Terrestrial Biota as Bioindicators for Microplastics and Potentially Toxic Elements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Instrumentation, and Software
2.2. Collection of Animals
2.3. Minimization of Contamination
2.4. Sample Preparation and Microplastics Extraction
2.5. Detection of Microplastic
2.6. Polymer Identification by FTIR
2.7. Elemental Analysis
2.8. Statistical Analysis
3. Results
3.1. Microplastics Detection
3.2. Elemental Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- Lechner, A.; Keckeis, H.; Lumesberger-Loisl, F.; Zens, B.; Krusch, R.; Tritthart, M.; Glas, M.; Schludermann, E. The danube so colourful: A potpourri of plastic litter outnumbers fish larvae in europe’s second largest river. Environ. Pollut. 2014, 188, 177–181. [Google Scholar] [CrossRef] [Green Version]
- UNEP (United Nations Environment Programme). Marine Plastic Debris and Microplastics: Global Lessons and Research to Inspire Action and Guide Policy Change; United Nations: Nairobi, Kenya, 2016. [Google Scholar]
- Prinz, N.; Korez, Š. Understanding How microplastics affect marine biota on the cellular level is important for assessing ecosystem function: A review. In YOUMARES 9—The Oceans: Our Research, Our Future; Jungblut, S., Liebich, V., Bode-Dalby, M., Eds.; Springer: Cham, Switzerland, 2020; pp. 101–120. [Google Scholar] [CrossRef] [Green Version]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, Use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plastics Europe. Plastics—The Facts 2018: An Analysis of European Plastics Production, Demand and Waste Data; Plastics Europe, Association of Plastics Manufacturers: Brussels, Belgium, 2018; Available online: https://www.plasticseurope.org/application/files/6315/4510/9658/Plastics_the_facts_2018_AF_web.pdf (accessed on 20 September 2020).
- Oxford Business Group. Saudi Arabia Using Its Industrial Resources to Make Future Growth Less Reliant on Hydrocarbons. Available online: https://oxfordbusinessgroup.com/overview/evolution-and-change-kingdom-tapping-its-resources-chart-course-future-growth-less-reliant (accessed on 24 January 2017).
- Gajalakshmi, S.; Abbasi, S.A. Solid waste management by composting: State of the art. Crit. Rev. Environ. Sci. Technol. 2008, 38, 311–400. [Google Scholar] [CrossRef]
- Anjum, M.; Miandad, R.; Waqas, M.; Ahmad, I.; Alafif, Z.O.A.; Aburiazaiza, A.S.; Barakat, M.A.; Akhtar, T. Solid Waste Management in Saudi Arabia: A Review. J. Appl. Agric. Biotechnol. 2016, 1, 13–26. [Google Scholar]
- Ouda, O.K.; Cekirge, H.M.; Raza, S.A. An assessment of the potential contribution from waste-to-energy facilities to electricity demand in Saudi Arabia. Energy Convers. Manag. 2013, 75, 402–406. [Google Scholar] [CrossRef]
- do Sul, J.A.I.; Costa, M.F. The present and future of microplastic pollution in the marine environment. Environ. Pollut. 2014, 185, 352–364. [Google Scholar] [CrossRef]
- Coyle, R.; Hardiman, G.; O’ Driscoll, K. Microplastics in the marine environment: A review of their sources, distribution processes, uptake and exchange in ecosystems. Case Stud. Chem. Environ. Eng. 2020, 2, 100010. [Google Scholar] [CrossRef]
- Wang, T.; Li, B.J.; Zou, X.Q.; Wang, Y.; Li, Y.L.; Xu, Y.J.; Mao, L.J.; Zhang, C.C.; Yu, W.W. Emission of primary microplastics in mainland china: Invisible but not negligible. Water Res. 2019, 162, 214–224. [Google Scholar] [CrossRef]
- Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R. Accumulation of microplastic on shorelines woldwide: Sources and sinks. Environ. Sci. Technol. 2011, 45, 9175–9179. [Google Scholar] [CrossRef]
- Rillig, M.C. Microplastic in terrestrial ecosystems and the soil? Environ. Sci. Technol. 2012, 46, 6453–6454. [Google Scholar] [CrossRef] [PubMed]
- Zubris, K.A.V.; Richards, B.K. Synthetic fibers as an indicator of land application of sludge. Environ. Pollut. 2005, 138, 201–211. [Google Scholar] [CrossRef]
- Fuller, S.; Gautam, A. A procedure for measuring microplastics using pressurized fluid extraction. Environ. Sci. Technol. 2016, 50, 5774–5780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nizzetto, L.; Langaas, S.; Futter, M. Pollution: Do microplastics spill on to farm soils? Nature 2016, 537, 488. [Google Scholar] [CrossRef] [Green Version]
- Huerta Lwanga, E.; Gertsen, H.; Gooren, H.; Peters, P.; Salanki, T.; van der Ploeg, M.; Besseling, E.; Koelmans, A.A.; Geissen, V. Incorporation of microplastics from litter into burrows of lumbricus terrestris. Environ. Pollut. 2017, 220, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Ziajahromi, S.; Kumar, A.; Neale, P.A.; Leusch, F.D.L. Environmentally relevant concentrations of polyethylene microplastics negatively impact the survival, growth and emergence of sediment-dwelling invertebrates. Environ. Pollut. 2018, 236, 425–431. [Google Scholar] [CrossRef]
- Lei, L.; Wu, S.; Lu, S.; Liu, M.; Song, Y.; Fu, Z.; Shi, H.; Raley-Susman, K.M.; He, D. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci. Total Environ. 2018, 619–620, 1–8. [Google Scholar] [CrossRef]
- Holmes, L.A.; Turner, A.; Thompson, R.C. Adsorption of trace metals to plastic resin pellets in the marine environment. Environ. Pollut. 2012, 160, 42–48. [Google Scholar] [CrossRef]
- Holmes, L.A.; Turner, A.; Thompson, R.C. Interactions between trace metals and plastic production pellets under estuarine conditions. Mar. Chem. 2014, 167, 25–32. [Google Scholar] [CrossRef]
- Rochman, C.M.; Hentschel, B.T.; The, S.J. Long-Term sorption of metals is similar among plastic types: Implications for plastic debris in aquatic environments. PLoS ONE 2014, 9, e85433. [Google Scholar]
- Ryan, P.G.; Connell, A.D.; Gardner, B.D. Plastic ingestion and pcbs in seabirds: Is there a relationship? Mar. Pollut. Bull. 1988, 19, 174–176. [Google Scholar] [CrossRef]
- Rochman, C.M.; Hoh, E.; Kurobe, T.; The, S.J. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci. Rep. 2013, 3, 3263. [Google Scholar] [CrossRef] [PubMed]
- Koelmans, A.A.; Besseling, E.; Foekema, E.M. Leaching of plastic additives to marine organisms. Environ. Pollut. 2014, 187, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Mann, R.M.; Vijver, M.G.; Peijnenburg, W.J.G.M. Metals and metalloids in terrestrial systems: Bioaccumulation, biomagnification and subsequent adverse effects. In Ecological Impacts of Toxic Chemicals; Sánchez-Bayo, F., van den Brink, P.J., Mann, R.M., Eds.; Bentham Science Publishers Ltd.: Sharjah, United Arab Emirates, 2011; pp. 43–62. [Google Scholar] [CrossRef] [Green Version]
- Alves, P.R.L.; Cardoso, E.J.B.N. Overview of The standard methods for soil ecotoxicology testing, invertebrates. In Experimental Models in Toxicity Screening; Larramendy, M.L., Soloneski, S., Eds.; InTech: Rijeka, Croatia, 2016; pp. 35–56. [Google Scholar] [CrossRef] [Green Version]
- Van Groenigen, J.W.; Willem, J.; Lubbers, I.M.; Vos, H.M.J.; Brown, G.G.; De Deyn, G.B.; van Groenigen, K.J. Earthworms increase plant production: A meta-analysis. Sci. Rep. 2014, 4, 6365. [Google Scholar] [CrossRef] [Green Version]
- Kolar, L.; Jemec, A.; van Gestel, C.A.M.; Valant, J.; Hrzenjak, R.; Erzen, N.K.; Zidar, P. Toxicity of abamectin to the terrestrial isopod Porcellio scaber (Isopoda, Crustacea). Ecotoxicology 2010, 19, 917–927. [Google Scholar] [CrossRef] [Green Version]
- Pemberton, R.W. Insects and other arthropods used as drugs in korean traditional medicine. J. Ethnopharmacol. 1999, 65, 207–216. [Google Scholar] [CrossRef]
- Alves, P.R.L.; Niemeyer, J.C.; Cardoso, E.J.B.N. The use of non-standardized invertebrates in soil ecotoxicology. In Ecotoxicology and Genotoxicology: Non-Traditional Terrestrial Models; Larramendy, M.L., Ed.; RSC: Cambridge, UK, 2017; Chapter 1; pp. 1–30. [Google Scholar] [CrossRef]
- Pankhurst, C.E.; Doube, B.M.; Gupta, V.V.S.R. (Eds.) Biological indicators of soil health: Synthesis. In Biological Indicators of Soil Health; CAB International: Wallingford, UK, 1997; pp. 265–296. [Google Scholar]
- El-Juhany, L.I.; Aref, I.M. The present status of the natural forests in the southwestern Saudi Arabia: 1-Taif forests. World Appl. Sci. J. 2012, 19, 1462–1474. [Google Scholar] [CrossRef]
- Rochman, C.M.; Tahir, A.; Williams, S.L.; Baxa, D.V.; Lam, R.; Miller, J.T.; The, F.-C.; Werorilangi, S.; The, S.J. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep. 2015, 5, 14340. [Google Scholar] [CrossRef]
- Mitra, S. Sample Preparation Techniques in Analytical Chemistry; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2003; Volume 162, pp. 6–244. [Google Scholar]
- Javed, I.; William, A.C.; Shelly, L.C.; Theegala, C.S. Metals determination in biodiesel (b100) by ICP-OES with microwave assisted acid digestion. Open Anal. Chem. 2010, 4, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Ritz, K.; McHugh, M.; Harris, J.A. Biological diversity and function in soils: Contemporary perspectives and implications in relation to the formulation of effective indicators. In Agricultural Soil Erosion and Soil Biodiversity: Developing Indicators for Policy Analyses; Francaviglia, R., Ed.; OECD: Paris, France, 2004; pp. 563–572. [Google Scholar]
- Binney, W.G. Description of species. g. locally introduced. In A Manual of American Land Shells; Bulletin No. 28 of the United States National Museum; Government Printing Office: Washington, DC, USA, 1885; Chapter VII; p. 457. [Google Scholar] [CrossRef]
- Mobarak, S.A.; Kandil, R.A.; El-Abd, N.M. Chemical constituents of Eobania vermiculata (Müller) mucus before and after treatment with acetylsalicylic acid and chlorfluazuron. Egypt. Acad. J. Biol. Sci. 2017, 9, 19–27. [Google Scholar] [CrossRef]
- Löder, M.G.J.; Kuczera, M.; Mintenig, S.; Lorenz, C.; Gerdts, G. Focal plane array detector-based micro-fourier-transform infrared imaging for the analysis of microplastics in environmental samples. Environ. Chem. 2015, 12, 563–581. [Google Scholar] [CrossRef]
- Dindar, B.; Içli, S. Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight. J. Photochem. Photobiol. A Chem. 2001, 140, 263–268. [Google Scholar] [CrossRef]
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lwanga, E.H.; Gertsen, H.; Gooren, H.; Peters, P.; Salánki, T.; van der Ploeg, M.; Besseling, E.; Koelmans, A.A.; Geissen, V. Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ. Sci. Technol. 2016, 50, 2685–2691. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Chen, Q.L.; An, X.L.; Yang, X.R.; Christie, P.; Ke, X.; Wu, L.H.; Zhu, Y.G. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biol. Biochem. 2018, 116, 302–310. [Google Scholar] [CrossRef]
- Blarer, P.; Burkhardt-Holm, P. Microplastics affect assimilation efficiency in the freshwater amphipod Gammarus fossarum. Environ. Sci. Pollut. Res. 2016, 23, 23522–23532. [Google Scholar] [CrossRef]
- Cole, M.; Galloway, T.S. Ingestion of nanoplastics and microplastics by pacific oyster larvae. Environ. Sci. Technol. 2015, 49, 14625–14632. [Google Scholar] [CrossRef] [Green Version]
- Lusher, A.L.; Welden, N.A.; Sobral, P.; Cole, M. Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Anal. Methods 2017, 9, 1346–1360. [Google Scholar] [CrossRef] [Green Version]
- Holland, E.R.; Mallory, M.L.; Shutler, D. Plastics and other anthropogenic debris in freshwater birds from Canada. Sci. Total Environ. 2016, 571, 251–258. [Google Scholar] [CrossRef]
- Zhao, S.; Zhu, L.; Li, D. Microscopic anthropogenic litter in terrestrial birds from Shanghai, China: Not only plastics but also natural fibers. Sci. Total Environ. 2016, 550, 1110–1115. [Google Scholar] [CrossRef]
- Maass, S.; Daphi, D.; Lehmann, A.; Rillig, M.C. Transport of microplastics by two collembolan species. Environ. Pollut. 2017, 225, 456–459. [Google Scholar] [CrossRef]
- Rillig, M.C.; Ziersch, L.; Hempel, S. Microplastic transport in soil by earthworms. Sci. Rep. 2017, 7, 1362. [Google Scholar] [CrossRef] [PubMed]
- Lwanga, E.H.; Vega, J.M.; Quej, V.K.; de los Angeles Chi, J.; del Cid, L.S.; Chi, C.; Geissen, V.; Koelmans, A.A. Field evidence for transfer of plastic debris along a terrestrial food chain. Sci. Rep. 2017, 7, 14071. [Google Scholar] [CrossRef]
- Vittori, M.; Vodnik, K.; Blejec, A. Changes in cuticle structure during growth in two terrestrial isopods (Crustacea: Isopoda: Oniscidea). Nauplius 2020, 28, e2020041. [Google Scholar] [CrossRef]
- Bradney, L.; Wijesekara, H.; Palansooriya, K.N.; Obadamudalige, N.; Bolan, N.S.; Ok, Y.S.; Rinklebe, J.; Kimg, K.; Kirkham, M.B. Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environ. Int. 2019, 131, 104937. [Google Scholar] [CrossRef]
- Wijesekara, H.; Bolan, N.S.; Bradney, L.; Obadamudalige, N.; Seshadri, B.; Kunhikrishnan, A.; Dharmarajan, R.; Ok, Y.S.; Rinklebe, J.; Kirkham, M.B.; et al. Trace element dynamics of biosolids-derived microbeads. Chemosphere 2018, 199, 331–339. [Google Scholar] [CrossRef]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef] [PubMed]
- Ng, E.-L.; Huerta Lwanga, E.; Eldridge, S.M.; Johnston, P.; Hu, H.-W.; Geissen, V.; Chen, D. An overview of microplastic and nanoplastic pollution in agroecosystems. Sci. Total Environ. 2018, 627, 1377–1388. [Google Scholar] [CrossRef]
- Krewski, D.; Yokel, R.A.; Nieboer, E.; Borchelt, D.; Cohen, J.; Harry, J.; Kacew, S.; Lindsay, J.; Mahfouz, A.M.; Rondeau, V. Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J. Toxicol. Environ. Health. Part B Crit. Rev. 2007, 10 (Suppl. 1), 1–269. [Google Scholar] [CrossRef] [PubMed]
- Ukonmaanaho, L.; Starr, M.; Hirvi, J.-P.; Kokko, A.; Lahermo, P.; Mannio, J.; Paukola, T.; Ruoho-Airola, T.; Tanskanen, H. Heavy metal concentrations in various aqueous and biotic media in finnish integrated monitoring catchments. Boreal Environ. Res. 1998, 3, 235–249. [Google Scholar]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef] [PubMed]
- Munier, B.; Bendell, L.I. Macro and micro plastics sorb and desorb metals and act as a point source of trace metals to coastal ecosystems. PLoS ONE 2018, 13, e0191759. [Google Scholar] [CrossRef] [PubMed]
- Carbery, M.; O’Connor, W.; Palanisami, T. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environ. Int. 2018, 115, 400–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Element (mg/L) | R. decollata | R. decollata Shell | Scolopendra | Porcillo | Armadillia |
---|---|---|---|---|---|
Sb | 0.625 ± 0.155 | 0.00 | 0.651 ± 0.076 | 0.782 ± 0.106 | 0.00 |
As | 0.834 ± 0.100 | 0.00 | 0.857 ± 0.108 | 0.00 | 0.138 ± 0.025 |
Fe | 0.00 | 0.911 ± 0.087 | 0.00 | 0.00 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Malki, J.S.; Hussien, N.A.; Tantawy, E.M.; Khattab, Y.; Mohammadein, A. Terrestrial Biota as Bioindicators for Microplastics and Potentially Toxic Elements. Coatings 2021, 11, 1152. https://doi.org/10.3390/coatings11101152
Al Malki JS, Hussien NA, Tantawy EM, Khattab Y, Mohammadein A. Terrestrial Biota as Bioindicators for Microplastics and Potentially Toxic Elements. Coatings. 2021; 11(10):1152. https://doi.org/10.3390/coatings11101152
Chicago/Turabian StyleAl Malki, Jamila S., Nahed Ahmed Hussien, Ehab M. Tantawy, Yassir Khattab, and Amaal Mohammadein. 2021. "Terrestrial Biota as Bioindicators for Microplastics and Potentially Toxic Elements" Coatings 11, no. 10: 1152. https://doi.org/10.3390/coatings11101152
APA StyleAl Malki, J. S., Hussien, N. A., Tantawy, E. M., Khattab, Y., & Mohammadein, A. (2021). Terrestrial Biota as Bioindicators for Microplastics and Potentially Toxic Elements. Coatings, 11(10), 1152. https://doi.org/10.3390/coatings11101152