Gram-negative Organisms from Patients with Community-Acquired Urinary Tract Infections and Associated Risk Factors for Antimicrobial Resistance: A Single-Center Retrospective Observational Study in Japan
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Study Population
2.3. Data Collection
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Czaja, C.A.; Scholes, D.; Hooton, T.M.; Stamm, W.E. Population-based epidemiologic analysis of acute pyelonephritis. Clin. Infect. Dis. 2007, 45, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Foxman, B. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect. Dis. Clin. N. Am. 2014, 28, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Tandogdu, Z.; Wagenlehner, F.M. Global epidemiology of urinary tract infections. Curr. Opin. Infect. Dis. 2016, 29, 73–79. [Google Scholar] [CrossRef]
- Johnson, J.R.; Russo, T.A. Acute Pyelonephritis in Adults. N. Engl. J. Med. 2018, 378, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Walker, E.; Lyman, A.; Gupta, K.; Mahoney, M.V.; Snyder, G.M.; Hirsch, E.B. Clinical Management of an Increasing Threat: Outpatient Urinary Tract Infections Due to Multidrug-Resistant Uropathogens. Clin. Infect. Dis. 2016, 63, 960–965. [Google Scholar] [CrossRef] [Green Version]
- Bader, M.S.; Loeb, M.; Brooks, A.A. An update on the management of urinary tract infections in the era of antimicrobial resistance. Postgrad. Med. 2017, 129, 242–258. [Google Scholar] [CrossRef]
- Bush, K.; Jacoby, G.A. Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef] [Green Version]
- Bush, K. Past and Present Perspectives on beta-Lactamases. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- Lautenbach, E.; Strom, B.L.; Bilker, W.B.; Patel, J.B.; Edelstein, P.H.; Fishman, N.O. Epidemiological investigation of fluoroquinolone resistance in infections due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Clin Infect. Dis. 2001, 33, 1288–1294. [Google Scholar] [CrossRef] [Green Version]
- Lob, S.H.; Nicolle, L.E.; Hoban, D.J.; Kazmierczak, K.M.; Badal, R.E.; Sahm, D.F. Susceptibility patterns and ESBL rates of Escherichia coli from urinary tract infections in Canada and the United States, SMART 2010-2014. Diagn. Microbiol. Infect. Dis. 2016, 85, 459–465. [Google Scholar] [CrossRef]
- Ministry of Health, Labour and Welfare. Japan Nosocomial Infections Sur- veillance (JANIS). About JANIS. Available online: https://janis.mhlw.go.jp/english/report/index.html (accessed on 7 June 2020).
- Khawcharoenporn, T.; Vasoo, S.; Singh, K. Urinary Tract Infections due to Multidrug-Resistant Enterobacteriaceae: Prevalence and Risk Factors in a Chicago Emergency Department. Emerg. Med. Int. 2013, 2013, 258517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smithson, A.; Chico, C.; Ramos, J.; Netto, C.; Sanchez, M.; Ruiz, J.; Porron, R.; Bastida, M.T. Prevalence and risk factors for quinolone resistance among Escherichia coli strains isolated from males with community febrile urinary tract infection. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Fagan, M.; Lindbaek, M.; Grude, N.; Reiso, H.; Romoren, M.; Skaare, D.; Berild, D. Antibiotic resistance patterns of bacteria causing urinary tract infections in the elderly living in nursing homes versus the elderly living at home: an observational study. BMC Geriatr. 2015, 15, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bischoff, S.; Walter, T.; Gerigk, M.; Ebert, M.; Vogelmann, R. Empiric antibiotic therapy in urinary tract infection in patients with risk factors for antibiotic resistance in a German emergency department. BMC Infect. Dis. 2018, 18, 56. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Sixth Informational Supplement M100-S26; CLSI: Wayne, PA, USA, 2016. [Google Scholar]
- Omigie, O.; Okoror, L.; Umolu, P.; Ikuuh, G. Increasing resistance to quinolones: A four-year prospective study of urinary tract infection pathogens. Int. J. Gen. Med. 2009, 2, 171–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karanika, S.; Karantanos, T.; Arvanitis, M.; Grigoras, C.; Mylonakis, E. Fecal Colonization With Extended-spectrum Beta-lactamase-Producing Enterobacteriaceae and Risk Factors Among Healthy Individuals: A Systematic Review and Metaanalysis. Clin Infect. Dis. 2016, 63, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Thaden, J.T.; Fowler, V.G.; Sexton, D.J.; Anderson, D.J. Increasing Incidence of Extended-Spectrum beta-Lactamase-Producing Escherichia coli in Community Hospitals throughout the Southeastern United States. Infect. Control. Hosp. Epidemiol. 2016, 37, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Bratu, S.; Landman, D.; Haag, R.; Recco, R.; Eramo, A.; Alam, M.; Quale, J. Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch. Intern. Med. 2005, 165, 1430–1435. [Google Scholar] [CrossRef] [Green Version]
- Logan, L.K.; Weinstein, R.A. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J. Infect. Dis. 2017, 215, S28–S36. [Google Scholar] [CrossRef] [Green Version]
- Palacios-Baena, Z.R.; Oteo, J.; Conejo, C.; Larrosa, M.N.; Bou, G.; Fernandez-Martinez, M.; Gonzalez-Lopez, J.J.; Pintado, V.; Martinez-Martinez, L.; Merino, M.; et al. Comprehensive clinical and epidemiological assessment of colonisation and infection due to carbapenemase-producing Enterobacteriaceae in Spain. J. Infect. 2016, 72, 152–160. [Google Scholar] [CrossRef]
- Killgore, K.M.; March, K.L.; Guglielmo, B.J. Risk factors for community-acquired ciprofloxacin-resistant Escherichia coli urinary tract infection. Ann. Pharmacother. 2004, 38, 1148–1152. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Hooton, T.M.; Naber, K.G.; Wullt, B.; Colgan, R.; Miller, L.G.; Moran, G.J.; Nicolle, L.E.; Raz, R.; Schaeffer, A.J.; et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis. 2011, 52, 103–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Japanese Association for Infectious Disease/Japanese Society of Chemotherapy; The JAID/JSC Guide/Guidelines to Clinical Management of Infectious Disease Preparing Committee; Urinary tract infection/male genital infection working group. JAID/JSC Guidelines for Clinical Management of Infectious Disease 2015 - Urinary tract infection/male genital infection. J. Infect. Chemother. 2017, 23, 733–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Association of Urology (EAU): Guidelines on urological infections. Available online: https://uroweb.org/guideline/urological-infections/#3 (accessed on 7 June 2020).
- National Institute for Health and Care Excellence (NICE). Pyelonephritis (acute): antimicrobial prescribing. 2018. Available online: https://www.nice.org.uk/guidance/ng111 (accessed on 18 July 2020).
- Tamma, P.D.; Han, J.H.; Rock, C.; Harris, A.D.; Lautenbach, E.; Hsu, A.J.; Avdic, E.; Cosgrove, S.E.; Antibacterial Resistance Leadership Group. Carbapenem therapy is associated with improved survival compared with piperacillin-tazobactam for patients with extended-spectrum beta-lactamase bacteremia. Clin. Infect. Dis. 2015, 60, 1319–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doi, A.; Shimada, T.; Harada, S.; Iwata, K.; Kamiya, T. The efficacy of cefmetazole against pyelonephritis caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae. Int. J. Infect. Dis. 2013, 17, 159–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mawatari, M.; Hayakawa, K.; Fujiya, Y.; Yamamoto, K.; Kutsuna, S.; Takeshita, N.; Ohmagari, N. Bacteraemic urinary tract infections in a tertiary hospital in Japan: the epidemiology of community-acquired infections and the role of non-carbapenem therapy. BMC Res. Notes 2017, 10, 336. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Overall (n = 172) | Resistant GNR Group (n = 37) | Non-Resistant GNR Group (n = 135) | p-value |
---|---|---|---|---|
Age, median (IQR), years | 80 (72–85) | 80 (70–85) | 79 (73–85) | 0.906 |
Males, no. (%) | 60 (35) | 18 (49) | 42 (31) | 0.047 |
Length of ICU/HCU stay, mean (SD), days | 3.6 (2.2) | 3.8 (2.7) | 3.5 (2.1) | 0.481 |
Pyelonephritis, no. (%) | 165 (96) | 36 (97) | 129 (96) | 0.995 |
Bacteremia, no. (%) | 81 (47) | 16 (43) | 65 (48) | 0.596 |
Risk factors, no. (%) | ||||
Nursing home residence | 38 (22) | 15 (41) | 23 (17) | 0.002 |
Antibiotic use within last 3 months | 9 (5.2) | 5 (14) | 4 (3) | 0.023 |
Hospitalization within last 3 months | 10 (5.8) | 6 (16) | 4 (3) | 0.007 |
Resistant GNR colonization a | 5 (2.9) | 3 (8.1) | 2 (1.5) | 0.071 |
Bed-ridden status b | 30 (17) | 13 (35) | 17 (13) | 0.001 |
Diabetes | 47 (27) | 8 (22) | 39 (29) | 0.415 |
Long-term urinary catheter | 14 (8.1) | 7 (19) | 7 (5.2) | 0.013 |
Immunosuppression c | 42 (24) | 11 (30) | 31 (23) | 0.396 |
Factors | Total | Escherichia Coli | Klebsiella Spp. | Pseudomonas Aeruginosa | Proteus Mirabilis | Enterobacter Cloacae | Providencia Rettgeri | Seratia Marcescens | Citrobacter Spp. | Others |
---|---|---|---|---|---|---|---|---|---|---|
GNR no. (%) | 181 | 135 (75) | 22 (12) | 8 (4.4) | 4 (2.2) | 3 (1.7) | 3 (1.7) | 2 (1.1) | 2 (1.1) | 2 (1.1) |
Resistant GNR, no. (%) | 40 (22) | 29 (22) | 0 | 8 (100) | 1 (25) | 0 | 1 (33) | 1 (50) | 0 | 0 |
ESBL+, no. (%) | 26 (14) | 25 (19) | 0 | 0 | 1 (25) | 0 | 0 | 0 | 0 | 0 |
Susceptibility rate, % | ||||||||||
Ampicillin | 48 | 62 | 0 | 0 | 50 | 0 | 0 | 0 | 50 | 0 |
Ampicillin-sulbactam | 65 | 70 | 82 | 0 | 75 | 0 | 0 | 0 | 100 | 50 |
Piperacillin-tazobactam | 98 | 100 | 96 | 88 | 100 | 100 | 67 | 100 | 100 | 100 |
Cefazolin | 62 | 70 | 73 | 0 | 25 | 0 | 0 | 0 | 50 | 0 |
Cefmetazole | 87 | 96 | 86 | 0 | 100 | 0 | 67 | 0 | 100 | 50 |
Ceftriaxone | 78 | 78 | 100 | 0 | 75 | 100 | 67 | 50 | 100 | 100 |
Cefepime | 83 | 79 | 100 | 88 | 75 | 100 | 100 | 100 | 100 | 100 |
Meropenem | 98 | 100 | 100 | 63 | 100 | 100 | 100 | 100 | 100 | 100 |
Aztreonam | 79 | 79 | 96 | 63 | 75 | 100 | 33 | 50 | 100 | 0 |
Amikacin | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Levofloxacin | 76 | 68 | 100 | 88 | 100 | 100 | 100 | 100 | 100 | 100 |
TMP-SMX | 85 | 90 | 91 | 0 | 50 | 100 | 100 | 50 | 100 | 100 |
Minocycline | 83 | 91 | 86 | 0 | 0 | 100 | 33 | 50 | 100 | 100 |
Antibiotics | Overall | Patients Living in Nursing Home | Community-Dwelling Patients | |||
---|---|---|---|---|---|---|
Enterobacterales (n = 171) | Pseudomonas aeruginosa (n = 8) | Enterobacterales (n = 39) | Pseudomonas aeruginosa (n = 3) | Enterobacterales (n = 132) | Pseudomonas aeruginosa (n = 5) | |
Susceptibility rate, % | ||||||
Ampicillin | 50 | 0 | 36 | 0 | 55 | 0 |
Ampicillin-sulbactam | 68 | 0 | 59 | 0 | 71 | 0 |
Piperacillin-tazobactam | 99 | 88 | 100 | 100 | 99 | 80 |
Cefazolin | 66 | 0 | 56 | 0 | 69 | 0 |
Cefmetazole | 92 | 0 | 90 | 0 | 93 | 0 |
Ceftriaxone | 81 | 0 | 64 | 0 | 86 | 0 |
Cefepime | 83 | 88 | 69 | 100 | 87 | 80 |
Meropenem | 100 | 63 | 100 | 100 | 100 | 40 |
Aztreonam | 81 | 63 | 67 | 33 | 85 | 80 |
Amikacin | 100 | 100 | 100 | 100 | 100 | 100 |
Levofloxacin | 75 | 88 | 54 | 100 | 81 | 80 |
TMP-SMX | 89 | 0 | 79 | 0 | 92 | 0 |
Minocycline | 87 | 0 | 82 | 0 | 87 | 0 |
Risk Factors | Odds Ratio (95% CI) | p-Value |
---|---|---|
Age | 1.00 (0.96–1.03) | 0.900 |
Nursing home residence | 2.83 (1.18–6.79) | 0.020 |
Antibiotic use within 3 months | 4.52 (1.02–19.97) | 0.047 |
Long-term urinary catheter placement | 2.77 (0.81–9.45) | 0.103 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanda, N.; Hashimoto, H.; Sonoo, T.; Naraba, H.; Takahashi, Y.; Nakamura, K.; Hatakeyama, S. Gram-negative Organisms from Patients with Community-Acquired Urinary Tract Infections and Associated Risk Factors for Antimicrobial Resistance: A Single-Center Retrospective Observational Study in Japan. Antibiotics 2020, 9, 438. https://doi.org/10.3390/antibiotics9080438
Kanda N, Hashimoto H, Sonoo T, Naraba H, Takahashi Y, Nakamura K, Hatakeyama S. Gram-negative Organisms from Patients with Community-Acquired Urinary Tract Infections and Associated Risk Factors for Antimicrobial Resistance: A Single-Center Retrospective Observational Study in Japan. Antibiotics. 2020; 9(8):438. https://doi.org/10.3390/antibiotics9080438
Chicago/Turabian StyleKanda, Naoki, Hideki Hashimoto, Tomohiro Sonoo, Hiromu Naraba, Yuji Takahashi, Kensuke Nakamura, and Shuji Hatakeyama. 2020. "Gram-negative Organisms from Patients with Community-Acquired Urinary Tract Infections and Associated Risk Factors for Antimicrobial Resistance: A Single-Center Retrospective Observational Study in Japan" Antibiotics 9, no. 8: 438. https://doi.org/10.3390/antibiotics9080438
APA StyleKanda, N., Hashimoto, H., Sonoo, T., Naraba, H., Takahashi, Y., Nakamura, K., & Hatakeyama, S. (2020). Gram-negative Organisms from Patients with Community-Acquired Urinary Tract Infections and Associated Risk Factors for Antimicrobial Resistance: A Single-Center Retrospective Observational Study in Japan. Antibiotics, 9(8), 438. https://doi.org/10.3390/antibiotics9080438