B.; Scallan Walter, E.J. Economic Burden of Foodborne Illnesses Acquired in the United States. Foodborne Pathog. Dis. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Fischer, M.M.; Bild, M. Hospital use of antibiotics as the main driver of infections with antibiotic-resistant bacteria–a reanalysis of recent data from the European Union. bioRxiv 2019, 553537. [Google Scholar] [CrossRef]
- Chang, Q.; Wang, W.; Regev-Yochay, G.; Lipsitch, M.; Hanage, W.P. Antibiotics in agriculture and the risk to human health: How worried should we be? Evol. Appl. 2015, 8, 240–247. [Google Scholar] [CrossRef]
- Magouras, I.; Carmo, L.P.; Stärk, K.D.; Schüpbach-Regula, G. Antimicrobial usage and-resistance in livestock: Where should we focus? Front. Vet. Sci. 2017, 4, 148. [Google Scholar] [CrossRef]
- Bennani, H.; Mateus, A.; Mays, N.; Eastmure, E.; Stärk, K.D.; Häsler, B. Overview of evidence of antimicrobial use and antimicrobial resistance in the food chain. Antibiotics 2020, 9, 49. [Google Scholar] [CrossRef]
- Hudson, J.A.; Frewer, L.J.; Jones, G.; Brereton, P.A.; Whittingham, M.J.; Stewart, G. The agri-food chain and antimicrobial resistance: A review. Trends Food Sci. Technol. 2017, 69, 131–147. [Google Scholar] [CrossRef]
- Lechner, I.; Freivogel, C.; Stärk, K.D.; Visschers, V.H. Exposure pathways to antimicrobial resistance at the human-animal interface—A qualitative comparison of Swiss expert and consumer opinions. Front. Public Health 2020, 8, 345. [Google Scholar] [CrossRef] [PubMed]
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.; Wertheim, H.F.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; et al. Antibiotic resistance—The need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.T.; Carvalho, J.; Fernandes, J.; Palmeira, J.D.; Cunha, M.V.; Fonseca, C. Mapping the scientific knowledge of antimicrobial resistance in food-producing animals. One Health 2021, 13, 100324. [Google Scholar] [CrossRef]
- Verhaegen, M.; Bergot, T.; Liebana, E.; Stancanelli, G.; Streissl, F.; Mingeot-Leclercq, M.P.; Mahillon, J.; Bragard, C. On the use of antibiotics to control plant pathogenic bacteria: A genetic and genomic perspective. Front. Microbiol. 2023, 14, 1221478. [Google Scholar] [CrossRef] [PubMed]
- Auerbach, E.A.; Seyfried, E.E.; McMahon, K.D. Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Res. 2007, 41, 1143–1151. [Google Scholar] [CrossRef]
- Zlatković, N.; Gašić, K.; Kuzmanović, N.; Prokić, A.; Ivanović, M.; Ţivković, S.; Obradović, A. Polyphasic Characterization of Acidovorax citrulli Strains Originating from Serbia. Agronomy 2022, 12, 235. [Google Scholar] [CrossRef]
- Stockwell, V.O.; Duffy, B. Use of antibiotics in plant agriculture. Rev. Sci. Tech. 2012, 31, 199–210. [Google Scholar] [CrossRef]
- Batuman, O.; Britt-Ugartemendia, K.; Kunwar, S.; Yilmaz, S.; Fessler, L.; Redondo, A.; Chumachenko, K.; Chakravarty, S.; Wade, T. The Use and Impact of Antibiotics in Plant Agriculture: A Review. Phytopathology 2024, 114, 885–909. [Google Scholar] [CrossRef]
- Sundin, G.W.; Wang, N. Antibiotic Resistance in Plant-Pathogenic Bacteria. Annu. Rev. Phytopathol. 2018, 56, 161–180. [Google Scholar] [CrossRef]
- McManus, P.S.; Stockwell, V.O.; Sundin, G.W.; Jones, A.L. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 2002, 40, 443–465. [Google Scholar] [CrossRef]
- Vidaver, A.K. Uses of antibiotics in plant agriculture. Clin. Infect. Dis. 2002, 34, 107–110. [Google Scholar] [CrossRef] [PubMed]
- McManus, P.; Jones, A.L. Epidemiology and Genetic Analysis of Streptomycin-Resistant Erwinia amylovora from Michigan and Evaluation of Oxytetracycline for Control. Phytopathology 1994, 84, 627–633. [Google Scholar] [CrossRef]
- Halbert, S. The discovery of huanglongbing in Florida. In Proceedings of the 2nd International Citrus Canker and Huanglongbing Research Workshop, Orlando, FL, USA, 7–11 November 2005. [Google Scholar]
- da Graça, J.V.; Kunta, M.; Sétamou, M.; Rascoe, J.; Li, W.; Nakhla, M.K.; Salas, B.; Bartels, D.W. Huanglongbing in Texas: Report on the first detections in commercial citrus. J. Citr. Pathol. 2015, 2, 27939. [Google Scholar] [CrossRef]
- Vincent, C.I.; Hijaz, F.; Pierre, M.; Killiny, N. Systemic uptake ofoxytetracycline and streptomycin in huanglongbing-affected citrus groves after foliar application and trunk injection. Antibiotics 2022, 11, 1092. [Google Scholar] [CrossRef]
- Wise, J.C.; VanWoerkom, A.H.; Aćimović, S.G.; Sundin, G.W.; Cregg, B.M.; Vandervoort, C. Trunk Injection: A Discriminating Delivering System for Horticulture Crop IPM. Entomol. Ornithol. Herpetol. 2014, 3, 126. [Google Scholar]
- Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef]
- U.S. EPA. Kasugamycin. 20CA01. Human Health Risk Assessment for the Proposed Section 18 Specific Exemption for Use on Almonds; United States Environmental Protection Agency: Washington, DC, USA, 2020. [Google Scholar]
- Shtienberg, D.; Zilberstaine, M.; Oppenheim, D.; Herzog, Z.; Manulis, S.; Shwartz, H.; Kritzman, K. Efficacy of oxolinic acid and other bactericides in suppression of Erwinia amylovora in pear orchards in Israel. Phytoparasitica 2001, 29, 143–154. [Google Scholar] [CrossRef]
- Nandakumar, R.; Shahjahan, A.K.M.; Yuan, X.L.; Dickstein, E.R.; Groth, D.E.; Clark, C.A.; Cartwright, R.D.; Rush, M.C. Burkholderia glumae and B. gladioli Cause Bacterial Panicle Blight in Rice in the Southern United States. Plant Dis. 2009, 93, 896–905. [Google Scholar] [CrossRef]
- Kleitman, F.; Shtienberg, D.; Blachinsky, D.; Oppenheim, D.; Zilberstaine, M.; Dror, O.; Manulis, S. Erwinia amylovora populations resistant to oxolinic acid in Israel: Prevalence, persistence and fitness. Plant Pathol. 2005, 54, 108–115. [Google Scholar] [CrossRef]
- McManus, P.; Stockwell, V. Antibiotics for Plant Diseases Control: Silver Bullets or Rusty Sabers? APS Net Features. 2000. Available online: https://www.apsnet.org/edcenter/apsnetfeatures/Pages/AntibioticsForPlants.aspx (accessed on 6 March 2025).
- Šević, M.; Gašić, K.; Ignjatov, M.; Mijatović, M.; Prokić, A.; Obradović, A. Integration of biological and conventional treatments in control of pepper bacterial spot. Crop. Prot. 2019, 119, 46–51. [Google Scholar] [CrossRef]
- Bonetta, S.; Di Cesare, A.; Pignata, C.; Sabatino, R.; Macri, M.; Corno, G.; Panizzolo, M.; Bonetta, S.; Carraro, E. Occurrence of antibiotic-resistant bacteria and resistance genes in the urban water cycle. Environ. Sci. Pollut. Res. 2023, 30, 35294–35306. [Google Scholar] [CrossRef] [PubMed]
- Kittinger, C.; Lipp, M.; Folli, B.; Kirschner, A.; Baumert, R.; Galler, H.; Grisold, A.J.; Luxner, J.; Weissenbacher, M.; Farlneitner, A.H.; et al. Enterobacteriaceae Isolated from the River Danube: Antibiotic Resistances, with a Focus on the Presence of ESBL and Carbapenemases. PLoS ONE 2016, 11, 0165820. [Google Scholar] [CrossRef] [PubMed]
- Lepuschitz, S.; Schill, S.; Stoager, A.; Pekard-Amenitsch, S.; Huhulescu, S.; Inreiter, N.; Hartl, R.; Kerschner, H.; Sorcharg, S.; Springer, B.; et al. Whole genome sequencing reveals resemblance between ESBL-producing and carbapenem resistant Klebsiella pneumonia isolates from Austrian rivers and clinical isolates from hospitals. Sci. Total Environ. 2019, 662, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Jin, L.; Zhao, Y.; Jiang, L.; Yao, S.; Zhou, W.; Kuangfei, L.; Changzheng, C. Annual trends and health risks of antibiotics and antibiotic resistance genes in a drinking water source in East China. Sci. Total Environ. 2021, 791, 148152. [Google Scholar] [CrossRef]
- Yang, F.X.; Mao, D.Q.; Zhou, H.; Luo, Y. Prevalence and fate of carbapenemase genes in a wastewater treatment plant in Northern China. PLoS ONE 2016, 11, 0156383. [Google Scholar] [CrossRef]
- Gundogdu, A.; Jenisson, A.V.; Smith, H.V.; Stratton, H.; Katouli, M. Extended-spectrum β-lactamase producing Escherichia coli in hospital wastewaters and sewage treatment plants in Queensland, Australia. Can. J. Microbiol. 2013, 59, 737–745. [Google Scholar] [CrossRef]
- Bergeron, S.; Boopathy, R.; Nathaniel, R.; Corbin, A.; Lafleur, G. Presence of antibiotic resistant bacteria and antibiotic resistance genes in raw source water and treated drinking water. Int. Biodeterior. Biodegrad. 2015, 102, 370–374. [Google Scholar] [CrossRef]
- Rizzo, L.; Manaia, C.; Merlin, C.; Schwartz, T.; Dagot, C.; Ploy, M.C.; Michael, I.; Fatta-Kassino, D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci. Total Environ. 2013, 447, 345–360. [Google Scholar] [CrossRef]
- Ghernaout, D.; Elboughdiri, N. Antibiotic Resistance in Water Medium: Background, Facts, and Trends. Appl. Eng. 2020, 4, 1–6. [Google Scholar] [CrossRef]
- Sugden, R.; Kelly, R.; Davies, S. Combating antimicrobial resistance globally. Nat. Microbiol. 2016, 1, 16187. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Gandra, S.; Ashok, A. Global antibiotic consumption 2000 to 2010: An analysis of national pharmaceutical sales data. Lancet Infect. Dis. 2014, 14, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Casanova, L.M.; Hill, V.R.; Sobsey, M.D. Antibiotic-resistance Salmonella in swine wastes and farm surface water. Lett. Appl. Microbiol. 2019, 71, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Federigi, I.; Bonetta, S.; Tesauro, M.; De Giglio, O.; Conti, G.O.; Atomsa, N.T.; Bagordo, F.; Bonetta, S.; Consonni, M.; Diella, G.; et al. A systematic scoping review of antibiotic-resistance in drinking tap water. Environ. Res. 2024, 263, 120075. [Google Scholar] [CrossRef] [PubMed]
- Mompelat, S.; Thomas, O.; Le Bot, B. Contamination Levels of Human Pharmaceutical Compounds in French Surface and Drinking Water. J. Environ. Monit. 2011, 13, 2929–2939. [Google Scholar] [CrossRef]
- Vulliet, E.; Cren-Olive, C.; Grenier-Loustalot, M.-F. Occurrence of Pharmaceuticals and Hormones in Drinking Water Treated from Surface Waters. Environ. Chem. Lett. 2011, 9, 103–144. [Google Scholar] [CrossRef]
- Mi, R.; Patidar, R.; Farenhorst, A.; Cai, Z.; Sepehri, S.; Khafipour, E.; Kumar, A. Detection of fecal bacteria and antibiotic resistance genes in drinking water collected from three First Nations communities in Manitoba, Canada. FEMS Microbiol. Lett. 2019, 366, fnz067. [Google Scholar] [CrossRef]
- Neudorf, K.D.; Huang, Y.N.; Ragush, C.M.; Yost, C.K.; Jamieson, R.C.; Hansen, L.T. Antibiotic resistance genes in municipal wastewater treatment systems and receiving waters in Arctic Canada. Sci. Total Environ. 2017, 598, 1085–1094. [Google Scholar] [CrossRef]
- Guo, X.; Xiaojun, L.; Zhang, A.; Yan, Z.; Chen, S.; Wang, N. Antibiotic contamination in a typical water-rich city in southeast China: A concern for drinking water resource safety. J. Environ. Sci. Health Part B 2019, 55, 193–209. [Google Scholar] [CrossRef]
- Bergeron, S.; Boopathy, R.; Rujkumar, N.; Corbin, A.; Lafleur, G. Presence of antibiotic resistance genes in raw source water of a drinking water treatment plant in a rural community of USA. Int. Biodeterior. Biodegrad. 2017, 124, 3–9. [Google Scholar] [CrossRef]
- Bird, K.; Boopathy, R.; Nathaniel, R.; LaFleur, G. Water pollution and observation of acquired antibiotic resistance in Bayou Lafourche, a major drinking water source in Southeast Louisiana, USA. Environ. Sci. Pollut. Res. 2019, 26, 34220–34232. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; Chamorro, S.; Marti, E.; Huerta, B.; Gros, M.; Sanchez-Melsio, A.; Borrego, C.M.; Barcelo, D.; Balcazar, J.L. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res. 2015, 69, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Sun, S.; Xu, L. Research progress of antibiotic resistance Genes (ARGs) pollution in drinking water source. IOP Conf. Ser. Earth Environ. Sci. 2020, 440, 042020. [Google Scholar] [CrossRef]
- Hubbard, L.E.; Kolpin, D.W.; Givens, C.E.; Blackwell, B.R.; Bradley, P.; Gray, J.L.; Lane, R.F.; Masoner, J.R.; McCleskey, R.B.; Romanok, K.M.; et al. Food, Beverage, and Feedstock Processing Facility Wastewater: A Unique and Underappreciated Source of Contaminants to U.S. Streams. Environ. Sci. Technol. 2022, 56, 1028–1040. [Google Scholar] [CrossRef]
- Taylor, N.G.; Verner-Jeffreys, D.W.; Baker-Austin, C. Aquatic systems: Maintaining, mixing and mobilizing antimicrobial resistance? Trends Ecol. Evol. 2011, 26, 278–284. [Google Scholar] [CrossRef]
- Carattoli, A. Animal reservoirs for extended spectrum beta-lactamase producers. Clin. Microbiol. Infect. 2008, 14, 117–123. [Google Scholar] [CrossRef]
- Khan, F.A.; Hellmark, B.; Ehricht, R.; Söderquist, B.; Jass, J. Related carbapenemase producing Klebsiella isolates detected in both a hospital and associated aquatic environment in Sweden. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 2241–2251. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, Y.; Shi, M.; Qiu, T.; Gao, M.; Tian, S.; Wang, X. Effect of antibiotic type and vegetable species on antibiotic accumulation in soil-vegetable system, soil microbiota, and resistance genes. Chemosphere 2020, 263, 128099. [Google Scholar] [CrossRef]
- Yao, D.; Chang, Y.; Wang, W.; Sun, L.; Liu, J.; Zhao, H.; Zhang, W. The Safety of Consuming Water Dropwort Used to Purify Livestock Wastewater Considering Accumulated Antibiotics and Antibiotic Resistance Genes. Antibiotics 2022, 11, 428. [Google Scholar] [CrossRef]
- Mohamad, Z.A.; Bakon, S.K.; Jamila, М.А.Ј.; Daud, N.; Ciric, L.; Ahmad, N.; Muhamad, N.A. Prevalence of Antibiotic-Resistant Bacteria and Antibiotic-Resistant Genes and the Quantification of Antibiotics in Drinking Water Treatment Plants of Malaysia: Protocol for a Cross-sectional Study. JMIR Res. Protoc. 2022, 11, 37663. [Google Scholar] [CrossRef]
- Reuther, R. Lake and river sediment monitoring. Environmental monitoring. In Encyclopedia of Life Support Systems; Inyang, H.I., Daniels, J.L., Eds.; EOLSS Publishers: Paris, France, 2009; pp. 120–147. [Google Scholar]
- Filipic, B.; Novovic, K.; Studholme, D.J.; Malesevic, M.; Mirkovic, N.; Kojic, M.; Jovcic, B. Shotgun metagenomics reveals differences in antibiotic resistance genes among bacterial communities in Western Balkans glacial lakes sediments. J. Water Health 2020, 18, 383–397. [Google Scholar] [CrossRef]
- Almansour, A.M.; Alhadlaq, M.A.; Alzahrani, K.O.; Mukhtar, L.E.; Alharbi, A.L.; Alajel, S.M. The silent threat: Antimicrobial-resistant pathogens in food-producing animals and their impact on public health. Microorganisms 2023, 11, 2127. [Google Scholar] [CrossRef] [PubMed]
- Van Boeckel, T.P.; Glennon, E.E.; Chen, D.; Gilbert, M.; Robinson, T.P.; Grenfell, B.T.; Levin, S.A.; Bonhoeffer, S.; Laxminarayan, R. Reducing antimicrobial use in food animals. Science 2017, 357, 1350–1352. [Google Scholar] [CrossRef] [PubMed]
- Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heure, O.E.; et al. The global threat of antimicrobial resistance: Science for intervention. New Microbes New Infect. 2015, 6, 22–29. [Google Scholar] [CrossRef]
- Aminov, R.I. The role of antibiotics and antibiotic resistance in nature. Environ. Microbiol. 2009, 11, 2970–2988. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef]
- Tiseo, K.; Huber, L.; Gilbert, M.; Robinson, T.P.; Van Boeckel, T.P. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics 2020, 9, 918. [Google Scholar] [CrossRef]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Available online: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf (accessed on 14 February 2025).
- Vikesland, P.; Garner, E.; Gupta, S.; Kang, S.; Maile-Moskowitz, A.; Zhu, N.I. Differential drivers of antimicrobial resistance across the world. Acc. Chem. Res. 2019, 52, 916–924. [Google Scholar] [CrossRef]
- Looft, T.; Johnson, T.A.; Allen, H.K.; Bayles, D.O.; Alt, D.P.; Stedtfeld, R.D.; Sul, W.J.; Stedtfeld, T.M.; Chai, B.; Cole, J.R.; et al. In-feed antibiotic effects on the swine intestinal microbiome. Proc. Natl. Acad. Sci. USA 2012, 109, 1691–1696. [Google Scholar] [CrossRef]
- Rhouma, M.; Beaudry, F.; Thériault, W.; Letellier, A. Colistin in pig production: Chemistry, mechanism of antibacterial action, microbial resistance emergence, and one health perspectives. Front. Microbiol. 2016, 7, 1789. [Google Scholar] [CrossRef]
- Rhouma, M.; Soufi, L.; Cenatus, S.; Archambault, M.; Butaye, P. Current insights regarding the role of farm animals in the spread of antimicrobial resistance from a one health perspective. Vet. Sci. 2022, 9, 480. [Google Scholar] [CrossRef]
- Aidara-Kane, A.; Angulo, F.J.; Conly, J.M.; Minato, Y.; Silbergeld, E.K.; McEwen, S.A.; Collignon, P.J. WHO Guideline Development Group Hanan Balkhy Peter Collignon John Conly Cindy Friedman Aidan Hollis Samuel Kariuki Hyo-Sun Kwak Scott McEwen Gérard Moulin Antoinette Ngandjio Bernard Rollin Flávia Rossi David Wallinga. World Health Organization (WHO) guidelines on use of medically important antimicrobials in food-producing animals. Antimicrob. Resist. Infect. Control 2018, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- McEwen, S.A.; Collignon, P.J. Antimicrobial resistance: A one health perspective. In Antimicrobial Resistance in Bacteria from Livestock and Companion Animals; American Society for Microbiology: Washington, DC, USA, 2018; pp. 521–547. [Google Scholar] [CrossRef]
- Roy, J.P.; Archambault, M.; Desrochers, A.; Dubuc, J.; Dufour, S.; Francoz, D.; Paradis, M.È.; Rousseau, M. New Quebec regulation on the use of antimicrobials of very high importance in food animals: Implementation and impacts in dairy cattle practice. Can. Vet. J. 2020, 61, 193. [Google Scholar] [PubMed]
- European Sales and Use of Antimicrobials for Veterinary Medicine (ESUAvet). Annual Surveillance Report for 2023, (EMA/CVMP/ESUAVET/80289/2025). Available online: https://www.ema.europa.eu/en/documents/report/european-sales-use-antimicrobials-veterinary-medicine-annual-surveillance-report-2023_en.pdf (accessed on 20 April 2025).
- US Food and Drug Administration. 2023 Summary Report on Antimicrobials Sold or Distributed for Use in Food-Producing Animals; U.S. Department of Health and Human Services: Rockville, MD, USA, 2023. Available online: https://www.fda.gov/animal-veterinary/antimicrobial-resistance/2023-summary-report-antimicrobials-sold-or-distributed-use-food-producing-animals (accessed on 20 April 2025).
- Werner, N.; McEwen., S.; Kreienbrock, L. Monitoring antimicrobial drug usage in animals: Methods and applications. Antimicrobial Resistance in Bacteria from Livestock and Companion. Animals 2018, 1, 569–594. [Google Scholar] [CrossRef]
- Tang, K.L.; Caffrey, N.P.; Nóbrega, D.B.; Cork, S.C.; Ronksley, P.E.; Barkema, H.W.; Polachek, A.J.; Ganshorn, H.; Sharma, N.; Kellner, J.D.; et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: A systematic review and meta-analysis. Lancet Planet. Health 2017, 1, e316–e327. [Google Scholar] [CrossRef]
- Khater, D.F.; Lela, R.A.; El-Diasty, M.; Moustafa, S.A.; Wareth, G. Detection of harmful foodborne pathogens in food samples at the points of sale by MALDT-TOF MS in Egypt. BMC Res. Notes 2021, 14, 1–6. [Google Scholar] [CrossRef]
- EFSA; Aerts, M.; Battisti, A.; Hendriksen, R.; Kempf, I.; Teale, C. Technical specifications on harmonised monitoring of antimicrobial resistance in zoonotic and indicator bacteria from food-producing animals and food. EFSA J. 2019, 17, e05709. [Google Scholar] [CrossRef]
- Mthembu, T.P.; Zishiri, O.T.; El Zowalaty, M.E. Genomic characterization of antimicrobial resistance in food chain and livestock-associated Salmonella species. Animals 2021, 11, 872. [Google Scholar] [CrossRef]
- Chika, E. A three-year study on the prevalence and antibiotic susceptibility pattern of Escherichia coli isolated from cloacal swabs of wild and domestic birds in Ebonyi State, Nigeria. EC Microbiol. 2018, 14, 266–273. [Google Scholar]
- Fetahagić, M.; Ibrahimagić, A.; Uzunović, S.; Beader, N.; Elveđi-Gašparović, V.; Luxner, J.; Gladan, M.; Bedenić, B. Detection and characterisation of extended-spectrum and plasmid-mediated AmpC β-lactamase produced by Escherichia coli isolates found at poultry farms in Bosnia and Herzegovina. Arh. Hig. Rada Toksikol. 2021, 72, 305–313. [Google Scholar] [CrossRef]
- Kowalska-Krochmal, B.; Dudek-Wicher, R. The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens 2021, 10, 165. [Google Scholar] [CrossRef]
- Mellmann, A.; Bletz, S.; Böking, T.; Kipp, F.; Becker, K.; Schultes, A.; Prior, K.; Harmsen, D. Real-time genome sequencing of resistant bacteria provides precision infection control in an institutional setting. J. Clin. Microbiol. 2016, 54, 2874–2881. [Google Scholar] [CrossRef] [PubMed]
- Kozyreva, V.K.; Crandall, J.; Sabol, A.; Poe, A.; Zhang, P.; Concepción-Acevedo, J.; Schroeder, M.N.; Wagner, D.; Higa, J.; Trees, E.; et al. Laboratory investigation of Salmonella enterica serovar Poona outbreak in California: Comparison of pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS) results. PLoS Curr. 2016, 8, ecurrents.outbreaks.1bb3e36e74bd5779bc43ac3a8dae52e6. [Google Scholar] [CrossRef] [PubMed]
- Whole Genome Sequencing as a Tool to Strengthen Foodborne Disease Surveillance and Response. Module 2. Whole Genome Sequencing in Foodborne Disease Outbreak Investigations; World Health Organization: Geneva, Switzerland, 2023; Licence: CC BY-NC; Available online: https://iris.who.int/bitstream/handle/10665/373460/9789240021242-eng.pdf?sequence=1&isAllowed=y (accessed on 18 April 2025).
- Wedley, A.L.; Dawson, S.; Maddox, T.W.; Coyne, K.P.; Pinchbeck, G.L.; Clegg, P.; Nuttall, T.; Kirchner, M.; Williams, N.J. Carriage of antimicrobial resistant Escherichia coli in dogs: Prevalence, associated risk factors and molecular characteristics. Vet. Microbiol. 2017, 199, 23–30. [Google Scholar] [CrossRef]
- Abukhattab, S.; Hosch, S.; Abu-Rmeileh, N.M.E.; Hasan, S.; Vonaesch, P.; Crump, L.; Hattendorf, J.; Daubenberger, C.; Zinsstag, J.; Schindler, T. Whole-genome sequencing for One Health surveillance of antimicrobial resistance in conflict zones: A case study of Salmonella spp. and Campylobacter spp. in the West Bank, Palestine. Appl. Environ. Microbiol. 2023, 89, e00658-23. [Google Scholar] [CrossRef]
- Birgy, A.; Madhi, F.; Jung, C.; Levy, C.; Cointe, A.; Bidet, P.; Hobson, C.A.; Bechet, S.; Sobral, E.; Vuthien, H.; et al. Diversity and trends in population structure of ESBL-producing Enterobacteriaceae in febrile urinary tract infections in children in France from 2014 to 2017. J. Antimicrob. Chemother. 2020, 75, 96–105. [Google Scholar] [CrossRef]
- World Health Organisation. Foodborne Diseases Estimates. Available online: https://www.who.int/data/gho/data/themes/who-estimates-of-the-global-burden-of-foodborne-diseases (accessed on 28 February 2025).
- World Health Organization. Diarrhoeal Disease; WHO: Geneva, Switzerland, 2017; Available online: https://www.who.int/news-room/fact-sheets/detail/diarrhoeal-disease (accessed on 28 February 2025).
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union One Health 2022 Zoonoses Report. EFSA J. 2023, 21, e8442. [Google Scholar] [CrossRef]
- World Health Organization. Salmonella (Non-Typhoidal), Key Facts. Available online: https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal) (accessed on 1 March 2025).
- EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control). The European Union One Health 2023 Zoonoses report. EFSA J. 2024, 22, e9106. [Google Scholar] [CrossRef]
- Interagency Food Safety Analytics Collaboration. Foodborne Illness Source Attribution Estimates for 2019 for Salmonella, Escherichia coli O157, Listeria Monocytogenes and Campylobacter Using Multi-Year Outbreak Surveillance Data, United States; U.S. Department of Health and Human Services’ Centers for Disease Control and Prevention and U.S. Food and Drug Administration, U.S. Department of Agriculture’s Food Safety and Inspection Service: Washington, DC, USA, 2021. Available online: https://www.cdc.gov/ifsac/media/pdfs/P19-2019-report-TriAgency-508.pdf (accessed on 1 March 2025).
- Marchello, C.S.; Birkhold, M.; Crump, J.A. Vacc-iNTS consortium collaborators. Complications and mortality of non-typhoidal salmonella invasive disease: A global systematic review and meta-analysis. Lancet Infect. Dis. 2022, 22, 692–705. [Google Scholar] [CrossRef]
- Sima, C.M.; Buzilă, E.R.; Trofin, F.; Păduraru, D.; Luncă, C.; Duhaniuc, A.; Dorneanu, O.S.; Nastase, E.V. Emerging Strategies against Non-Typhoidal Salmonella: From Pathogenesis to Treatment. Curr. Issues Mol. Biol. 2024, 46, 7447–7472. [Google Scholar] [CrossRef]
- Tack, B.; Vanaenrode, J.; Verbakel, J.Y.; Toelen, J.; Jacobs, J. Invasive non-typhoidal Salmonella infections in sub-Saharan Africa: A systematic review on antimicrobial resistance and treatment. BMC Med. 2020, 18, 212. [Google Scholar] [CrossRef]
- WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2024.
- Du, Y.; Wang, C.; Ye, Y.; Liu, Y.; Wang, A.; Li, Y.; Zhou, X.; Pan, H.; Zhang, J.; Xu, X. Molecular Identification of Multidrug-Resistant Campylobacter Species From Diarrheal Patients and Poultry Meat in Shanghai, China. Front. Microbiol. 2018, 9, 1642. [Google Scholar] [CrossRef]
- Schiaffino, F.; Colston, J.M.; Paredes-Olortegui, M.; François, R.; Pisanic, N.; Burga, R.; Peñataro-Yori, P.; Kosek, M.N. Antibiotic Resistance of Campylobacter Species in a Pediatric Cohort Study. Antimicrob. Agents Chemother. 2019, 63, e01911-18. [Google Scholar] [CrossRef]
- Signorini, M.L.; Rossler, E.; Díaz David, D.C.; Olivero, C.R.; Romero-Scharpen, A.; Soto, L.P.; Astesana, D.M.; Berisvil, A.P.; Zimmermann, J.A.; Fusari, M.L.; et al. Antimicrobial Resistance of Thermotolerant Campylobacter Species Isolated from Humans, Food-Producing Animals, and Products of Animal Origin: A Worldwide Meta-Analysis. Microb. Drug Resist. 2018, 24, 1174–1190. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Mukherjee, S.; Chen, Y.; Li, C.; Young, S.; Warren, M.; Abbott, J.; Friedman, S.; Kabera, C.; Karlsson, M.; et al. Novel gentamicin resistance genes in Campylobacter isolated from humans and retail meats in the USA. J. Antimicrob. Chemother. 2015, 70, 1314–1321. [Google Scholar] [CrossRef] [PubMed]
- Gomes, T.A.; Elias, W.P.; Scaletsky, I.C.; Guth, B.E.; Rodrigues, J.F.; Piazza, R.M.; Ferreira, L.C.; Martinez, M.B. Diarrheagenic Escherichia coli. Braz. J. Microbiol. 2016, 47, 3–30. [Google Scholar] [CrossRef]
- Gautam, O.; Curtis, V. Food hygiene practices of rural women and microbial risk for children: Formative research in Nepal. Am. J. Trop. Med. Hyg. 2021, 105, 1383–1395. [Google Scholar] [CrossRef]
- Hoffmann, V.; Simiyu, S.; Sewell, D.; Tsai, K.; Cumming, O.; Mumma, J.; Baker, K.K. Milk product safety and household food hygiene influence bacterial contamination of infant food in Peri-Urban Kenya. Front. Public Health 2022, 9, 772892. [Google Scholar] [CrossRef]
- Salleh, M.Z.; Mik Zuraina, N.M.; Hajissa, K.; Ilias, M.I.; Deris, Z.Z. Prevalence of Multidrag Resistant Diarrheagenic Escherichia coli in Asia: A Systematic Review and Meta Analysis. Antibiotics 2022, 11, 1333. [Google Scholar] [CrossRef]
- Msolo, L.; Iweriebor, B.C.; Okoh, A.I. Antimicrobial Resistance Profiles of Diarrheagenic E. coli (DEC) and Salmonella Species Recovered from Diarrheal Patients in Selected Rural Communities of the Amathole District Municipality, Eastern Cape Province, South Africa. Infect. Drug Resist. 2020, 13, 4615–4626. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, X.; Hou, H.; Lu, Y.; Yu, J.; Mao, L.; Mao, L.; Sun, Z. Characteristics of diarrheagenic Escherichia coli among children under 5 years of age with acute diarrhea: A hospital based study. BMC Infect. Dis. 2018, 18, 63. [Google Scholar] [CrossRef]
- Dionisio, F.; Domingues, C.P.F.; Rebelo, J.S.; Monteiro, F.; Nogueira, T. The Impact of Non-Pathogenic Bacteria on the Spread of Virulence and Resistance Genes. Int. J. Mol. Sci. 2023, 24, 1967. [Google Scholar] [CrossRef] [PubMed]
- Anas, M.; Lone, S.A.; Malik, A.; Ahmad, J. Antimicrobial Resistance and Public Health Risks Associated with Staphylococci Isolated from Raw and Processed Meat Products. Foodborne Pathog. Dis. 2025, 22, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Raheem, S.M.; Khodier, S.M.; Almathen, F.; Hanafy, A.T.; Abbas, S.M.; Al-Shami, S.A.; Al-Sultan, S.I.; Alfifi, A.; El-Tarabili, R.M. Dissemination, virulence characteristic, antibiotic resistance determinants of emerging linezolid and vancomycin-resistant Enterococcus spp. in fish and crustacean. Int. J. Food Microbiol. 2024, 418, 110711. [Google Scholar] [CrossRef] [PubMed]
- Moghimi, B.; Ghobadi, D.M.; Shapouri, R.; Jalili, M. Antibiotic resistance profile of indigenous Streptococcus thermophilus and Lactobacillus bulgaricus strains isolated from traditional yogurt. J. Food Qual. 2023, 2023, 4745784. [Google Scholar] [CrossRef]
- Obioha, P.I.; Anyogu, A.; Awamaria, B.; Ghoddusi, H.B.; Ouoba, L.I.I. Antimicrobial Resistance of Lactic Acid Bacteria from Nono, a Naturally Fermented Milk Product. Antibiotics 2023, 12, 843. [Google Scholar] [CrossRef]
- Chajęcka-Wierzchowska, W.; Zadernowska, A.; Zarzecka, U.; Zakrzewski, A.; Gajewska, J. Enterococci from ready-to-eat food—Horizontal gene transfer of antibiotic resistance genes and genotypic characterization by PCR melting profile. J. Sci. Food Agric. 2019, 99, 1172–1179. [Google Scholar] [CrossRef]
- Fontana, C.; Patrone, V.; Lopez, C.M.; Morelli, L.; Rebecchi, A. Incidence of Tetracycline and Erythromycin Resistance in Meat-Associated Bacteria: Impact of Different Livestock Management Strategies. Microorganisms 2021, 9, 2111. [Google Scholar] [CrossRef]
- Kläui, A.; Bütikofer, U.; Naskova, J.; Wagner, E.; Marti, E. Fresh produce as a reservoir of antimicrobial resistance genes: A case study of Switzerland. Sci. Total Environ. 2024, 907, 167671. [Google Scholar] [CrossRef]
- Sabala, R.F.; Fukuda, A.; Nakajima, C.; Suzuki, Y.; Usui, M.; Elhadidy, M. Carbapenem and colistin-resistant hypervirulent Klebsiella pneumoniae: An emerging threat transcending the egyptian food chain. J. Infect. Public Health 2024, 17, 1037–1046. [Google Scholar] [CrossRef]
- Rao, M.; Teixeira, J.S.; Flint, A.; Tamber, S. Hazard Characterization of Antibiotic-resistant Aeromonas spp. Isolated from Mussel and Oyster Shellstock Available for Retail Purchase in Canada. J. Food Prot. 2024, 87, 100374. [Google Scholar] [CrossRef]
- Furlan, J.P.R.; Lopes, R.; Ramos, M.S.; Rosa, R.D.S.; Dos Santos, L.D.R.; Stehling, E.G. The detection of KPC-2, NDM-1, and VIM-2 carbapenemases in international clones isolated from fresh vegetables highlights an emerging food safety issue. Int. J. Food Microbiol. 2024, 420, 110765. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, F.; Caputo, L.; Quintieri, L. Phenotypic and genomic characterization of Pseudomonas putida ITEM 17297 spoiler of fresh vegetables: Focus on biofilm and antibiotic resistance interaction. Curr. Res. Food Sci. 2021, 4, 74–82. [Google Scholar] [CrossRef] [PubMed]
Antimicrobial Classes | EU | USA | ||
---|---|---|---|---|
Antimicrobial Sales (tonnes) | % | Antimicrobial Sales (tonnes) | % | |
Penicillins | 1354.16 | 31.4 | 614.62 | 10.2 |
Tetracyclines | 931.52 | 21.6 | 4051.12 | 66.9 |
Sulfonamides | 435.57 | 10.1 | 263.09 | 4.3 |
Macrolides | 414.01 | 9.6 | 530.59 | 8.8 |
Aminoglycosides | 297.57 | 6.9 | 320.63 | 5.3 |
Lincosamides | 228.57 | 5.3 | 149.75 | 2.5 |
Other classes * | 219.94 | 5.1 | 95.29 | 1.6 |
Fluoroquinolones | 99.19 | 2.3 | 26.91 | 0.4 |
Pleuromutilins | 146.63 | 3.4 | - | - |
Polymixins | 116.44 | 2.7 | - | - |
Trimethoprim | 69.00 | 1.6 | - | - |
Total | 4312.60 | 100.0 | 6051.99 | 100.0 |
Bacteria | Confirmed Human Cases (N) | Hospitalizations and Proportion of Hospitalized Cases (N) | Deaths (N) |
---|---|---|---|
Campylobacter spp. | 148,181 | 90 | 0 |
Salmonella spp. | 77,486 | 1726 | 16 |
STEC infections | 10,217 | 48 | 1 |
Yersinia spp. | 8738 | 9 | 0 |
Listeria monocytogenes | 2952 | 84 | 11 |
Brucella spp. | 259 | 0 | 0 |
Mycobacterium bovis and M. caprae (Mycobacterium causing zoonotic tuberculosis) | 138 | 0 | 0 |
Bacterial Origin | Bacteria | Antibiotic Class and Corresponding Resistance Genes | Reference |
---|---|---|---|
Gram-positive | |||
Street kebab, raw buffalo meat | Staphylococcus spp. | β-lactam → mecA Fluoroquinolone → qnrB/S Sulfonamide → sul1 | [116] |
Fish, crustacean | Enterococcus spp. | Aminoglycoside → aac(6′)-Ie-aph(2″)-Ia β-lactam → blaZ Fluoroquinolone → gyrA Glycopeptide → vanA, vanB Macrolide → ermB Oxazolidinone → optrA Tetracycline → tetM/K | [117] |
Yogurt | Streptococcus thermophiles, Lactobacillus bulgaricus | Aminoglycoside → AacA-D, strA, strB β-lactam → blaZ Fluoroquinolone → gyrA Lincosamide → linA, cat1 Macrolide → ermA Nitrofuran → nfsA Rifamycin → rpoB Tetracycline → tetM/K | [118] |
Nono | Enterococcus thailandicus, Streptococcus infantarius | Aminoglycoside → aadE Tetracycline → tetS/M | [119] |
Ready-to-eat food | Enterococcus spp. (E. faecium, E. faecalis) | Aminoglycoside → aac(6′)-Ie-aph(2′′)-Ia, ant(6′)-Ia Macrolide → mefA/E, ermB Tetracycline → tetK/L/M | [120] |
Pork and llama sausages | Latilactobacillus sakei, Lactiplantibacillus plantarum, Staphylococcus spp. (S. xylosus, S. equorum, S. saprophyticus) | Macrolide → ermA/B/C Tetracycline → tetK/L/M/S/W | [121] |
Gram-negative | |||
Tomatoes, carrots, iceberg lettuce, strawberries, coriander | Enterobacter spp. (E. cloacae, E. ludwigii, E. asburiae, E. kobei), Lelliottia amnigena, Morganella morganii, Serratia spp. (S. fonticola, S. odorifera), Pseudomonas aeruginosa | Aminoglycoside → aadE β-lactam → blaTEM/CTX-M/SHV/CMY/OXA-48 Fluoroquinolone → qnrS Sulfonamide → sul1 Tetracycline → tetW | [122] |
Minced meat, diced meat, chicken meat, mutton meat | Klebsiella pneumoniae | Aminoglycoside → aph(3′)-VI, aph(3′)Ia, aph(3′′)-Ib, aph(6)-Id, aac (3)-IIa, aac (6′)-Ib, aadA1, aac(6′)-Ib-c, rmtF Amphenicol → catB3 β-lactam → blaNDM-1/NDM-5/OXA-48/OXA-9/OXA-1/OXA-10/CTX-M-15/SHV-67/SHV-1/SHV-148/CTX-M-14b/TEM-1A/TEM-1C/CTX-M-82/CTX-M-194/TEM-1B Fluoroquinolone → qnrB1, OqxA, OqxB Fosfomycin → fosA, fosA6 Sulfonamide → sul1/2 Tetracycline → tetA Trimethoprim → dfrA5 | [123] |
Fresh mussels and oysters | Aeromonas spp. | Aminoglycoside → aadA2, dfrA12, aph(3″)-Ib, aph(6)-Id Amphenicol → catA3, catIII β-lactam → ampS, ampH, blaFOX/CEPH-A3/MOX/oxa/AQU, cphA3/4/6/7, imiHPolymyhin → mcr3 Sulfonamide → sul1/2 Tetracycline → tetA/E/Y Trimethoprim → dfrA15 | [124] |
Fresh cabbage, spinach, lettuce | Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa | β-lactam → blaKPC-2/NDM-1/VIM-2 | [125] |
Fresh vegetables | Pseudomonas putida | β-lactam → BepC, bcr, Mdtl, AcrAB-TolC, MexEF-OprN Quinolone → Mdtl, AcrAB-TolC, MexEF-OprN Tetracycline → Mdtl, AcrAB-TolC, MexEF-OprN | [126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karabasil, N.; Mirković, M.; Vićić, I.; Perić, I.; Zlatković, N.; Luković, B.; Gajić, I. Antimicrobial Resistance in Diverse Ecological Niches—One Health Perspective and Food Safety. Antibiotics 2025, 14, 443. https://doi.org/10.3390/antibiotics14050443
Karabasil N, Mirković M, Vićić I, Perić I, Zlatković N, Luković B, Gajić I. Antimicrobial Resistance in Diverse Ecological Niches—One Health Perspective and Food Safety. Antibiotics. 2025; 14(5):443. https://doi.org/10.3390/antibiotics14050443
Chicago/Turabian StyleKarabasil, Nedjeljko, Milica Mirković, Ivan Vićić, Ivana Perić, Nevena Zlatković, Bojana Luković, and Ina Gajić. 2025. "Antimicrobial Resistance in Diverse Ecological Niches—One Health Perspective and Food Safety" Antibiotics 14, no. 5: 443. https://doi.org/10.3390/antibiotics14050443
APA StyleKarabasil, N., Mirković, M., Vićić, I., Perić, I., Zlatković, N., Luković, B., & Gajić, I. (2025). Antimicrobial Resistance in Diverse Ecological Niches—One Health Perspective and Food Safety. Antibiotics, 14(5), 443. https://doi.org/10.3390/antibiotics14050443